URL
https://opencores.org/ocsvn/fpu100/fpu100/trunk
Subversion Repositories fpu100
[/] [fpu100/] [branches/] [avendor/] [post_norm_addsub.vhd] - Rev 21
Compare with Previous | Blame | View Log
------------------------------------------------------------------------------- -- -- Project: <Floating Point Unit Core> -- -- Description: post-normalization entity for the addition/subtraction unit ------------------------------------------------------------------------------- -- -- 100101011010011100100 -- 110000111011100100000 -- 100000111011000101101 -- 100010111100101111001 -- 110000111011101101001 -- 010000001011101001010 -- 110100111001001100001 -- 110111010000001100111 -- 110110111110001011101 -- 101110110010111101000 -- 100000010111000000000 -- -- Author: Jidan Al-eryani -- E-mail: jidan@gmx.net -- -- Copyright (C) 2006 -- -- This source file may be used and distributed without -- restriction provided that this copyright statement is not -- removed from the file and that any derivative work contains -- the original copyright notice and the associated disclaimer. -- -- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY -- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED -- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR -- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE -- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR -- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT -- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -- POSSIBILITY OF SUCH DAMAGE. -- library ieee ; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_misc.all; library work; use work.fpupack.all; entity post_norm_addsub is port( clk_i : in std_logic; opa_i : in std_logic_vector(FP_WIDTH-1 downto 0); opb_i : in std_logic_vector(FP_WIDTH-1 downto 0); fract_28_i : in std_logic_vector(FRAC_WIDTH+4 downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1) exp_i : in std_logic_vector(EXP_WIDTH-1 downto 0); sign_i : in std_logic; fpu_op_i : in std_logic; rmode_i : in std_logic_vector(1 downto 0); output_o : out std_logic_vector(FP_WIDTH-1 downto 0); ine_o : out std_logic ); end post_norm_addsub; architecture rtl of post_norm_addsub is signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0); signal s_fract_28_i : std_logic_vector(FRAC_WIDTH+4 downto 0); signal s_exp_i : std_logic_vector(EXP_WIDTH-1 downto 0); signal s_sign_i : std_logic; signal s_fpu_op_i : std_logic; signal s_rmode_i : std_logic_vector(1 downto 0); signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0); signal s_ine_o : std_logic; signal s_overflow : std_logic; signal s_shr1, s_shr2, s_shl : std_logic; signal s_expr1_9, s_expr2_9, s_expl_9 : std_logic_vector(EXP_WIDTH downto 0); signal s_exp_shr1, s_exp_shr2, s_exp_shl : std_logic_vector(EXP_WIDTH-1 downto 0); signal s_fract_shr1, s_fract_shr2, s_fract_shl : std_logic_vector(FRAC_WIDTH+4 downto 0); signal s_zeros : std_logic_vector(5 downto 0); signal shl_pos: std_logic_vector(5 downto 0); signal s_fract_1, s_fract_2 : std_logic_vector(FRAC_WIDTH+4 downto 0); signal s_exp_1, s_exp_2 : std_logic_vector(EXP_WIDTH-1 downto 0); signal s_fract_rnd : std_logic_vector(FRAC_WIDTH+4 downto 0); signal s_roundup : std_logic; signal s_sticky : std_logic; signal s_zero_fract : std_logic; signal s_lost : std_logic; signal s_infa, s_infb : std_logic; signal s_nan_in, s_nan_op, s_nan_a, s_nan_b, s_nan_sign : std_logic; begin -- Input Register --process(clk_i) --begin -- if rising_edge(clk_i) then s_opa_i <= opa_i; s_opb_i <= opb_i; s_fract_28_i <= fract_28_i; s_exp_i <= exp_i; s_sign_i <= sign_i; s_fpu_op_i <= fpu_op_i; s_rmode_i <= rmode_i; -- end if; --end process; -- Output Register --process(clk_i) --begin -- if rising_edge(clk_i) then output_o <= s_output_o; ine_o <= s_ine_o; -- end if; --end process; -- check if shifting is needed s_shr1 <= s_fract_28_i(27); s_shl <= '1' when s_fract_28_i(27 downto 26)="00" and s_exp_i /= "00000000" else '0'; -- stage 1a: right-shift (when necessary) s_expr1_9 <= "0"&s_exp_i + "000000001"; s_fract_shr1 <= shr(s_fract_28_i, "1"); s_exp_shr1 <= s_expr1_9(7 downto 0); -- stage 1b: left-shift (when necessary) process(clk_i) begin if rising_edge(clk_i) then -- count the leading zero's of fraction, needed for left-shift s_zeros <= count_l_zeros(s_fract_28_i(26 downto 0)); end if; end process; s_expl_9 <= ("0"&s_exp_i) - ("000"&s_zeros); shl_pos <= "000000" when s_exp_i="00000001" else s_zeros; s_fract_shl <= shl(s_fract_28_i, shl_pos); s_exp_shl <= "00000000" when s_exp_i="00000001" else s_exp_i - ("00"&shl_pos); process(clk_i) begin if rising_edge(clk_i) then if s_shr1='1' then s_fract_1 <= s_fract_shr1; elsif s_shl='1' then s_fract_1 <= s_fract_shl; else s_fract_1 <= s_fract_28_i; end if; end if; end process; process(clk_i) begin if rising_edge(clk_i) then if s_shr1='1' then s_exp_1 <= s_exp_shr1; elsif s_shl='1' then s_exp_1 <= s_exp_shl; else s_exp_1 <= s_exp_i; end if; end if; end process; -- round s_sticky <='1' when s_fract_1(0)='1' or (s_fract_28_i(0) and s_fract_28_i(27))='1' else '0'; --check last bit, before and after right-shift s_roundup <= s_fract_1(2) and ((s_fract_1(1) or s_sticky)or s_fract_1(3)) when s_rmode_i="00" else -- round to nearset even (s_fract_1(2) or s_fract_1(1) or s_sticky) and (not s_sign_i) when s_rmode_i="10" else -- round up (s_fract_1(2) or s_fract_1(1) or s_sticky) and (s_sign_i) when s_rmode_i="11" else -- round down '0'; -- round to zero(truncate = no rounding) s_fract_rnd <= s_fract_1 + "0000000000000000000000001000" when s_roundup='1' else s_fract_1; -- stage 2: right-shift after rounding (when necessary) s_shr2 <= s_fract_rnd(27); s_expr2_9 <= ("0"&s_exp_1) + "000000001"; s_fract_shr2 <= shr(s_fract_rnd, "1"); s_exp_shr2 <= s_expr2_9(7 downto 0); s_fract_2 <= s_fract_shr2 when s_shr2='1' else s_fract_rnd; s_exp_2 <= s_exp_shr2 when s_shr2='1' else s_exp_1; ------------- s_infa <= '1' when s_opa_i(30 downto 23)="11111111" else '0'; s_infb <= '1' when s_opb_i(30 downto 23)="11111111" else '0'; s_nan_a <= '1' when (s_infa='1' and or_reduce (s_opa_i(22 downto 0))='1') else '0'; s_nan_b <= '1' when (s_infb='1' and or_reduce (s_opb_i(22 downto 0))='1') else '0'; s_nan_in <= '1' when s_nan_a='1' or s_nan_b='1' else '0'; s_nan_op <= '1' when (s_infa and s_infb)='1' and (s_opa_i(31) xor (s_fpu_op_i xor s_opb_i(31)) )='1' else '0'; -- inf-inf=Nan s_nan_sign <= s_sign_i when (s_nan_a and s_nan_b)='1' else s_opa_i(31) when s_nan_a='1' else s_opb_i(31); -- check if result is inexact; s_lost <= or_reduce(s_fract_28_i(2 downto 0)) or or_reduce(s_fract_1(2 downto 0)) or or_reduce(s_fract_2(2 downto 0)); s_ine_o <= '1' when (s_lost or s_overflow)='1' and (s_infa or s_infb)='0' else '0'; s_overflow <='1' when (s_expr1_9(8) or s_expr2_9(8))='1' and (s_infa or s_infb)='0' else '0'; s_zero_fract <= '1' when s_zeros=27 and s_fract_28_i(27)='0' else '0'; -- '1' if fraction result is zero process(s_sign_i, s_exp_2, s_fract_2, s_nan_in, s_nan_op, s_nan_sign, s_infa, s_infb, s_overflow, s_zero_fract) begin if (s_nan_in or s_nan_op)='1' then s_output_o <= s_nan_sign & QNAN; elsif (s_infa or s_infb)='1' or s_overflow='1' then s_output_o <= s_sign_i & INF; elsif s_zero_fract='1' then s_output_o <= s_sign_i & ZERO_VECTOR; else s_output_o <= s_sign_i & s_exp_2 & s_fract_2(25 downto 3); end if; end process; end rtl;