URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [sw/] [bootloader/] [bootloader.c] - Rev 32
Go to most recent revision | Compare with Previous | Blame | View Log
// ################################################################################################# // # << NEORV32 - Bootloader >> # // # ********************************************************************************************* # // # THE BOOTLOADER SHOULD BE COMPILED USING ONLY THE BASE ISA (rv32i or rv32e)! # // # ********************************************************************************************* # // # Boot from (internal) instruction memory, UART or SPI Flash. # // # # // # UART configuration: 8N1 at 19200 baud # // # Boot Flash: 8-bit SPI, 24-bit addresses (like Micron N25Q032A) @ neorv32.spi_csn_o(0) # // # neorv32.gpio_o(0) is used as high-active status LED (can be disabled via STATUS_LED_EN). # // # # // # Auto boot sequence (can be disabled via AUTOBOOT_EN) after timeout (via AUTOBOOT_TIMEOUT): # // # -> Try booting from SPI flash at spi_csn_o(0). # // # -> Permanently light up status led and freeze if SPI flash booting attempt fails. # // # ********************************************************************************************* # // # BSD 3-Clause License # // # # // # Copyright (c) 2020, Stephan Nolting. All rights reserved. # // # # // # Redistribution and use in source and binary forms, with or without modification, are # // # permitted provided that the following conditions are met: # // # # // # 1. Redistributions of source code must retain the above copyright notice, this list of # // # conditions and the following disclaimer. # // # # // # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # // # conditions and the following disclaimer in the documentation and/or other materials # // # provided with the distribution. # // # # // # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # // # endorse or promote products derived from this software without specific prior written # // # permission. # // # # // # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # // # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # // # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # // # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # // # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # // # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # // # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # // # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # // # OF THE POSSIBILITY OF SUCH DAMAGE. # // # ********************************************************************************************* # // # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # // ################################################################################################# /**********************************************************************//** * @file bootloader.c * @author Stephan Nolting * @brief Default NEORV32 bootloader. Compile only for rv32i or rv32e (better). **************************************************************************/ // Libraries #include <stdint.h> #include <neorv32.h> /**********************************************************************//** * @name User configuration **************************************************************************/ /**@{*/ /** UART BAUD rate */ #define BAUD_RATE (19200) /** Time until the auto-boot sequence starts (in seconds) */ #define AUTOBOOT_TIMEOUT 8 /** Enable auto-boot sequence if != 0 */ #define AUTOBOOT_EN (1) /** Set to 0 to disable bootloader status LED */ #define STATUS_LED_EN (1) /** Bootloader status LED at GPIO output port */ #define STATUS_LED (0) /** SPI flash boot image base address */ #define SPI_FLASH_BOOT_ADR (0x00800000) /** SPI flash chip select at spi_csn_o */ #define SPI_FLASH_CS (0) /** Default SPI flash clock prescaler for serial peripheral interface */ #define SPI_FLASH_CLK_PRSC (CLK_PRSC_8) /** SPI flash sector size in bytes */ #define SPI_FLASH_SECTOR_SIZE (64*1024) /**@}*/ /**********************************************************************//** Executable stream source select **************************************************************************/ enum EXE_STREAM_SOURCE { EXE_STREAM_UART = 0, /**< Get executable via UART */ EXE_STREAM_FLASH = 1 /**< Get executable via SPI flash */ }; /**********************************************************************//** * Error codes **************************************************************************/ enum ERROR_CODES { ERROR_SIGNATURE = 0, /**< 0: Wrong signature in executable */ ERROR_SIZE = 1, /**< 1: Insufficient instruction memory capacity */ ERROR_CHECKSUM = 2, /**< 2: Checksum error in executable */ ERROR_FLASH = 3, /**< 3: SPI flash access error */ ERROR_ROM = 4, /**< 4: Instruction memory is marked as read-only */ ERROR_SYSTEM = 5 /**< 5: System exception */ }; /**********************************************************************//** * SPI flash commands **************************************************************************/ enum SPI_FLASH_CMD { SPI_FLASH_CMD_PAGE_PROGRAM = 0x02, /**< Program page */ SPI_FLASH_CMD_READ = 0x03, /**< Read data */ SPI_FLASH_CMD_READ_STATUS = 0x05, /**< Get status register */ SPI_FLASH_CMD_WRITE_ENABLE = 0x06, /**< Allow write access */ SPI_FLASH_CMD_READ_ID = 0x9E, /**< Read manufacturer ID */ SPI_FLASH_CMD_SECTOR_ERASE = 0xD8 /**< Erase complete sector */ }; /**********************************************************************//** * NEORV32 executable **************************************************************************/ enum NEORV32_EXECUTABLE { EXE_OFFSET_SIGNATURE = 0, /**< Offset in bytes from start to signature (32-bit) */ EXE_OFFSET_SIZE = 4, /**< Offset in bytes from start to size (32-bit) */ EXE_OFFSET_CHECKSUM = 8, /**< Offset in bytes from start to checksum (32-bit) */ EXE_OFFSET_DATA = 12, /**< Offset in bytes from start to data (32-bit) */ }; /**********************************************************************//** * Valid executable identification signature. **************************************************************************/ #define EXE_SIGNATURE 0x4788CAFE /**********************************************************************//** * String output helper macros. **************************************************************************/ /**@{*/ /* Actual define-to-string helper */ #define xstr(a) str(a) /* Internal helper macro */ #define str(a) #a /**@}*/ /**********************************************************************//** * This global variable keeps the size of the available executable in bytes. * If =0 no executable is available (yet). **************************************************************************/ uint32_t exe_available = 0; // Function prototypes void __attribute__((__interrupt__)) bootloader_trap_handler(void); void print_help(void); void start_app(void); void get_exe(int src); void save_exe(void); uint32_t get_exe_word(int src, uint32_t addr); void system_error(uint8_t err_code); void print_hex_word(uint32_t num); // SPI flash access uint8_t spi_flash_read_byte(uint32_t addr); void spi_flash_write_byte(uint32_t addr, uint8_t wdata); void spi_flash_write_word(uint32_t addr, uint32_t wdata); void spi_flash_erase_sector(uint32_t addr); uint8_t spi_flash_read_status(void); uint8_t spi_flash_read_1st_id(void); void spi_flash_write_enable(void); void spi_flash_write_addr(uint32_t addr); /**********************************************************************//** * Bootloader main. **************************************************************************/ int main(void) { // ------------------------------------------------ // Processor hardware initialization // - all IO devices are reset and disabled by the crt0 code // ------------------------------------------------ // get clock speed (in Hz) uint32_t clock_speed = SYSINFO_CLK; // init SPI for 8-bit, clock-mode 0, MSB-first, no interrupt if (clock_speed < 40000000) { neorv32_spi_setup(SPI_FLASH_CLK_PRSC, 0, 0, 0, 0); } else { neorv32_spi_setup(CLK_PRSC_128, 0, 0, 0, 0); } // init UART (no interrupts) neorv32_uart_setup(BAUD_RATE, 0, 0); // Configure machine system timer interrupt for ~2Hz neorv32_mtime_set_timecmp(neorv32_mtime_get_time() + (clock_speed/4)); // confiure trap handler (bare-metal, no neorv32 rte available) neorv32_cpu_csr_write(CSR_MTVEC, (uint32_t)(&bootloader_trap_handler)); neorv32_cpu_csr_write(CSR_MIE, 1 << CPU_MIE_MTIE); // activate MTIME IRQ source neorv32_cpu_eint(); // enable global interrupts if (STATUS_LED_EN == 1) { // activate status LED, clear all others neorv32_gpio_port_set(1 << STATUS_LED); } // global variable to executable size; 0 means there is no exe available exe_available = 0; // ------------------------------------------------ // Show bootloader intro and system info // ------------------------------------------------ neorv32_uart_print("\n\n\n\n<< NEORV32 Bootloader >>\n\n" "BLDV: "__DATE__"\nHWV: "); neorv32_rte_print_hw_version(); neorv32_uart_print("\nCLK: "); print_hex_word(SYSINFO_CLK); neorv32_uart_print(" Hz\nUSER: "); print_hex_word(SYSINFO_USER_CODE); neorv32_uart_print("\nMISA: "); print_hex_word(neorv32_cpu_csr_read(CSR_MISA)); neorv32_uart_print("\nPROC: "); print_hex_word(SYSINFO_FEATURES); neorv32_uart_print("\nIMEM: "); print_hex_word(SYSINFO_IMEM_SIZE); neorv32_uart_print(" bytes @ "); print_hex_word(SYSINFO_ISPACE_BASE); neorv32_uart_print("\nDMEM: "); print_hex_word(SYSINFO_DMEM_SIZE); neorv32_uart_print(" bytes @ "); print_hex_word(SYSINFO_DSPACE_BASE); // ------------------------------------------------ // Auto boot sequence // ------------------------------------------------ #if (AUTOBOOT_EN != 0) neorv32_uart_print("\n\nAutoboot in "xstr(AUTOBOOT_TIMEOUT)"s. Press key to abort.\n"); uint64_t timeout_time = neorv32_mtime_get_time() + (uint64_t)(AUTOBOOT_TIMEOUT * clock_speed); while ((UART_DATA & (1 << UART_DATA_AVAIL)) == 0) { // wait for any key to be pressed if (neorv32_mtime_get_time() >= timeout_time) { // timeout? start auto boot sequence get_exe(EXE_STREAM_FLASH); // try loading from spi flash neorv32_uart_print("\n"); start_app(); } } neorv32_uart_print("Aborted.\n\n"); #else neorv32_uart_print("\n\n"); #endif print_help(); // ------------------------------------------------ // Bootloader console // ------------------------------------------------ while (1) { neorv32_uart_print("\nCMD:> "); char c = neorv32_uart_getc(); neorv32_uart_putc(c); // echo neorv32_uart_print("\n"); if (c == 'r') { // restart bootloader neorv32_cpu_dint(); // disable global interrupts asm volatile ("li t0, %[input_i]; jr t0" : : [input_i] "i" (BOOTLOADER_BASE_ADDRESS)); // jump to beginning of boot ROM while(1); // just for the compiler } else if (c == 'h') { // help menu print_help(); } else if (c == 'u') { // get executable via UART get_exe(EXE_STREAM_UART); } else if (c == 's') { // program flash from memory (IMEM) save_exe(); } else if (c == 'l') { // get executable from flash get_exe(EXE_STREAM_FLASH); } else if (c == 'e') { // start application program start_app(); } else if (c == '?') { neorv32_uart_print("by Stephan Nolting"); } else { // unknown command neorv32_uart_print("Invalid CMD"); } } return 0; // bootloader should never return } /**********************************************************************//** * Print help menu. **************************************************************************/ void print_help(void) { neorv32_uart_print("Available CMDs:\n" " h: Help\n" " r: Restart\n" " u: Upload\n" " s: Store to flash\n" " l: Load from flash\n" " e: Execute"); } /**********************************************************************//** * Start application program at the beginning of instruction space. **************************************************************************/ void start_app(void) { // executable available? if (exe_available == 0) { neorv32_uart_print("No executable available."); return; } // no need to shut down or reset the used peripherals // no need to disable interrupt sources // -> this will be done by application's crt0 // deactivate global IRQs neorv32_cpu_dint(); neorv32_uart_print("Booting...\n\n"); // wait for UART to finish transmitting while ((UART_CT & (1<<UART_CT_TX_BUSY)) != 0); // reset performance counters (to benchmark actual application) asm volatile ("csrw mcycle, zero"); // also clears 'cycle' asm volatile ("csrw mcycleh, zero"); // also clears 'cycleh' asm volatile ("csrw minstret, zero"); // also clears 'instret' asm volatile ("csrw minstreth, zero"); // also clears 'instreth' // start app at instruction space base address register uint32_t app_base = SYSINFO_ISPACE_BASE; asm volatile ("jalr zero, %0" : : "r" (app_base)); while (1); } /**********************************************************************//** * Bootloader trap handler. Used for the MTIME tick and to capture any other traps. * @warning Since we have no runtime environment, we have to use the interrupt attribute here. Here, and only here! **************************************************************************/ void __attribute__((__interrupt__)) bootloader_trap_handler(void) { // make sure this was caused by MTIME IRQ uint32_t cause = neorv32_cpu_csr_read(CSR_MCAUSE); if (cause == TRAP_CODE_MTI) { // raw exception code for MTI if (STATUS_LED_EN == 1) { // toggle status LED neorv32_gpio_pin_toggle(STATUS_LED); } // set time for next IRQ neorv32_mtime_set_timecmp(neorv32_mtime_get_time() + (SYSINFO_CLK/4)); } else if (cause == TRAP_CODE_S_ACCESS) { // seems like executable is too large system_error(ERROR_SIZE); } else { neorv32_uart_print("\n\nEXCEPTION ("); print_hex_word(cause); neorv32_uart_print(") @ 0x"); print_hex_word(neorv32_cpu_csr_read(CSR_MEPC)); system_error(ERROR_SYSTEM); } } /**********************************************************************//** * Get executable stream. * * @param src Source of executable stream data. See #EXE_STREAM_SOURCE. **************************************************************************/ void get_exe(int src) { // is instruction memory (IMEM) read-only? if (SYSINFO_FEATURES & (1 << SYSINFO_FEATURES_MEM_INT_IMEM_ROM)) { system_error(ERROR_ROM); } // flash image base address uint32_t addr = SPI_FLASH_BOOT_ADR; // get image from flash? if (src == EXE_STREAM_UART) { neorv32_uart_print("Awaiting neorv32_exe.bin... "); } else { neorv32_uart_print("Loading... "); // check if flash ready (or available at all) if (spi_flash_read_1st_id() == 0x00) { // manufacturer ID system_error(ERROR_FLASH); } } // check if valid image uint32_t signature = get_exe_word(src, addr + EXE_OFFSET_SIGNATURE); if (signature != EXE_SIGNATURE) { // signature system_error(ERROR_SIGNATURE); } // image size and checksum uint32_t size = get_exe_word(src, addr + EXE_OFFSET_SIZE); // size in bytes uint32_t check = get_exe_word(src, addr + EXE_OFFSET_CHECKSUM); // complement sum checksum // transfer program data uint32_t *pnt = (uint32_t*)SYSINFO_ISPACE_BASE; uint32_t checksum = 0; uint32_t d = 0, i = 0; addr = addr + EXE_OFFSET_DATA; while (i < (size/4)) { // in words d = get_exe_word(src, addr); checksum += d; pnt[i++] = d; addr += 4; } // error during transfer? if ((checksum + check) != 0) { system_error(ERROR_CHECKSUM); } else { neorv32_uart_print("OK"); exe_available = size; // store exe size } } /**********************************************************************//** * Store content of instruction memory to SPI flash. **************************************************************************/ void save_exe(void) { // size of last uploaded executable uint32_t size = exe_available; if (size == 0) { neorv32_uart_print("No executable available."); return; } uint32_t addr = SPI_FLASH_BOOT_ADR; // info and prompt neorv32_uart_print("Write 0x"); print_hex_word(size); neorv32_uart_print(" bytes to SPI flash @ 0x"); print_hex_word(addr); neorv32_uart_print("? (y/n) "); char c = neorv32_uart_getc(); neorv32_uart_putc(c); if (c != 'y') { return; } // check if flash ready (or available at all) if (spi_flash_read_1st_id() == 0x00) { // manufacturer ID system_error(ERROR_FLASH); } neorv32_uart_print("\nFlashing... "); // clear memory before writing uint32_t num_sectors = (size / SPI_FLASH_SECTOR_SIZE) + 1; // clear at least 1 sector uint32_t sector = SPI_FLASH_BOOT_ADR; while (num_sectors--) { spi_flash_erase_sector(sector); sector += SPI_FLASH_SECTOR_SIZE; } // write EXE signature spi_flash_write_word(addr + EXE_OFFSET_SIGNATURE, EXE_SIGNATURE); // write size spi_flash_write_word(addr + EXE_OFFSET_SIZE, size); // store data from instruction memory and update checksum uint32_t checksum = 0; uint32_t *pnt = (uint32_t*)SYSINFO_ISPACE_BASE; addr = addr + EXE_OFFSET_DATA; uint32_t i = 0; while (i < (size/4)) { // in words uint32_t d = (uint32_t)*pnt++; checksum += d; spi_flash_write_word(addr, d); addr += 4; i++; } // write checksum (sum complement) checksum = (~checksum) + 1; spi_flash_write_word(SPI_FLASH_BOOT_ADR + EXE_OFFSET_CHECKSUM, checksum); neorv32_uart_print("OK"); } /**********************************************************************//** * Get word from executable stream * * @param src Source of executable stream data. See #EXE_STREAM_SOURCE. * @param addr Address when accessing SPI flash. * @return 32-bit data word from stream. **************************************************************************/ uint32_t get_exe_word(int src, uint32_t addr) { union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)]; } data; uint32_t i; for (i=0; i<4; i++) { if (src == EXE_STREAM_UART) { data.uint8[3-i] = (uint8_t)neorv32_uart_getc(); } else { data.uint8[3-i] = spi_flash_read_byte(addr + i); } } return data.uint32; } /**********************************************************************//** * Output system error ID and stall. * * @param[in] err_code Error code. See #ERROR_CODES. **************************************************************************/ void system_error(uint8_t err_code) { neorv32_uart_print("\a\nERROR_"); // output error code with annoying bell sound neorv32_uart_putc('0' + ((char)err_code)); // FIXME err_code should/must be below 10 neorv32_cpu_dint(); // deactivate IRQs if (STATUS_LED_EN == 1) { neorv32_gpio_port_set(1 << STATUS_LED); // permanently light up status LED } asm volatile ("wfi"); // power-down while(1); // freeze } /**********************************************************************//** * Print 32-bit number as 8-digit hexadecimal value (with "0x" suffix). * * @param[in] num Number to print as hexadecimal. **************************************************************************/ void print_hex_word(uint32_t num) { static const char hex_symbols[16] = "0123456789ABCDEF"; neorv32_uart_print("0x"); int i; for (i=0; i<8; i++) { uint32_t index = (num >> (28 - 4*i)) & 0xF; neorv32_uart_putc(hex_symbols[index]); } } // ------------------------------------------------------------------------------------- // SPI flash functions // ------------------------------------------------------------------------------------- /**********************************************************************//** * Read byte from SPI flash. * * @param[in] addr Flash read address. * @return Read byte from SPI flash. **************************************************************************/ uint8_t spi_flash_read_byte(uint32_t addr) { neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_READ); spi_flash_write_addr(addr); uint8_t rdata = (uint8_t)neorv32_spi_trans(0); neorv32_spi_cs_dis(SPI_FLASH_CS); return rdata; } /**********************************************************************//** * Write byte to SPI flash. * * @param[in] addr SPI flash read address. * @param[in] wdata SPI flash read data. **************************************************************************/ void spi_flash_write_byte(uint32_t addr, uint8_t wdata) { spi_flash_write_enable(); // allow write-access neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_PAGE_PROGRAM); spi_flash_write_addr(addr); neorv32_spi_trans(wdata); neorv32_spi_cs_dis(SPI_FLASH_CS); while (1) { uint8_t tmp = spi_flash_read_status(); if ((tmp & 0x01) == 0) { // write in progress flag cleared? break; } } } /**********************************************************************//** * Write word to SPI flash. * * @param addr SPI flash write address. * @param wdata SPI flash write data. **************************************************************************/ void spi_flash_write_word(uint32_t addr, uint32_t wdata) { union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)]; } data; data.uint32 = wdata; uint32_t i; for (i=0; i<4; i++) { spi_flash_write_byte(addr + i, data.uint8[3-i]); } } /**********************************************************************//** * Erase sector (64kB) at base adress. * * @param[in] addr Base address of sector to erase. **************************************************************************/ void spi_flash_erase_sector(uint32_t addr) { spi_flash_write_enable(); // allow write-access neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_SECTOR_ERASE); spi_flash_write_addr(addr); neorv32_spi_cs_dis(SPI_FLASH_CS); while (1) { uint8_t tmp = spi_flash_read_status(); if ((tmp & 0x01) == 0) { // write in progress flag cleared? break; } } } /**********************************************************************//** * Read status register. * * @return Status register. **************************************************************************/ uint8_t spi_flash_read_status(void) { neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_READ_STATUS); uint8_t status = (uint8_t)neorv32_spi_trans(0); neorv32_spi_cs_dis(SPI_FLASH_CS); return status; } /**********************************************************************//** * Read first byte of ID (manufacturer ID), should be != 0x00. * * @note The first bit of the manufacturer ID is used to detect if a Flash is connected at all. * * @return First byte of ID. **************************************************************************/ uint8_t spi_flash_read_1st_id(void) { neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_READ_ID); uint8_t id = (uint8_t)neorv32_spi_trans(0); neorv32_spi_cs_dis(SPI_FLASH_CS); return id; } /**********************************************************************//** * Enable flash write access. **************************************************************************/ void spi_flash_write_enable(void) { neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_WRITE_ENABLE); neorv32_spi_cs_dis(SPI_FLASH_CS); } /**********************************************************************//** * Send address word to flash. * * @param[in] addr Address word. **************************************************************************/ void spi_flash_write_addr(uint32_t addr) { union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)]; } address; address.uint32 = addr; neorv32_spi_trans(address.uint8[2]); neorv32_spi_trans(address.uint8[1]); neorv32_spi_trans(address.uint8[0]); }
Go to most recent revision | Compare with Previous | Blame | View Log