OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [bootloaders/] [orpmon/] [common/] [dosfs.c] - Rev 406

Compare with Previous | Blame | View Log

/*
	DOSFS Embedded FAT-Compatible Filesystem
	(C) 2005 Lewin A.R.W. Edwards (sysadm@zws.com)
 
	You are permitted to modify and/or use this code in your own projects without
	payment of royalty, regardless of the license(s) you choose for those projects.
 
	You cannot re-copyright or restrict use of the code as released by Lewin Edwards.
*/  
 
/*
  @2010, adam.edvardsson@orsoc.se
  Added local copy of the functions,
   div_t, memcmp2,strcpy2,strcmp2. The one from the string library is not comatible
 
*/ 
 
 
//#include <string.h>
//#include <stdlib.h>
//#include "or32_utils.h"
#include "dosfs.h"
#include "sdc.h"
 
#include "common.h"
#include "support.h"
#include "uart.h"
 
 
 
unsigned long int init_fat(VOLINFO * vis)
{
 
 
 
 
unsigned char sector[SECTOR_SIZE];
 
unsigned long int pstart, psize, i, fisz;
 
unsigned char pactive, ptype;
 
VOLINFO vi;
 
 
 
	    //uart_init(DEFAULT_UART);
	    printf("FAT INIT START\n");
 
memCardInit();
 
 
 
pstart = DFS_GetPtnStart(0, sector, 0, &pactive, &ptype, &psize);
 
if (pstart == 0xffffffff) {
 
printf("Cannot find first partition\n");
 
return -1;
 
}
 
 
printf
	    ("Partition 0 start sector 0x%-08.8lX active %-02.2hX type %-02.2hX size %-08.8lX\n",
	     pstart, pactive, ptype, psize);
 
 
if (DFS_GetVolInfo(0, sector, pstart, &vi)) {
 
printf("Error getting volume information\n");
 
return -1;
 
}
 
 
 
 
 
*vis = vi;
 
 
 
 
}
 
 
 
 
unsigned long int DFS_ReadSector(unsigned char unit, unsigned char *buffer,
				    unsigned long int sector,
				    unsigned long int count) 
{
 
 
unsigned long int block_add = 0;
 
int i;
 
 
 
 
for (i = 0; i < count; i++) {
 
block_add = sector + i;
 
DBGA("\n readSector %u, block_addr %u \n", sector, block_add);
 
setup_bd_transfer(READ_OP, block_add, buffer);
 
if (finnish_bd_transfer() == FALSE)
 
return 0xff;
 
 
}
 
 
return 0;
 
 
}
 
 
 
 
unsigned long int DFS_WriteSector(unsigned char unit, unsigned char *buffer,
				     unsigned long int sector,
				     unsigned long int count) 
{
 
 
 
unsigned long int block_add = 0;
 
unsigned char scr[SECTOR_SIZE];
 
 
block_add = sector;
 
DBGA("\n writeSector %u, block_addr2 %u \n", sector, block_add);
 
setup_bd_transfer(WRITE_OP, block_add, buffer);
 
 
if (finnish_bd_transfer() == FALSE) {
 
printf("TRANSACTION FAILED, Buffer %x \n", buffer);
 
 
		    //reset_card();  
		    // sd_wait_rsp();
		    // SD_REG(SD_SOFTWARE_RST)=1; 
 
		    //SD_REG(SD_SOFTWARE_RST)=0; 
 
 
DBGA("FREE BD TX/RX: 0x%x \n", SD_REG(BD_STATUS));
 
 
 
DBGA("TRY READ SECTOR \n");
 
setup_bd_transfer(READ_OP, 526571008, scr);
 
finnish_bd_transfer();
 
DBGA("PRINT test wreite to 526571008 \n");
 
setup_bd_transfer(WRITE_OP, 526571008, scr);
 
finnish_bd_transfer();
 
 
setup_bd_transfer(WRITE_OP, block_add, buffer);
 
if (finnish_bd_transfer() == FALSE) {
 
printf("TRANSACTION FAILED AGAIN!, Buffer %x \n",
				buffer);
 
return 0xff;
 
}
 
 
}
 
 
 
return 0;
 
 
}
 
 
 
/*
	Get starting sector# of specified partition on drive #unit
	NOTE: This code ASSUMES an MBR on the disk.
	scratchsector should point to a SECTOR_SIZE scratch area
	Returns 0xffffffff for any error.
	If pactive is non-NULL, this function also returns the partition active flag.
	If pptype is non-NULL, this function also returns the partition type.
	If psize is non-NULL, this function also returns the partition size.
*/ 
 
 
unsigned long int DFS_GetPtnStart(unsigned char unit,
				    unsigned char *scratchsector,
				    unsigned char pnum, unsigned char *pactive,
				    unsigned char *pptype,
				    unsigned long int *psize) 
{
 
unsigned long int result;
 
PMBR mbr = (PMBR) scratchsector;
 
 
	    // DOS ptable supports maximum 4 partitions
	    if (pnum > 3)
 
return DFS_ERRMISC;
 
 
	    // Read MBR from target media
	    if (DFS_ReadSector(unit, scratchsector, 0, 1)) {
 
return DFS_ERRMISC;
 
}
 
 
result = (unsigned long int)mbr->ptable[pnum].start_0 | 
	    (((unsigned long int)mbr->ptable[pnum].start_1) << 8) | 
	    (((unsigned long int)mbr->ptable[pnum].start_2) << 16) | 
	    (((unsigned long int)mbr->ptable[pnum].start_3) << 24);
 
 
 
	    //unsigned char              active;                 // 0x80 if partition active
	    //unsigned char         start_h;                // starting head
	    //unsigned char         start_cs_l;             // starting cylinder and sector (low byte)
	    //unsigned char         start_cs_h;             // starting cylinder and sector (high byte)
 
printf("active 0:%x 1:%x 2:%x 3:%x \n", mbr->ptable[pnum].active,
		    mbr->ptable[pnum].start_h, mbr->ptable[pnum].start_cs_l,
		    mbr->ptable[pnum].start_cs_h);
 
 
printf("start 0:%x 1:%x 2:%x 3:%x \n", mbr->ptable[pnum].start_0,
		 mbr->ptable[pnum].start_1, mbr->ptable[pnum].start_2,
		 mbr->ptable[pnum].start_3);
 
if (pactive)
 
*pactive = mbr->ptable[pnum].active;
 
 
if (pptype)
 
*pptype = mbr->ptable[pnum].type;
 
 
if (psize) {
 
*psize = (unsigned long int)mbr->ptable[pnum].size_0 | 
		    (((unsigned long int)mbr->ptable[pnum].size_1) << 8) | 
		    (((unsigned long int)mbr->ptable[pnum].size_2) << 16) | 
		    (((unsigned long int)mbr->ptable[pnum].size_3) << 24);
 
printf("size 0:%x 1:%x 2:%x 3:%x \n", mbr->ptable[pnum].size_0,
			mbr->ptable[pnum].size_1, mbr->ptable[pnum].size_2,
			mbr->ptable[pnum].size_3);
 
}
 
 
return result;
 
}
 
 
 
 
 
ldiv_t ldiv(long int numer, long int denom)
{
 
ldiv_t result;
 
 
result.quot = numer / denom;
 
result.rem = numer % denom;
 
 
	    /* The ANSI standard says that |QUOT| <= |NUMER / DENOM|, where
	       NUMER / DENOM is to be computed in infinite precision.  In
	       other words, we should always truncate the quotient towards
	       zero, never -infinity.  Machine division and remainer may
	       work either way when one or both of NUMER or DENOM is
	       negative.  If only one is negative and QUOT has been
	       truncated towards -infinity, REM will have the same sign as
	       DENOM and the opposite sign of NUMER; if both are negative
	       and QUOT has been truncated towards -infinity, REM will be
	       positive (will have the opposite sign of NUMER).  These are
	       considered `wrong'.  If both are NUM and DENOM are positive,
	       RESULT will always be positive.  This all boils down to: if
	       NUMER >= 0, but REM < 0, we got the wrong answer.  In that
	       case, to get the right answer, add 1 to QUOT and subtract
	       DENOM from REM.  */ 
 
if (numer >= 0 && result.rem < 0)
 
 {
 
++result.quot;
 
result.rem -= denom;
 
}
 
 
return result;
 
}
 
 
 
div_t div(int numer, int denom)
{
 
div_t result;
 
 
result.quot = numer / denom;
 
result.rem = numer % denom;
 
 
	    /* The ANSI standard says that |QUOT| <= |NUMER / DENOM|, where
	       NUMER / DENOM is to be computed in infinite precision.  In
	       other words, we should always truncate the quotient towards
	       zero, never -infinity.  Machine division and remainer may
	       work either way when one or both of NUMER or DENOM is
	       negative.  If only one is negative and QUOT has been
	       truncated towards -infinity, REM will have the same sign as
	       DENOM and the opposite sign of NUMER; if both are negative
	       and QUOT has been truncated towards -infinity, REM will be
	       positive (will have the opposite sign of NUMER).  These are
	       considered `wrong'.  If both are NUM and DENOM are positive,
	       RESULT will always be positive.  This all boils down to: if
	       NUMER >= 0, but REM < 0, we got the wrong answer.  In that
	       case, to get the right answer, add 1 to QUOT and subtract
	       DENOM from REM.  */ 
 
if (numer >= 0 && result.rem < 0)
 
 {
 
++result.quot;
 
result.rem -= denom;
 
}
 
 
return result;
 
}
 
 
/*
	Retrieve volume info from BPB and store it in a VOLINFO structure
	You must provide the unit and starting sector of the filesystem, and
	a pointer to a sector buffer for scratch
	Attempts to read BPB and glean information about the FS from that.
	Returns 0 OK, nonzero for any error.
*/ 
unsigned long int DFS_GetVolInfo(unsigned char unit,
				 unsigned char *scratchsector,
				 unsigned long int startsector,
				 PVOLINFO volinfo) 
{
 
PLBR lbr = (PLBR) scratchsector;
 
volinfo->unit = unit;
 
volinfo->startsector = startsector;
 
 
if (DFS_ReadSector(unit, scratchsector, startsector, 1))
 
return DFS_ERRMISC;
 
 
// tag: OEMID, refer dosfs.h
//      strncpy(volinfo->oemid, lbr->oemid, 8);
//      volinfo->oemid[8] = 0;
 
volinfo->secperclus = lbr->bpb.secperclus;
 
volinfo->reservedsecs = (unsigned short)lbr->bpb.reserved_l | 
	    (((unsigned short)lbr->bpb.reserved_h) << 8);
 
 
volinfo->numsecs = (unsigned short)lbr->bpb.sectors_s_l | 
	    (((unsigned short)lbr->bpb.sectors_s_h) << 8);
 
 
if (!volinfo->numsecs)
 
volinfo->numsecs = (unsigned long int)lbr->bpb.sectors_l_0 | 
		    (((unsigned long int)lbr->bpb.sectors_l_1) << 8) | 
		    (((unsigned long int)lbr->bpb.sectors_l_2) << 16) | 
		    (((unsigned long int)lbr->bpb.sectors_l_3) << 24);
 
 
	    // If secperfat is 0, we must be in a FAT32 volume; get secperfat
	    // from the FAT32 EBPB. The volume label and system ID string are also
	    // in different locations for FAT12/16 vs FAT32.
	    volinfo->secperfat = (unsigned short)lbr->bpb.secperfat_l | 
	    (((unsigned short)lbr->bpb.secperfat_h) << 8);
 
if (!volinfo->secperfat) {
 
volinfo->secperfat =
		    (unsigned long int)lbr->ebpb.ebpb32.
		    fatsize_0 |
 
(((unsigned long int)lbr->ebpb.ebpb32.
		       fatsize_1) << 8) | 
(((unsigned long int)lbr->ebpb.
					     ebpb32.
					     fatsize_2) << 16) | 
(((unsigned
								     long int)
								    lbr->ebpb.
								    ebpb32.
								    fatsize_3)
								   << 24);
 
 
memcpy(volinfo->label, lbr->ebpb.ebpb32.label, 11);
 
volinfo->label[11] = 0;
 
 
// tag: OEMID, refer dosfs.h
//              memcpy(volinfo->system, lbr->ebpb.ebpb32.system, 8);
//              volinfo->system[8] = 0; 
	}
 
	else {
 
memcpy(volinfo->label, lbr->ebpb.ebpb.label, 11);
 
volinfo->label[11] = 0;
 
 
// tag: OEMID, refer dosfs.h
//              memcpy(volinfo->system, lbr->ebpb.ebpb.system, 8);
//              volinfo->system[8] = 0; 
	}
 
 
	    // note: if rootentries is 0, we must be in a FAT32 volume.
	    volinfo->rootentries = (unsigned short)lbr->bpb.rootentries_l | 
	    (((unsigned short)lbr->bpb.rootentries_h) << 8);
 
 
	    // after extracting raw info we perform some useful precalculations
	    volinfo->fat1 = startsector + volinfo->reservedsecs;
 
 
	    // The calculation below is designed to round up the root directory size for FAT12/16
	    // and to simply ignore the root directory for FAT32, since it's a normal, expandable
	    // file in that situation.
	    if (volinfo->rootentries) {
 
volinfo->rootdir = volinfo->fat1 + (volinfo->secperfat * 2);
 
volinfo->dataarea =
		    volinfo->rootdir +
		    (((volinfo->rootentries * 32) +
		      (SECTOR_SIZE - 1)) / SECTOR_SIZE);
 
}
 
	else {
 
volinfo->dataarea = volinfo->fat1 + (volinfo->secperfat * 2);
 
volinfo->rootdir =
		    (unsigned long int)lbr->ebpb.ebpb32.
		    root_0 | 
(((unsigned long int)lbr->ebpb.ebpb32.root_1) <<
			       8) | 
(((unsigned long int)lbr->ebpb.ebpb32.
				       root_2) << 16) | 
(((unsigned long int)
							   lbr->ebpb.ebpb32.
							   root_3) << 24);
 
} 
 
	    // Calculate number of clusters in data area and infer FAT type from this information.
	    volinfo->numclusters =
	    (volinfo->numsecs - volinfo->dataarea) / volinfo->secperclus;
 
if (volinfo->numclusters < 4085)
 
volinfo->filesystem = FAT12;
 
	else if (volinfo->numclusters < 65525)
 
volinfo->filesystem = FAT16;
 
	else
 
volinfo->filesystem = FAT32;
 
 
return DFS_OK;
 
}
 
 
 
/*
	Fetch FAT entry for specified cluster number
	You must provide a scratch buffer for one sector (SECTOR_SIZE) and a populated VOLINFO
	Returns a FAT32 BAD_CLUSTER value for any error, otherwise the contents of the desired
	FAT entry.
	scratchcache should point to a UINT32. This variable caches the physical sector number
	last read into the scratch buffer for performance enhancement reasons.
*/ 
unsigned long int DFS_GetFAT(PVOLINFO volinfo, unsigned char *scratch,
			     unsigned long int *scratchcache,
			     unsigned long int cluster) 
{
 
unsigned long int offset, sector, result;
 
 
if (volinfo->filesystem == FAT12) {
 
offset = cluster + (cluster / 2);
 
}
 
	else if (volinfo->filesystem == FAT16) {
 
offset = cluster * 2;
 
}
 
	else if (volinfo->filesystem == FAT32) {
 
offset = cluster * 4;
 
}
 
	else
 
return 0x0ffffff7;	// FAT32 bad cluster    
 
	    // at this point, offset is the BYTE offset of the desired sector from the start
	    // of the FAT. Calculate the physical sector containing this FAT entry.
	    sector = ldiv(offset, SECTOR_SIZE).quot + volinfo->fat1;
 
 
	    // If this is not the same sector we last read, then read it into RAM
	    if (sector != *scratchcache) {
 
if (DFS_ReadSector(volinfo->unit, scratch, sector, 1)) {
 
			    // avoid anyone assuming that this cache value is still valid, which
			    // might cause disk corruption
			    *scratchcache = 0;
 
return 0x0ffffff7;	// FAT32 bad cluster    
		}
 
*scratchcache = sector;
 
}
 
 
	    // At this point, we "merely" need to extract the relevant entry.
	    // This is easy for FAT16 and FAT32, but a royal PITA for FAT12 as a single entry
	    // may span a sector boundary. The normal way around this is always to read two
	    // FAT sectors, but that luxury is (by design intent) unavailable to DOSFS.
	    offset = ldiv(offset, SECTOR_SIZE).rem;
 
 
if (volinfo->filesystem == FAT12) {
 
		    // Special case for sector boundary - Store last byte of current sector.
		    // Then read in the next sector and put the first byte of that sector into
		    // the high byte of result.
		    if (offset == SECTOR_SIZE - 1) {
 
result = (unsigned long int)scratch[offset];
 
sector++;
 
if (DFS_ReadSector(volinfo->unit, scratch, sector, 1)) {
 
				    // avoid anyone assuming that this cache value is still valid, which
				    // might cause disk corruption
				    *scratchcache = 0;
 
return 0x0ffffff7;	// FAT32 bad cluster    
			}
 
*scratchcache = sector;
 
			    // Thanks to Claudio Leonel for pointing out this missing line.
			    result |= ((unsigned long int)scratch[0]) << 8;
 
}
 
		else {
 
result = (unsigned long int)scratch[offset] | 
			    ((unsigned long int)scratch[offset + 1]) << 8;
 
} 
if (cluster & 1)
 
result = result >> 4;
 
		else
 
result = result & 0xfff;
 
}
 
	else if (volinfo->filesystem == FAT16) {
 
result = (unsigned long int)scratch[offset] | 
		    ((unsigned long int)scratch[offset + 1]) << 8;
 
}
 
	else if (volinfo->filesystem == FAT32) {
 
result = ((unsigned long int)scratch[offset] | 
			   ((unsigned long int)scratch[offset + 1]) << 8 | 
			   ((unsigned long int)scratch[offset + 2]) << 16 | 
			   ((unsigned long int)scratch[offset + 3]) << 24) &
		    0x0fffffff;
 
}
 
	else
 
result = 0x0ffffff7;	// FAT32 bad cluster    
	return result;
 
}
 
 
 
 
/*
	Set FAT entry for specified cluster number
	You must provide a scratch buffer for one sector (SECTOR_SIZE) and a populated VOLINFO
	Returns DFS_ERRMISC for any error, otherwise DFS_OK
	scratchcache should point to a UINT32. This variable caches the physical sector number
	last read into the scratch buffer for performance enhancement reasons.
 
	NOTE: This code is HIGHLY WRITE-INEFFICIENT, particularly for flash media. Considerable
	performance gains can be realized by caching the sector. However this is difficult to
	achieve on FAT12 without requiring 2 sector buffers of scratch space, and it is a design
	requirement of this code to operate on a single 512-byte scratch.
 
	If you are operating DOSFS over flash, you are strongly advised to implement a writeback
	cache in your physical I/O driver. This will speed up your code significantly and will
	also conserve power and flash write life.
*/ 
unsigned long int DFS_SetFAT(PVOLINFO volinfo, unsigned char *scratch,
			     unsigned long int *scratchcache,
			     unsigned long int cluster,
			     unsigned long int new_contents) 
{
 
unsigned long int offset, sector, result;
 
if (volinfo->filesystem == FAT12) {
 
offset = cluster + (cluster / 2);
 
new_contents &= 0xfff;
 
}
 
	else if (volinfo->filesystem == FAT16) {
 
offset = cluster * 2;
 
new_contents &= 0xffff;
 
}
 
	else if (volinfo->filesystem == FAT32) {
 
offset = cluster * 4;
 
new_contents &= 0x0fffffff;	// FAT32 is really "FAT28"
	}
 
	else
 
return DFS_ERRMISC;
 
 
	    // at this point, offset is the BYTE offset of the desired sector from the start
	    // of the FAT. Calculate the physical sector containing this FAT entry.
	    sector = ldiv(offset, SECTOR_SIZE).quot + volinfo->fat1;
 
 
	    // If this is not the same sector we last read, then read it into RAM
	    if (sector != *scratchcache) {
 
if (DFS_ReadSector(volinfo->unit, scratch, sector, 1)) {
 
			    // avoid anyone assuming that this cache value is still valid, which
			    // might cause disk corruption
			    *scratchcache = 0;
 
return DFS_ERRMISC;
 
}
 
*scratchcache = sector;
 
}
 
 
	    // At this point, we "merely" need to extract the relevant entry.
	    // This is easy for FAT16 and FAT32, but a royal PITA for FAT12 as a single entry
	    // may span a sector boundary. The normal way around this is always to read two
	    // FAT sectors, but that luxury is (by design intent) unavailable to DOSFS.
	    offset = ldiv(offset, SECTOR_SIZE).rem;
 
 
if (volinfo->filesystem == FAT12) {
 
 
		    // If this is an odd cluster, pre-shift the desired new contents 4 bits to
		    // make the calculations below simpler
		    if (cluster & 1)
 
new_contents = new_contents << 4;
 
 
		    // Special case for sector boundary
		    if (offset == SECTOR_SIZE - 1) {
 
 
			    // Odd cluster: High 12 bits being set
			    if (cluster & 1) {
 
scratch[offset] =
				    (scratch[offset] & 0x0f) | new_contents &
				    0xf0;
 
}
 
			    // Even cluster: Low 12 bits being set
			    else {
 
scratch[offset] = new_contents & 0xff;
 
}
 
result =
			    DFS_WriteSector(volinfo->unit, scratch,
					    *scratchcache, 1);
 
			    // mirror the FAT into copy 2
			    if (DFS_OK == result)
 
result =
				    DFS_WriteSector(volinfo->unit, scratch,
						    (*scratchcache) +
						    volinfo->secperfat, 1);
 
 
			    // If we wrote that sector OK, then read in the subsequent sector
			    // and poke the first byte with the remainder of this FAT entry.
			    if (DFS_OK == result) {
 
*scratchcache++;
 
result =
				    DFS_ReadSector(volinfo->unit, scratch,
						   *scratchcache, 1);
 
if (DFS_OK == result) {
 
					    // Odd cluster: High 12 bits being set
					    if (cluster & 1) {
 
scratch[0] =
						    new_contents & 0xff00;
 
}
 
					    // Even cluster: Low 12 bits being set
					    else {
 
scratch[0] =
						    (scratch[0] & 0xf0) |
						    new_contents & 0x0f;
 
}
 
result =
					    DFS_WriteSector(volinfo->unit,
							    scratch,
							    *scratchcache, 1);
 
					    // mirror the FAT into copy 2
					    if (DFS_OK == result)
 
result =
						    DFS_WriteSector(volinfo->
								    unit,
								    scratch,
								    (*scratchcache)
								    +
								    volinfo->
								    secperfat,
								    1);
 
}
 
				else {
 
					    // avoid anyone assuming that this cache value is still valid, which
					    // might cause disk corruption
					    *scratchcache = 0;
 
}
 
}
 
}		// if (offset == SECTOR_SIZE - 1)
 
		    // Not a sector boundary. But we still have to worry about if it's an odd
		    // or even cluster number.
		    else {
 
			    // Odd cluster: High 12 bits being set
			    if (cluster & 1) {
 
scratch[offset] =
				    (scratch[offset] & 0x0f) | new_contents &
				    0xf0;
 
scratch[offset + 1] = new_contents & 0xff00;
 
}
 
			    // Even cluster: Low 12 bits being set
			    else {
 
scratch[offset] = new_contents & 0xff;
 
scratch[offset + 1] =
				    (scratch[offset + 1] & 0xf0) | new_contents
				    & 0x0f;
 
}
 
result =
			    DFS_WriteSector(volinfo->unit, scratch,
					    *scratchcache, 1);
 
			    // mirror the FAT into copy 2
			    if (DFS_OK == result)
 
result =
				    DFS_WriteSector(volinfo->unit, scratch,
						    (*scratchcache) +
						    volinfo->secperfat, 1);
 
}
 
}
 
	else if (volinfo->filesystem == FAT16) {
 
scratch[offset] = (new_contents & 0xff);
 
scratch[offset + 1] = (new_contents & 0xff00) >> 8;
 
result =
		    DFS_WriteSector(volinfo->unit, scratch, *scratchcache, 1);
 
		    // mirror the FAT into copy 2
		    if (DFS_OK == result)
 
result =
			    DFS_WriteSector(volinfo->unit, scratch,
					    (*scratchcache) +
					    volinfo->secperfat, 1);
 
}
 
	else if (volinfo->filesystem == FAT32) {
 
scratch[offset] = (new_contents & 0xff);
 
scratch[offset + 1] = (new_contents & 0xff00) >> 8;
 
scratch[offset + 2] = (new_contents & 0xff0000) >> 16;
 
scratch[offset + 3] =
		    (scratch[offset + 3] & 0xf0) | ((new_contents & 0x0f000000)
						    >> 24);
 
		    // Note well from the above: Per Microsoft's guidelines we preserve the upper
		    // 4 bits of the FAT32 cluster value. It's unclear what these bits will be used
		    // for; in every example I've encountered they are always zero.
		    result =
		    DFS_WriteSector(volinfo->unit, scratch, *scratchcache, 1);
 
		    // mirror the FAT into copy 2
		    if (DFS_OK == result)
 
result =
			    DFS_WriteSector(volinfo->unit, scratch,
					    (*scratchcache) +
					    volinfo->secperfat, 1);
 
}
 
	else
 
result = DFS_ERRMISC;
 
 
return result;
 
}
 
 
 
/*
	Convert a filename element from canonical (8.3) to directory entry (11) form
	src must point to the first non-separator character.
	dest must point to a 12-byte buffer.
*/ 
unsigned char *DFS_CanonicalToDir(unsigned char *dest, unsigned char *src) 
{
 
unsigned char *destptr = dest;
 
 
memset(dest, ' ', 11);
 
dest[11] = 0;
 
 
while (*src && (*src != DIR_SEPARATOR) && (destptr - dest < 11)) {
 
if (*src >= 'a' && *src <= 'z') {
 
*destptr++ = (*src - 'a') + 'A';
 
src++;
 
}
 
		else if (*src == '.') {
 
src++;
 
destptr = dest + 8;
 
}
 
		else {
 
*destptr++ = *src++;
 
}
 
}
 
 
return dest;
 
}
 
 
 
/*
	Find the first unused FAT entry
	You must provide a scratch buffer for one sector (SECTOR_SIZE) and a populated VOLINFO
	Returns a FAT32 BAD_CLUSTER value for any error, otherwise the contents of the desired
	FAT entry.
	Returns FAT32 bad_sector (0x0ffffff7) if there is no free cluster available
*/ 
unsigned long int DFS_GetFreeFAT(PVOLINFO volinfo, unsigned char *scratch) 
{
 
unsigned long int i, result = 0xffffffff, scratchcache = 0;
 
 
	    // Search starts at cluster 2, which is the first usable cluster
	    // NOTE: This search can't terminate at a bad cluster, because there might
	    // legitimately be bad clusters on the disk.
	    for (i = 2; i < volinfo->numclusters; i++) {
 
result = DFS_GetFAT(volinfo, scratch, &scratchcache, i);
 
if (!result) {
 
return i;
 
}
 
}
 
return 0x0ffffff7;	// Can't find a free cluster
}
 
 
 
 
/*
	Open a directory for enumeration by DFS_GetNextDirEnt
	You must supply a populated VOLINFO (see DFS_GetVolInfo)
	The empty string or a string containing only the directory separator are
	considered to be the root directory.
	Returns 0 OK, nonzero for any error.
*/ 
unsigned long int DFS_OpenDir(PVOLINFO volinfo, unsigned char *dirname,
			      PDIRINFO dirinfo) 
{
 
	    // Default behavior is a regular search for existing entries
	    dirinfo->flags = 0;
 
 
if (!strlen((char *)dirname)
	      || (strlen((char *)dirname) == 1
		  && dirname[0] == DIR_SEPARATOR)) {
 
if (volinfo->filesystem == FAT32) {
 
dirinfo->currentcluster = volinfo->rootdir;
 
dirinfo->currentsector = 0;
 
dirinfo->currententry = 0;
 
 
			    // read first sector of directory
			    return DFS_ReadSector(volinfo->unit,
						  dirinfo->scratch,
						  volinfo->dataarea +
						  ((volinfo->rootdir -
						    2) * volinfo->secperclus),
						  1);
 
}
 
		else {
 
dirinfo->currentcluster = 0;
 
dirinfo->currentsector = 0;
 
dirinfo->currententry = 0;
 
 
			    // read first sector of directory
			    return DFS_ReadSector(volinfo->unit,
						  dirinfo->scratch,
						  volinfo->rootdir, 1);
 
}
 
}
 
 
	    // This is not the root directory. We need to find the start of this subdirectory.
	    // We do this by devious means, using our own companion function DFS_GetNext.
	    else {
 
unsigned char tmpfn[12];
 
unsigned char *ptr = dirname;
 
unsigned long int result;
 
DIRENT de;
 
 
if (volinfo->filesystem == FAT32) {
 
dirinfo->currentcluster = volinfo->rootdir;
 
dirinfo->currentsector = 0;
 
dirinfo->currententry = 0;
 
 
			    // read first sector of directory
			    if (DFS_ReadSector
				(volinfo->unit, dirinfo->scratch,
				 volinfo->dataarea +
				 ((volinfo->rootdir - 2) * volinfo->secperclus),
				 1))
 
return DFS_ERRMISC;
 
}
 
		else {
 
dirinfo->currentcluster = 0;
 
dirinfo->currentsector = 0;
 
dirinfo->currententry = 0;
 
 
			    // read first sector of directory
			    if (DFS_ReadSector
				(volinfo->unit, dirinfo->scratch,
				 volinfo->rootdir, 1))
 
return DFS_ERRMISC;
 
}
 
 
		    // skip leading path separators
		    while (*ptr == DIR_SEPARATOR && *ptr)
 
ptr++;
 
 
		    // Scan the path from left to right, finding the start cluster of each entry
		    // Observe that this code is inelegant, but obviates the need for recursion.
		    while (*ptr) {
 
DFS_CanonicalToDir(tmpfn, ptr);
 
 
de.name[0] = 0;
 
 
			do {
 
result = DFS_GetNext(volinfo, dirinfo, &de);
 
} while (!result && memcmp2(de.name, tmpfn, 11));
 
 
if (!memcmp2(de.name, tmpfn, 11)
			      && ((de.attr & ATTR_DIRECTORY) ==
				  ATTR_DIRECTORY)) {
 
if (volinfo->filesystem == FAT32) {
 
dirinfo->currentcluster =
					    (unsigned long int)de.
					    startclus_l_l |
 
((unsigned long int)de.
					      startclus_l_h) << 8 | 
((unsigned
								       long int)
								      de.
								      startclus_h_l)
					    << 16 | 
((unsigned long int)de.
						      startclus_h_h) << 24;
 
}
 
				else {
 
dirinfo->currentcluster =
					    (unsigned long int)de.
					    startclus_l_l |
 
((unsigned long int)de.
					      startclus_l_h) << 8;
 
} 
dirinfo->currentsector = 0;
 
dirinfo->currententry = 0;
 
 
if (DFS_ReadSector
				      (volinfo->unit, dirinfo->scratch,
				       volinfo->dataarea +
				       ((dirinfo->currentcluster -
					 2) * volinfo->secperclus), 1))
 
return DFS_ERRMISC;
 
}
 
			else if (!memcmp2(de.name, tmpfn, 11)
				 && !(de.attr & ATTR_DIRECTORY))
 
return DFS_NOTFOUND;
 
 
			    // seek to next item in list
			    while (*ptr != DIR_SEPARATOR && *ptr)
 
ptr++;
 
if (*ptr == DIR_SEPARATOR)
 
ptr++;
 
}
 
 
if (!dirinfo->currentcluster)
 
return DFS_NOTFOUND;
 
}
 
return DFS_OK;
 
}
 
 
 
/*
	Get next entry in opened directory structure. Copies fields into the dirent
	structure, updates dirinfo. Note that it is the _caller's_ responsibility to
	handle the '.' and '..' entries.
	A deleted file will be returned as a NULL entry (first char of filename=0)
	by this code. Filenames beginning with 0x05 will be translated to 0xE5
	automatically. Long file name entries will be returned as NULL.
	returns DFS_EOF if there are no more entries, DFS_OK if this entry is valid,
	or DFS_ERRMISC for a media error
*/ 
unsigned long int DFS_GetNext(PVOLINFO volinfo, PDIRINFO dirinfo,
			      PDIRENT dirent) 
{
 
unsigned long int tempint;	// required by DFS_GetFAT
 
	    // Do we need to read the next sector of the directory?
	    if (dirinfo->currententry >= SECTOR_SIZE / sizeof(DIRENT)) {
 
dirinfo->currententry = 0;
 
dirinfo->currentsector++;
 
 
		    // Root directory; special case handling 
		    // Note that currentcluster will only ever be zero if both:
		    // (a) this is the root directory, and
		    // (b) we are on a FAT12/16 volume, where the root dir can't be expanded
		    if (dirinfo->currentcluster == 0) {
 
			    // Trying to read past end of root directory?
			    if (dirinfo->currentsector *
				(SECTOR_SIZE / sizeof(DIRENT)) >=
				volinfo->rootentries)
 
return DFS_EOF;
 
 
			    // Otherwise try to read the next sector
			    if (DFS_ReadSector
				(volinfo->unit, dirinfo->scratch,
				 volinfo->rootdir + dirinfo->currentsector, 1))
 
return DFS_ERRMISC;
 
}
 
 
		    // Normal handling
		    else {
 
if (dirinfo->currentsector >= volinfo->secperclus) {
 
dirinfo->currentsector = 0;
 
if ((dirinfo->currentcluster >= 0xff7
				      && volinfo->filesystem == FAT12)
				     || 
(dirinfo->currentcluster >= 0xfff7
					  && volinfo->filesystem == FAT16)
				     || 
(dirinfo->currentcluster >= 0x0ffffff7
					  && volinfo->filesystem == FAT32)) {
 
 
					    // We are at the end of the directory chain. If this is a normal
					    // find operation, we should indicate that there is nothing more
					    // to see.
					    if (!
						(dirinfo->
						 flags & DFS_DI_BLANKENT))
 
return DFS_EOF;
 
 
					    // On the other hand, if this is a "find free entry" search,
					    // we need to tell the caller to allocate a new cluster
					    else
 
return DFS_ALLOCNEW;
 
}
 
dirinfo->currentcluster =
				    DFS_GetFAT(volinfo, dirinfo->scratch,
					       &tempint,
					       dirinfo->currentcluster);
 
}
 
if (DFS_ReadSector
			     (volinfo->unit, dirinfo->scratch,
			      volinfo->dataarea +
			      ((dirinfo->currentcluster -
				2) * volinfo->secperclus) +
			      dirinfo->currentsector, 1))
 
return DFS_ERRMISC;
 
}
 
}
 
 
memcpy(dirent, &(((PDIRENT) dirinfo->scratch)[dirinfo->currententry]),
		 sizeof(DIRENT));
 
 
if (dirent->name[0] == 0) {	// no more files in this directory
		// If this is a "find blank" then we can reuse this name.
		if (dirinfo->flags & DFS_DI_BLANKENT)
 
return DFS_OK;
 
		else
 
return DFS_EOF;
 
}
 
 
if (dirent->name[0] == 0xe5)	// handle deleted file entries
		dirent->name[0] = 0;
 
	else if ((dirent->attr & ATTR_LONG_NAME) == ATTR_LONG_NAME)
 
dirent->name[0] = 0;
 
	else if (dirent->name[0] == 0x05)	// handle kanji filenames beginning with 0xE5
		dirent->name[0] = 0xe5;
 
 
dirinfo->currententry++;
 
 
return DFS_OK;
 
}
 
 
 
/*
	INTERNAL
	Find a free directory entry in the directory specified by path
	This function MAY cause a disk write if it is necessary to extend the directory
	size.
	Note - di.scratch must be preinitialized to point to a sector scratch buffer
	de is a scratch structure
	Returns DFS_ERRMISC if a new entry could not be located or created
	de is updated with the same return information you would expect from DFS_GetNext
*/ 
unsigned long int DFS_GetFreeDirEnt(PVOLINFO volinfo, unsigned char *path,
				    PDIRINFO di, PDIRENT de) 
{
 
unsigned long int tempclus, i;
 
 
if (DFS_OpenDir(volinfo, path, di))
 
return DFS_NOTFOUND;
 
 
	    // Set "search for empty" flag so DFS_GetNext knows what we're doing
	    di->flags |= DFS_DI_BLANKENT;
 
 
	    // We seek through the directory looking for an empty entry
	    // Note we are reusing tempclus as a temporary result holder.
	    tempclus = 0;
 
	do {
 
tempclus = DFS_GetNext(volinfo, di, de);
 
 
		    // Empty entry found
		    if (tempclus == DFS_OK && (!de->name[0])) {
 
return DFS_OK;
 
}
 
 
		    // End of root directory reached
		    else if (tempclus == DFS_EOF)
 
return DFS_ERRMISC;
 
 
		else if (tempclus == DFS_ALLOCNEW) {
 
tempclus = DFS_GetFreeFAT(volinfo, di->scratch);
 
if (tempclus == 0x0ffffff7)
 
return DFS_ERRMISC;
 
 
			    // write out zeroed sectors to the new cluster
			    memset(di->scratch, 0, SECTOR_SIZE);
 
for (i = 0; i < volinfo->secperclus; i++) {
 
if (DFS_WriteSector
				     (volinfo->unit, di->scratch,
				      volinfo->dataarea +
				      ((tempclus - 2) * volinfo->secperclus) +
				      i, 1))
 
return DFS_ERRMISC;
 
}
 
			    // Point old end cluster to newly allocated cluster
			    i = 0;
 
DFS_SetFAT(volinfo, di->scratch, &i,
				    di->currentcluster, tempclus);
 
 
			    // Update DIRINFO so caller knows where to place the new file                   
			    di->currentcluster = tempclus;
 
di->currentsector = 0;
 
di->currententry = 1;	// since the code coming after this expects to subtract 1
 
			    // Mark newly allocated cluster as end of chain                 
			    switch (volinfo->filesystem) {
 
case FAT12:
				tempclus = 0xff8;
				break;
 
case FAT16:
				tempclus = 0xfff8;
				break;
 
case FAT32:
				tempclus = 0x0ffffff8;
				break;
 
default:
				return DFS_ERRMISC;
 
}
 
DFS_SetFAT(volinfo, di->scratch, &i,
				    di->currentcluster, tempclus);
 
}
 
} while (!tempclus);
 
 
	    // We shouldn't get here
	    return DFS_ERRMISC;
 
}
 
 
 
/*
	Open a file for reading or writing. You supply populated VOLINFO, a path to the file,
	mode (DFS_READ or DFS_WRITE) and an empty fileinfo structure. You also need to
	provide a pointer to a sector-sized scratch buffer.
	Returns various DFS_* error states. If the result is DFS_OK, fileinfo can be used
	to access the file from this point on.
*/ 
unsigned long int DFS_OpenFile(PVOLINFO volinfo, unsigned char *path,
			       unsigned char mode, unsigned char *scratch,
			       PFILEINFO fileinfo) 
{
 
unsigned char tmppath[MAX_PATH];
 
unsigned char filename[12];
 
unsigned char *p;
 
DIRINFO di;
 
DIRENT de;
 
 
	    // larwe 2006-09-16 +1 zero out file structure
	    memset(fileinfo, 0, sizeof(FILEINFO));
 
 
	    // save access mode
	    fileinfo->mode = mode;
 
 
	    // Get a local copy of the path. If it's longer than MAX_PATH, abort.
	    strcpy2((char *)tmppath, (char *)path);
 
tmppath[MAX_PATH - 1] = 0;
 
if (strcmp2((char *)path, (char *)tmppath)) {
 
return DFS_PATHLEN;
 
}
 
 
 
	    // strip leading path separators
	    while (tmppath[0] == DIR_SEPARATOR)
 
strcpy2((char *)tmppath, (char *)tmppath + 1);
 
 
	    // Parse filename off the end of the supplied path
	    p = tmppath;
 
while (*(p++)) ;
 
 
p--;
 
while (p > tmppath && *p != DIR_SEPARATOR)	// larwe 9/16/06 ">=" to ">" bugfix
		p--;
 
if (*p == DIR_SEPARATOR)
 
p++;
 
 
DFS_CanonicalToDir(filename, p);
 
 
if (p > tmppath)
 
p--;
 
if (*p == DIR_SEPARATOR || p == tmppath)	// larwe 9/16/06 +"|| p == tmppath" bugfix
		*p = 0;
 
 
	    // At this point, if our path was MYDIR/MYDIR2/FILE.EXT, filename = "FILE    EXT" and
	    // tmppath = "MYDIR/MYDIR2".
	    di.scratch = scratch;
 
if (DFS_OpenDir(volinfo, tmppath, &di))
 
return DFS_NOTFOUND;
 
 
while (!DFS_GetNext(volinfo, &di, &de)) {
 
 
if (!memcmp2(de.name, filename, 11)) {
 
			    // You can't use this function call to open a directory.
			    if (de.attr & ATTR_DIRECTORY)
 
return DFS_NOTFOUND;
 
printf("get enxt \n");
 
fileinfo->volinfo = volinfo;
 
fileinfo->pointer = 0;
 
			    // The reason we store this extra info about the file is so that we can
			    // speedily update the file size, modification date, etc. on a file that is
			    // opened for writing.
			    if (di.currentcluster == 0)
 
fileinfo->dirsector =
				    volinfo->rootdir + di.currentsector;
 
			else
 
fileinfo->dirsector =
				    volinfo->dataarea +
				    ((di.currentcluster -
				      2) * volinfo->secperclus) +
				    di.currentsector;
 
fileinfo->diroffset = di.currententry - 1;
 
if (volinfo->filesystem == FAT32) {
 
fileinfo->cluster =
				    (unsigned long int)de.
				    startclus_l_l | 
((unsigned long int)de.
						      startclus_l_h) << 8 |
 
((unsigned long int)de.
				      startclus_h_l) << 16 | 
((unsigned long
								int)de.
							       startclus_h_h) <<
				    24;
 
}
 
			else {
 
fileinfo->cluster =
				    (unsigned long int)de.
				    startclus_l_l | 
((unsigned long int)de.
						      startclus_l_h) << 8;
 
} 
fileinfo->firstcluster = fileinfo->cluster;
 
fileinfo->filelen =
			    (unsigned long int)de.
			    filesize_0 | 
((unsigned long int)de.
					   filesize_1) << 8 | 
((unsigned long
								 int)de.
								filesize_2) <<
			    16 | 
((unsigned long int)de.filesize_3) << 24;
 
 
return DFS_OK;
 
}
 
}
 
 
	    // At this point, we KNOW the file does not exist. If the file was opened
	    // with write access, we can create it.
	    if (mode & DFS_WRITE) {
 
unsigned long int cluster, temp;
 
 
		    // Locate or create a directory entry for this file
		    if (DFS_OK != DFS_GetFreeDirEnt(volinfo, tmppath, &di, &de))
 
return DFS_ERRMISC;
 
 
		    // put sane values in the directory entry
		    memset(&de, 0, sizeof(de));
 
memcpy(de.name, filename, 11);
 
de.crttime_l = 0x20;	// 01:01:00am, Jan 1, 2006.
		de.crttime_h = 0x08;
 
de.crtdate_l = 0x11;
 
de.crtdate_h = 0x34;
 
de.lstaccdate_l = 0x11;
 
de.lstaccdate_h = 0x34;
 
de.wrttime_l = 0x20;
 
de.wrttime_h = 0x08;
 
de.wrtdate_l = 0x11;
 
de.wrtdate_h = 0x34;
 
 
		    // allocate a starting cluster for the directory entry
		    cluster = DFS_GetFreeFAT(volinfo, scratch);
 
 
de.startclus_l_l = cluster & 0xff;
 
de.startclus_l_h = (cluster & 0xff00) >> 8;
 
de.startclus_h_l = (cluster & 0xff0000) >> 16;
 
de.startclus_h_h = (cluster & 0xff000000) >> 24;
 
 
		    // update FILEINFO for our caller's sake
		    fileinfo->volinfo = volinfo;
 
fileinfo->pointer = 0;
 
		    // The reason we store this extra info about the file is so that we can
		    // speedily update the file size, modification date, etc. on a file that is
		    // opened for writing.
		    if (di.currentcluster == 0)
 
fileinfo->dirsector =
			    volinfo->rootdir + di.currentsector;
 
		else
 
fileinfo->dirsector =
			    volinfo->dataarea +
			    ((di.currentcluster - 2) * volinfo->secperclus) +
			    di.currentsector;
 
fileinfo->diroffset = di.currententry - 1;
 
fileinfo->cluster = cluster;
 
fileinfo->firstcluster = cluster;
 
fileinfo->filelen = 0;
 
 
		    // write the directory entry
		    // note that we no longer have the sector containing the directory entry,
		    // tragically, so we have to re-read it
		    if (DFS_ReadSector
			(volinfo->unit, scratch, fileinfo->dirsector, 1))
 
return DFS_ERRMISC;
 
memcpy(&(((PDIRENT) scratch)[di.currententry - 1]), &de,
			sizeof(DIRENT));
 
if (DFS_WriteSector
		     (volinfo->unit, scratch, fileinfo->dirsector, 1))
 
return DFS_ERRMISC;
 
 
		    // Mark newly allocated cluster as end of chain                 
		    switch (volinfo->filesystem) {
 
case FAT12:
			cluster = 0xff8;
			break;
 
case FAT16:
			cluster = 0xfff8;
			break;
 
case FAT32:
			cluster = 0x0ffffff8;
			break;
 
default:
			return DFS_ERRMISC;
 
}
 
temp = 0;
 
DFS_SetFAT(volinfo, scratch, &temp, fileinfo->cluster,
			    cluster);
 
 
return DFS_OK;
 
}
 
 
return DFS_NOTFOUND;
 
}
 
 
 
/*
	Read an open file
	You must supply a prepopulated FILEINFO as provided by DFS_OpenFile, and a
	pointer to a SECTOR_SIZE scratch buffer.
	Note that returning DFS_EOF is not an error condition. This function updates the
	successcount field with the number of bytes actually read.
*/ 
unsigned long int DFS_ReadFile(PFILEINFO fileinfo, unsigned char *scratch,
			       unsigned char *buffer,
			       unsigned long int *successcount,
			       unsigned long int len) 
{
 
unsigned long int remain;
 
unsigned long int result = DFS_OK;
 
unsigned long int sector;
 
unsigned long int bytesread;
 
 
	    // Don't try to read past EOF
	    if (len > fileinfo->filelen - fileinfo->pointer)
 
len = fileinfo->filelen - fileinfo->pointer;
 
 
remain = len;
 
*successcount = 0;
 
 
while (remain && result == DFS_OK) {
 
		    // This is a bit complicated. The sector we want to read is addressed at a cluster
		    // granularity by the fileinfo->cluster member. The file pointer tells us how many
		    // extra sectors to add to that number.
		    sector = fileinfo->volinfo->dataarea + 
		    ((fileinfo->cluster - 2) * fileinfo->volinfo->secperclus) +
 
div(div
			 (fileinfo->pointer,
			  fileinfo->volinfo->secperclus * SECTOR_SIZE).rem,
			 SECTOR_SIZE).quot;
 
 
		    // Case 1 - File pointer is not on a sector boundary
		    if (div(fileinfo->pointer, SECTOR_SIZE).rem) {
 
 
unsigned short tempreadsize;
 
 
 
			    // We always have to go through scratch in this case
			    result =
			    DFS_ReadSector(fileinfo->volinfo->unit, scratch,
					   sector, 1);
 
 
			    // This is the number of bytes that we actually care about in the sector
			    // just read.
 
tempreadsize =
			    SECTOR_SIZE -
			    (div(fileinfo->pointer, SECTOR_SIZE).rem);
 
 
 
			    // Case 1A - We want the entire remainder of the sector. After this
			    // point, all passes through the read loop will be aligned on a sector
			    // boundary, which allows us to go through the optimal path 2A below.
			    if (remain >= tempreadsize) {
 
memcpy(buffer,
					scratch + (SECTOR_SIZE - tempreadsize),
					tempreadsize);
 
bytesread = tempreadsize;
 
buffer += tempreadsize;
 
fileinfo->pointer += tempreadsize;
 
remain -= tempreadsize;
 
}
 
			    // Case 1B - This read concludes the file read operation
			    else {
 
memcpy(buffer,
					scratch + (SECTOR_SIZE - tempreadsize),
					remain);
 
 
buffer += remain;
 
fileinfo->pointer += remain;
 
bytesread = remain;
 
remain = 0;
 
}
 
}
 
		    // Case 2 - File pointer is on sector boundary
		    else {
 
 
			    // Case 2A - We have at least one more full sector to read and don't have
			    // to go through the scratch buffer. You could insert optimizations here to
			    // read multiple sectors at a time, if you were thus inclined (note that
			    // the maximum multi-read you could perform is a single cluster, so it would
			    // be advantageous to have code similar to case 1A above that would round the
			    // pointer to a cluster boundary the first pass through, so all subsequent
			    // [large] read requests would be able to go a cluster at a time).
			    if (remain >= SECTOR_SIZE) {
 
 
result =
				    DFS_ReadSector(fileinfo->volinfo->unit,
						   buffer, sector, 1);
 
 
remain -= SECTOR_SIZE;
 
 
buffer += SECTOR_SIZE;
 
 
fileinfo->pointer += SECTOR_SIZE;
 
 
bytesread = SECTOR_SIZE;
 
 
}
 
			    // Case 2B - We are only reading a partial sector
			    else {
 
 
result =
				    DFS_ReadSector(fileinfo->volinfo->unit,
						   scratch, sector, 1);
 
memcpy(buffer, scratch, remain);
 
buffer += remain;
 
fileinfo->pointer += remain;
 
bytesread = remain;
 
remain = 0;
 
}
 
}
 
 
*successcount += bytesread;
 
 
 
		    // check to see if we stepped over a cluster boundary
		    if (div
			(fileinfo->pointer - bytesread,
			 fileinfo->volinfo->secperclus * SECTOR_SIZE).quot !=
 
div(fileinfo->pointer,
			     fileinfo->volinfo->secperclus *
			     SECTOR_SIZE).quot) {
 
			    // An act of minor evil - we use bytesread as a scratch integer, knowing that
			    // its value is not used after updating *successcount above
 
bytesread = 0;
 
 
if (((fileinfo->volinfo->filesystem == FAT12)
			       && (fileinfo->cluster >= 0xff8))
			      || 
((fileinfo->volinfo->filesystem == FAT16)
				   && (fileinfo->cluster >= 0xfff8))
			      || 
((fileinfo->volinfo->filesystem == FAT32)
				   && (fileinfo->cluster >= 0x0ffffff8)))
 
result = DFS_EOF;
 
			else
 
fileinfo->cluster =
				    DFS_GetFAT(fileinfo->volinfo, scratch,
					       &bytesread, fileinfo->cluster);
 
}
 
}
 
 
 
return result;
 
}
 
 
 
/*
	Seek file pointer to a given position
	This function does not return status - refer to the fileinfo->pointer value
	to see where the pointer wound up.
	Requires a SECTOR_SIZE scratch buffer
*/ 
void DFS_Seek(PFILEINFO fileinfo, unsigned long int offset,
	      unsigned char *scratch) 
{
 
unsigned long int tempint;
 
 
	    // larwe 9/16/06 bugfix split case 0a/0b and changed fallthrough handling
	    // Case 0a - Return immediately for degenerate case
	    if (offset == fileinfo->pointer) {
 
return;
 
}
 
 
	    // Case 0b - Don't allow the user to seek past the end of the file
	    if (offset > fileinfo->filelen) {
 
offset = fileinfo->filelen;
 
		    // NOTE NO RETURN HERE!
	}
 
 
	    // Case 1 - Simple rewind to start
	    // Note _intentional_ fallthrough from Case 0b above
	    if (offset == 0) {
 
fileinfo->cluster = fileinfo->firstcluster;
 
fileinfo->pointer = 0;
 
return;	// larwe 9/16/06 +1 bugfix
	}
 
	    // Case 2 - Seeking backwards. Need to reset and seek forwards
	    else if (offset < fileinfo->pointer) {
 
fileinfo->cluster = fileinfo->firstcluster;
 
fileinfo->pointer = 0;
 
		    // NOTE NO RETURN HERE!
	}
 
 
	    // Case 3 - Seeking forwards
	    // Note _intentional_ fallthrough from Case 2 above
 
	    // Case 3a - Seek size does not cross cluster boundary - 
	    // very simple case
	    // larwe 9/16/06 changed .rem to .quot in both div calls, bugfix
	    if (div
		(fileinfo->pointer,
		 fileinfo->volinfo->secperclus * SECTOR_SIZE).quot ==
 
div(fileinfo->pointer + offset,
		     fileinfo->volinfo->secperclus * SECTOR_SIZE).quot) {
 
fileinfo->pointer = offset;
 
}
 
	    // Case 3b - Seeking across cluster boundary(ies)
	    else {
 
		    // round file pointer down to cluster boundary
		    fileinfo->pointer =
		    div(fileinfo->pointer,
			fileinfo->volinfo->secperclus * SECTOR_SIZE).quot *
 
fileinfo->volinfo->secperclus * SECTOR_SIZE;
 
 
		    // seek by clusters
		    // larwe 9/30/06 bugfix changed .rem to .quot in both div calls
		    while (div
			   (fileinfo->pointer,
			    fileinfo->volinfo->secperclus * SECTOR_SIZE).quot !=
 
div(fileinfo->pointer + offset,
				fileinfo->volinfo->secperclus *
				SECTOR_SIZE).quot) {
 
 
fileinfo->cluster =
			    DFS_GetFAT(fileinfo->volinfo, scratch, &tempint,
				       fileinfo->cluster);
 
			    // Abort if there was an error
			    if (fileinfo->cluster == 0x0ffffff7) {
 
fileinfo->pointer = 0;
 
fileinfo->cluster = fileinfo->firstcluster;
 
return;
 
}
 
fileinfo->pointer +=
			    SECTOR_SIZE * fileinfo->volinfo->secperclus;
 
}
 
 
		    // since we know the cluster is right, we have no more work to do
		    fileinfo->pointer = offset;
 
}
 
}
 
 
 
/*
	Delete a file
	scratch must point to a sector-sized buffer
*/ 
unsigned long int DFS_UnlinkFile(PVOLINFO volinfo, unsigned char *path,
				 unsigned char *scratch) 
{
 
PDIRENT de = (PDIRENT) scratch;
 
FILEINFO fi;
 
unsigned long int cache = 0;
 
unsigned long int tempclus;
 
 
	    // DFS_OpenFile gives us all the information we need to delete it
	    if (DFS_OK != DFS_OpenFile(volinfo, path, DFS_READ, scratch, &fi))
 
return DFS_NOTFOUND;
 
 
	    // First, read the directory sector and delete that entry
	    if (DFS_ReadSector(volinfo->unit, scratch, fi.dirsector, 1))
 
return DFS_ERRMISC;
 
((PDIRENT) scratch)[fi.diroffset].name[0] = 0xe5;
 
if (DFS_WriteSector(volinfo->unit, scratch, fi.dirsector, 1))
 
return DFS_ERRMISC;
 
 
	    // Now follow the cluster chain to free the file space
	    while (!
		   ((volinfo->filesystem == FAT12 && fi.firstcluster >= 0x0ff7)
		    || 
(volinfo->filesystem == FAT16
			 && fi.firstcluster >= 0xfff7)
		    || 
(volinfo->filesystem == FAT32
			 && fi.firstcluster >= 0x0ffffff7))) {
 
tempclus = fi.firstcluster;
 
 
fi.firstcluster =
		    DFS_GetFAT(volinfo, scratch, &cache, fi.firstcluster);
 
DFS_SetFAT(volinfo, scratch, &cache, tempclus, 0);
 
 
}
 
return DFS_OK;
 
}
 
 
 
 
/*
	Write an open file
	You must supply a prepopulated FILEINFO as provided by DFS_OpenFile, and a
	pointer to a SECTOR_SIZE scratch buffer.
	This function updates the successcount field with the number of bytes actually written.
*/ 
unsigned long int DFS_WriteFile(PFILEINFO fileinfo, unsigned char *scratch,
				unsigned char *buffer,
				unsigned long int *successcount,
				unsigned long int len) 
{
 
unsigned long int remain;
 
unsigned long int result = DFS_OK;
 
unsigned long int sector;
 
unsigned long int byteswritten;
 
 
	    // Don't allow writes to a file that's open as readonly
	    if (!(fileinfo->mode & DFS_WRITE))
 
return DFS_ERRMISC;
 
 
remain = len;
 
*successcount = 0;
 
 
while (remain && result == DFS_OK) {
 
		    // This is a bit complicated. The sector we want to read is addressed at a cluster
		    // granularity by the fileinfo->cluster member. The file pointer tells us how many
		    // extra sectors to add to that number.
		    sector = fileinfo->volinfo->dataarea + 
		    ((fileinfo->cluster - 2) * fileinfo->volinfo->secperclus) +
 
div(div
			 (fileinfo->pointer,
			  fileinfo->volinfo->secperclus * SECTOR_SIZE).rem,
			 SECTOR_SIZE).quot;
 
 
		    // Case 1 - File pointer is not on a sector boundary
		    if (div(fileinfo->pointer, SECTOR_SIZE).rem) {
 
unsigned short tempsize;
 
printf("CASE 1 \n");
 
			    // We always have to go through scratch in this case
			    result =
			    DFS_ReadSector(fileinfo->volinfo->unit, scratch,
					   sector, 1);
 
 
			    // This is the number of bytes that we don't want to molest in the
			    // scratch sector just read.
			    tempsize = div(fileinfo->pointer, SECTOR_SIZE).rem;
 
 
			    // Case 1A - We are writing the entire remainder of the sector. After
			    // this point, all passes through the read loop will be aligned on a
			    // sector boundary, which allows us to go through the optimal path
			    // 2A below.
			    if (remain >= SECTOR_SIZE - tempsize) {
 
memcpy(scratch + tempsize, buffer,
					SECTOR_SIZE - tempsize);
 
if (!result)
 
result =
					    DFS_WriteSector(fileinfo->volinfo->
							    unit, scratch,
							    sector, 1);
 
 
byteswritten = SECTOR_SIZE - tempsize;
 
buffer += SECTOR_SIZE - tempsize;
 
fileinfo->pointer += SECTOR_SIZE - tempsize;
 
if (fileinfo->filelen < fileinfo->pointer) {
 
fileinfo->filelen = fileinfo->pointer;
 
}
 
remain -= SECTOR_SIZE - tempsize;
 
}
 
			    // Case 1B - This concludes the file write operation
			    else {
 
printf("CASE 1B \n");
 
memcpy(scratch + tempsize, buffer, remain);
 
if (!result)
 
result =
					    DFS_WriteSector(fileinfo->volinfo->
							    unit, scratch,
							    sector, 1);
 
 
buffer += remain;
 
fileinfo->pointer += remain;
 
if (fileinfo->filelen < fileinfo->pointer) {
 
fileinfo->filelen = fileinfo->pointer;
 
}
 
byteswritten = remain;
 
remain = 0;
 
}
 
}		// case 1
		// Case 2 - File pointer is on sector boundary
		else {
 
printf("CASE 2 \n");
 
			    // Case 2A - We have at least one more full sector to write and don't have
			    // to go through the scratch buffer. You could insert optimizations here to
			    // write multiple sectors at a time, if you were thus inclined. Refer to
			    // similar notes in DFS_ReadFile.
			    if (remain >= SECTOR_SIZE) {
 
result =
				    DFS_WriteSector(fileinfo->volinfo->unit,
						    buffer, sector, 1);
 
remain -= SECTOR_SIZE;
 
buffer += SECTOR_SIZE;
 
fileinfo->pointer += SECTOR_SIZE;
 
if (fileinfo->filelen < fileinfo->pointer) {
 
fileinfo->filelen = fileinfo->pointer;
 
}
 
byteswritten = SECTOR_SIZE;
 
}
 
			    // Case 2B - We are only writing a partial sector and potentially need to
			    // go through the scratch buffer.
			    else {
 
printf("CASE 2B \n");
 
				    // If the current file pointer is not yet at or beyond the file
				    // length, we are writing somewhere in the middle of the file and
				    // need to load the original sector to do a read-modify-write.
				    if (fileinfo->pointer < fileinfo->filelen) {
 
result =
					    DFS_ReadSector(fileinfo->volinfo->
							   unit, scratch,
							   sector, 1);
 
if (!result) {
 
memcpy(scratch, buffer,
							remain);
 
result =
						    DFS_WriteSector(fileinfo->
								    volinfo->
								    unit,
								    scratch,
								    sector, 1);
 
}
 
}
 
				else {
 
result =
					    DFS_WriteSector(fileinfo->volinfo->
							    unit, buffer,
							    sector, 1);
 
}
 
 
buffer += remain;
 
fileinfo->pointer += remain;
 
if (fileinfo->filelen < fileinfo->pointer) {
 
fileinfo->filelen = fileinfo->pointer;
 
}
 
byteswritten = remain;
 
remain = 0;
 
}
 
}
 
 
*successcount += byteswritten;
 
printf("Writen byte %d \n", *successcount);
 
		    // check to see if we stepped over a cluster boundary
		    if (div
			(fileinfo->pointer - byteswritten,
			 fileinfo->volinfo->secperclus * SECTOR_SIZE).quot !=
 
div(fileinfo->pointer,
			     fileinfo->volinfo->secperclus *
			     SECTOR_SIZE).quot) {
 
unsigned long int lastcluster;
 
 
			    // We've transgressed into another cluster. If we were already at EOF,
			    // we need to allocate a new cluster.
			    // An act of minor evil - we use byteswritten as a scratch integer, knowing
			    // that its value is not used after updating *successcount above
			    byteswritten = 0;
 
 
lastcluster = fileinfo->cluster;
 
fileinfo->cluster =
			    DFS_GetFAT(fileinfo->volinfo, scratch,
				       &byteswritten, fileinfo->cluster);
 
 
			    // Allocate a new cluster?
			    if (((fileinfo->volinfo->filesystem == FAT12)
				 && (fileinfo->cluster >= 0xff8))
				|| 
((fileinfo->volinfo->filesystem == FAT16)
				     && (fileinfo->cluster >= 0xfff8))
				|| 
((fileinfo->volinfo->filesystem == FAT32)
				     && (fileinfo->cluster >= 0x0ffffff8))) {
 
unsigned long int tempclus;
 
 
tempclus =
				    DFS_GetFreeFAT(fileinfo->volinfo, scratch);
 
byteswritten = 0;	// invalidate cache
				if (tempclus == 0x0ffffff7)
 
return DFS_ERRMISC;
 
 
				    // Link new cluster onto file
				    DFS_SetFAT(fileinfo->volinfo, scratch,
					       &byteswritten, lastcluster,
					       tempclus);
 
fileinfo->cluster = tempclus;
 
 
				    // Mark newly allocated cluster as end of chain                 
				    switch (fileinfo->volinfo->filesystem) {
 
case FAT12:
					tempclus = 0xff8;
					break;
 
case FAT16:
					tempclus = 0xfff8;
					break;
 
case FAT32:
					tempclus = 0x0ffffff8;
					break;
 
default:
					return DFS_ERRMISC;
 
}
 
DFS_SetFAT(fileinfo->volinfo, scratch,
					    &byteswritten, fileinfo->cluster,
					    tempclus);
 
 
result = DFS_OK;
 
}
 
			    // No else clause is required.
		}
 
}
 
 
	    // Update directory entry
	    if (DFS_ReadSector
		(fileinfo->volinfo->unit, scratch, fileinfo->dirsector, 1))
 
return DFS_ERRMISC;
 
((PDIRENT) scratch)[fileinfo->diroffset].filesize_0 =
	    fileinfo->filelen & 0xff;
 
((PDIRENT) scratch)[fileinfo->diroffset].filesize_1 =
	    (fileinfo->filelen & 0xff00) >> 8;
 
((PDIRENT) scratch)[fileinfo->diroffset].filesize_2 =
	    (fileinfo->filelen & 0xff0000) >> 16;
 
((PDIRENT) scratch)[fileinfo->diroffset].filesize_3 =
	    (fileinfo->filelen & 0xff000000) >> 24;
 
if (DFS_WriteSector
	     (fileinfo->volinfo->unit, scratch, fileinfo->dirsector, 1))
 
return DFS_ERRMISC;
 
return result;
 
}
 
 
 
int memcmp2(const void *s1, const void *s2, size_t n) 
{
 
const unsigned char *p1 = s1, *p2 = s2;
 
while (n--)
 
if (*p1 != *p2)
 
return *p1 - *p2;
 
		else
 
*p1++, *p2++;
 
return 0;
 
}
 
 
 
char *strcpy2(char *dest, char *src) 
{
 
char *ret = dest;
 
while (*dest++ = *src++)
 
;
 
return ret;
 
}
 
 
 
int strcmp2(const char *s1, const char *s2) 
{
 
while (*s1 && (*s1 == *s2))
 
s1++, s2++;
 
return *(const unsigned char *)s1 - *(const unsigned char *)s2;
 
} 
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.