URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [tree-ssa-reassoc.c] - Rev 713
Go to most recent revision | Compare with Previous | Blame | View Log
/* Reassociation for trees. Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Daniel Berlin <dan@dberlin.org> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "basic-block.h" #include "tree-pretty-print.h" #include "gimple-pretty-print.h" #include "tree-inline.h" #include "tree-flow.h" #include "gimple.h" #include "tree-dump.h" #include "timevar.h" #include "tree-iterator.h" #include "tree-pass.h" #include "alloc-pool.h" #include "vec.h" #include "langhooks.h" #include "pointer-set.h" #include "cfgloop.h" #include "flags.h" #include "target.h" #include "params.h" #include "diagnostic-core.h" /* This is a simple global reassociation pass. It is, in part, based on the LLVM pass of the same name (They do some things more/less than we do, in different orders, etc). It consists of five steps: 1. Breaking up subtract operations into addition + negate, where it would promote the reassociation of adds. 2. Left linearization of the expression trees, so that (A+B)+(C+D) becomes (((A+B)+C)+D), which is easier for us to rewrite later. During linearization, we place the operands of the binary expressions into a vector of operand_entry_t 3. Optimization of the operand lists, eliminating things like a + -a, a & a, etc. 4. Rewrite the expression trees we linearized and optimized so they are in proper rank order. 5. Repropagate negates, as nothing else will clean it up ATM. A bit of theory on #4, since nobody seems to write anything down about why it makes sense to do it the way they do it: We could do this much nicer theoretically, but don't (for reasons explained after how to do it theoretically nice :P). In order to promote the most redundancy elimination, you want binary expressions whose operands are the same rank (or preferably, the same value) exposed to the redundancy eliminator, for possible elimination. So the way to do this if we really cared, is to build the new op tree from the leaves to the roots, merging as you go, and putting the new op on the end of the worklist, until you are left with one thing on the worklist. IE if you have to rewrite the following set of operands (listed with rank in parentheses), with opcode PLUS_EXPR: a (1), b (1), c (1), d (2), e (2) We start with our merge worklist empty, and the ops list with all of those on it. You want to first merge all leaves of the same rank, as much as possible. So first build a binary op of mergetmp = a + b, and put "mergetmp" on the merge worklist. Because there is no three operand form of PLUS_EXPR, c is not going to be exposed to redundancy elimination as a rank 1 operand. So you might as well throw it on the merge worklist (you could also consider it to now be a rank two operand, and merge it with d and e, but in this case, you then have evicted e from a binary op. So at least in this situation, you can't win.) Then build a binary op of d + e mergetmp2 = d + e and put mergetmp2 on the merge worklist. so merge worklist = {mergetmp, c, mergetmp2} Continue building binary ops of these operations until you have only one operation left on the worklist. So we have build binary op mergetmp3 = mergetmp + c worklist = {mergetmp2, mergetmp3} mergetmp4 = mergetmp2 + mergetmp3 worklist = {mergetmp4} because we have one operation left, we can now just set the original statement equal to the result of that operation. This will at least expose a + b and d + e to redundancy elimination as binary operations. For extra points, you can reuse the old statements to build the mergetmps, since you shouldn't run out. So why don't we do this? Because it's expensive, and rarely will help. Most trees we are reassociating have 3 or less ops. If they have 2 ops, they already will be written into a nice single binary op. If you have 3 ops, a single simple check suffices to tell you whether the first two are of the same rank. If so, you know to order it mergetmp = op1 + op2 newstmt = mergetmp + op3 instead of mergetmp = op2 + op3 newstmt = mergetmp + op1 If all three are of the same rank, you can't expose them all in a single binary operator anyway, so the above is *still* the best you can do. Thus, this is what we do. When we have three ops left, we check to see what order to put them in, and call it a day. As a nod to vector sum reduction, we check if any of the ops are really a phi node that is a destructive update for the associating op, and keep the destructive update together for vector sum reduction recognition. */ /* Statistics */ static struct { int linearized; int constants_eliminated; int ops_eliminated; int rewritten; } reassociate_stats; /* Operator, rank pair. */ typedef struct operand_entry { unsigned int rank; int id; tree op; } *operand_entry_t; static alloc_pool operand_entry_pool; /* This is used to assign a unique ID to each struct operand_entry so that qsort results are identical on different hosts. */ static int next_operand_entry_id; /* Starting rank number for a given basic block, so that we can rank operations using unmovable instructions in that BB based on the bb depth. */ static long *bb_rank; /* Operand->rank hashtable. */ static struct pointer_map_t *operand_rank; /* Forward decls. */ static long get_rank (tree); /* Bias amount for loop-carried phis. We want this to be larger than the depth of any reassociation tree we can see, but not larger than the rank difference between two blocks. */ #define PHI_LOOP_BIAS (1 << 15) /* Rank assigned to a phi statement. If STMT is a loop-carried phi of an innermost loop, and the phi has only a single use which is inside the loop, then the rank is the block rank of the loop latch plus an extra bias for the loop-carried dependence. This causes expressions calculated into an accumulator variable to be independent for each iteration of the loop. If STMT is some other phi, the rank is the block rank of its containing block. */ static long phi_rank (gimple stmt) { basic_block bb = gimple_bb (stmt); struct loop *father = bb->loop_father; tree res; unsigned i; use_operand_p use; gimple use_stmt; /* We only care about real loops (those with a latch). */ if (!father->latch) return bb_rank[bb->index]; /* Interesting phis must be in headers of innermost loops. */ if (bb != father->header || father->inner) return bb_rank[bb->index]; /* Ignore virtual SSA_NAMEs. */ res = gimple_phi_result (stmt); if (!is_gimple_reg (SSA_NAME_VAR (res))) return bb_rank[bb->index]; /* The phi definition must have a single use, and that use must be within the loop. Otherwise this isn't an accumulator pattern. */ if (!single_imm_use (res, &use, &use_stmt) || gimple_bb (use_stmt)->loop_father != father) return bb_rank[bb->index]; /* Look for phi arguments from within the loop. If found, bias this phi. */ for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree arg = gimple_phi_arg_def (stmt, i); if (TREE_CODE (arg) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg)) { gimple def_stmt = SSA_NAME_DEF_STMT (arg); if (gimple_bb (def_stmt)->loop_father == father) return bb_rank[father->latch->index] + PHI_LOOP_BIAS; } } /* Must be an uninteresting phi. */ return bb_rank[bb->index]; } /* If EXP is an SSA_NAME defined by a PHI statement that represents a loop-carried dependence of an innermost loop, return TRUE; else return FALSE. */ static bool loop_carried_phi (tree exp) { gimple phi_stmt; long block_rank; if (TREE_CODE (exp) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (exp)) return false; phi_stmt = SSA_NAME_DEF_STMT (exp); if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI) return false; /* Non-loop-carried phis have block rank. Loop-carried phis have an additional bias added in. If this phi doesn't have block rank, it's biased and should not be propagated. */ block_rank = bb_rank[gimple_bb (phi_stmt)->index]; if (phi_rank (phi_stmt) != block_rank) return true; return false; } /* Return the maximum of RANK and the rank that should be propagated from expression OP. For most operands, this is just the rank of OP. For loop-carried phis, the value is zero to avoid undoing the bias in favor of the phi. */ static long propagate_rank (long rank, tree op) { long op_rank; if (loop_carried_phi (op)) return rank; op_rank = get_rank (op); return MAX (rank, op_rank); } /* Look up the operand rank structure for expression E. */ static inline long find_operand_rank (tree e) { void **slot = pointer_map_contains (operand_rank, e); return slot ? (long) (intptr_t) *slot : -1; } /* Insert {E,RANK} into the operand rank hashtable. */ static inline void insert_operand_rank (tree e, long rank) { void **slot; gcc_assert (rank > 0); slot = pointer_map_insert (operand_rank, e); gcc_assert (!*slot); *slot = (void *) (intptr_t) rank; } /* Given an expression E, return the rank of the expression. */ static long get_rank (tree e) { /* Constants have rank 0. */ if (is_gimple_min_invariant (e)) return 0; /* SSA_NAME's have the rank of the expression they are the result of. For globals and uninitialized values, the rank is 0. For function arguments, use the pre-setup rank. For PHI nodes, stores, asm statements, etc, we use the rank of the BB. For simple operations, the rank is the maximum rank of any of its operands, or the bb_rank, whichever is less. I make no claims that this is optimal, however, it gives good results. */ /* We make an exception to the normal ranking system to break dependences of accumulator variables in loops. Suppose we have a simple one-block loop containing: x_1 = phi(x_0, x_2) b = a + x_1 c = b + d x_2 = c + e As shown, each iteration of the calculation into x is fully dependent upon the iteration before it. We would prefer to see this in the form: x_1 = phi(x_0, x_2) b = a + d c = b + e x_2 = c + x_1 If the loop is unrolled, the calculations of b and c from different iterations can be interleaved. To obtain this result during reassociation, we bias the rank of the phi definition x_1 upward, when it is recognized as an accumulator pattern. The artificial rank causes it to be added last, providing the desired independence. */ if (TREE_CODE (e) == SSA_NAME) { gimple stmt; long rank; int i, n; tree op; if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL && SSA_NAME_IS_DEFAULT_DEF (e)) return find_operand_rank (e); stmt = SSA_NAME_DEF_STMT (e); if (gimple_bb (stmt) == NULL) return 0; if (gimple_code (stmt) == GIMPLE_PHI) return phi_rank (stmt); if (!is_gimple_assign (stmt) || gimple_vdef (stmt)) return bb_rank[gimple_bb (stmt)->index]; /* If we already have a rank for this expression, use that. */ rank = find_operand_rank (e); if (rank != -1) return rank; /* Otherwise, find the maximum rank for the operands. As an exception, remove the bias from loop-carried phis when propagating the rank so that dependent operations are not also biased. */ rank = 0; if (gimple_assign_single_p (stmt)) { tree rhs = gimple_assign_rhs1 (stmt); n = TREE_OPERAND_LENGTH (rhs); if (n == 0) rank = propagate_rank (rank, rhs); else { for (i = 0; i < n; i++) { op = TREE_OPERAND (rhs, i); if (op != NULL_TREE) rank = propagate_rank (rank, op); } } } else { n = gimple_num_ops (stmt); for (i = 1; i < n; i++) { op = gimple_op (stmt, i); gcc_assert (op); rank = propagate_rank (rank, op); } } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Rank for "); print_generic_expr (dump_file, e, 0); fprintf (dump_file, " is %ld\n", (rank + 1)); } /* Note the rank in the hashtable so we don't recompute it. */ insert_operand_rank (e, (rank + 1)); return (rank + 1); } /* Globals, etc, are rank 0 */ return 0; } DEF_VEC_P(operand_entry_t); DEF_VEC_ALLOC_P(operand_entry_t, heap); /* We want integer ones to end up last no matter what, since they are the ones we can do the most with. */ #define INTEGER_CONST_TYPE 1 << 3 #define FLOAT_CONST_TYPE 1 << 2 #define OTHER_CONST_TYPE 1 << 1 /* Classify an invariant tree into integer, float, or other, so that we can sort them to be near other constants of the same type. */ static inline int constant_type (tree t) { if (INTEGRAL_TYPE_P (TREE_TYPE (t))) return INTEGER_CONST_TYPE; else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t))) return FLOAT_CONST_TYPE; else return OTHER_CONST_TYPE; } /* qsort comparison function to sort operand entries PA and PB by rank so that the sorted array is ordered by rank in decreasing order. */ static int sort_by_operand_rank (const void *pa, const void *pb) { const operand_entry_t oea = *(const operand_entry_t *)pa; const operand_entry_t oeb = *(const operand_entry_t *)pb; /* It's nicer for optimize_expression if constants that are likely to fold when added/multiplied//whatever are put next to each other. Since all constants have rank 0, order them by type. */ if (oeb->rank == 0 && oea->rank == 0) { if (constant_type (oeb->op) != constant_type (oea->op)) return constant_type (oeb->op) - constant_type (oea->op); else /* To make sorting result stable, we use unique IDs to determine order. */ return oeb->id - oea->id; } /* Lastly, make sure the versions that are the same go next to each other. We use SSA_NAME_VERSION because it's stable. */ if ((oeb->rank - oea->rank == 0) && TREE_CODE (oea->op) == SSA_NAME && TREE_CODE (oeb->op) == SSA_NAME) { if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op)) return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op); else return oeb->id - oea->id; } if (oeb->rank != oea->rank) return oeb->rank - oea->rank; else return oeb->id - oea->id; } /* Add an operand entry to *OPS for the tree operand OP. */ static void add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op) { operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool); oe->op = op; oe->rank = get_rank (op); oe->id = next_operand_entry_id++; VEC_safe_push (operand_entry_t, heap, *ops, oe); } /* Return true if STMT is reassociable operation containing a binary operation with tree code CODE, and is inside LOOP. */ static bool is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop) { basic_block bb = gimple_bb (stmt); if (gimple_bb (stmt) == NULL) return false; if (!flow_bb_inside_loop_p (loop, bb)) return false; if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == code && has_single_use (gimple_assign_lhs (stmt))) return true; return false; } /* Given NAME, if NAME is defined by a unary operation OPCODE, return the operand of the negate operation. Otherwise, return NULL. */ static tree get_unary_op (tree name, enum tree_code opcode) { gimple stmt = SSA_NAME_DEF_STMT (name); if (!is_gimple_assign (stmt)) return NULL_TREE; if (gimple_assign_rhs_code (stmt) == opcode) return gimple_assign_rhs1 (stmt); return NULL_TREE; } /* If CURR and LAST are a pair of ops that OPCODE allows us to eliminate through equivalences, do so, remove them from OPS, and return true. Otherwise, return false. */ static bool eliminate_duplicate_pair (enum tree_code opcode, VEC (operand_entry_t, heap) **ops, bool *all_done, unsigned int i, operand_entry_t curr, operand_entry_t last) { /* If we have two of the same op, and the opcode is & |, min, or max, we can eliminate one of them. If we have two of the same op, and the opcode is ^, we can eliminate both of them. */ if (last && last->op == curr->op) { switch (opcode) { case MAX_EXPR: case MIN_EXPR: case BIT_IOR_EXPR: case BIT_AND_EXPR: if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Equivalence: "); print_generic_expr (dump_file, curr->op, 0); fprintf (dump_file, " [&|minmax] "); print_generic_expr (dump_file, last->op, 0); fprintf (dump_file, " -> "); print_generic_stmt (dump_file, last->op, 0); } VEC_ordered_remove (operand_entry_t, *ops, i); reassociate_stats.ops_eliminated ++; return true; case BIT_XOR_EXPR: if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Equivalence: "); print_generic_expr (dump_file, curr->op, 0); fprintf (dump_file, " ^ "); print_generic_expr (dump_file, last->op, 0); fprintf (dump_file, " -> nothing\n"); } reassociate_stats.ops_eliminated += 2; if (VEC_length (operand_entry_t, *ops) == 2) { VEC_free (operand_entry_t, heap, *ops); *ops = NULL; add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op))); *all_done = true; } else { VEC_ordered_remove (operand_entry_t, *ops, i-1); VEC_ordered_remove (operand_entry_t, *ops, i-1); } return true; default: break; } } return false; } static VEC(tree, heap) *plus_negates; /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not expression, look in OPS for a corresponding positive operation to cancel it out. If we find one, remove the other from OPS, replace OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise, return false. */ static bool eliminate_plus_minus_pair (enum tree_code opcode, VEC (operand_entry_t, heap) **ops, unsigned int currindex, operand_entry_t curr) { tree negateop; tree notop; unsigned int i; operand_entry_t oe; if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME) return false; negateop = get_unary_op (curr->op, NEGATE_EXPR); notop = get_unary_op (curr->op, BIT_NOT_EXPR); if (negateop == NULL_TREE && notop == NULL_TREE) return false; /* Any non-negated version will have a rank that is one less than the current rank. So once we hit those ranks, if we don't find one, we can stop. */ for (i = currindex + 1; VEC_iterate (operand_entry_t, *ops, i, oe) && oe->rank >= curr->rank - 1 ; i++) { if (oe->op == negateop) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Equivalence: "); print_generic_expr (dump_file, negateop, 0); fprintf (dump_file, " + -"); print_generic_expr (dump_file, oe->op, 0); fprintf (dump_file, " -> 0\n"); } VEC_ordered_remove (operand_entry_t, *ops, i); add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op))); VEC_ordered_remove (operand_entry_t, *ops, currindex); reassociate_stats.ops_eliminated ++; return true; } else if (oe->op == notop) { tree op_type = TREE_TYPE (oe->op); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Equivalence: "); print_generic_expr (dump_file, notop, 0); fprintf (dump_file, " + ~"); print_generic_expr (dump_file, oe->op, 0); fprintf (dump_file, " -> -1\n"); } VEC_ordered_remove (operand_entry_t, *ops, i); add_to_ops_vec (ops, build_int_cst_type (op_type, -1)); VEC_ordered_remove (operand_entry_t, *ops, currindex); reassociate_stats.ops_eliminated ++; return true; } } /* CURR->OP is a negate expr in a plus expr: save it for later inspection in repropagate_negates(). */ if (negateop != NULL_TREE) VEC_safe_push (tree, heap, plus_negates, curr->op); return false; } /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a bitwise not expression, look in OPS for a corresponding operand to cancel it out. If we find one, remove the other from OPS, replace OPS[CURRINDEX] with 0, and return true. Otherwise, return false. */ static bool eliminate_not_pairs (enum tree_code opcode, VEC (operand_entry_t, heap) **ops, unsigned int currindex, operand_entry_t curr) { tree notop; unsigned int i; operand_entry_t oe; if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR) || TREE_CODE (curr->op) != SSA_NAME) return false; notop = get_unary_op (curr->op, BIT_NOT_EXPR); if (notop == NULL_TREE) return false; /* Any non-not version will have a rank that is one less than the current rank. So once we hit those ranks, if we don't find one, we can stop. */ for (i = currindex + 1; VEC_iterate (operand_entry_t, *ops, i, oe) && oe->rank >= curr->rank - 1; i++) { if (oe->op == notop) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Equivalence: "); print_generic_expr (dump_file, notop, 0); if (opcode == BIT_AND_EXPR) fprintf (dump_file, " & ~"); else if (opcode == BIT_IOR_EXPR) fprintf (dump_file, " | ~"); print_generic_expr (dump_file, oe->op, 0); if (opcode == BIT_AND_EXPR) fprintf (dump_file, " -> 0\n"); else if (opcode == BIT_IOR_EXPR) fprintf (dump_file, " -> -1\n"); } if (opcode == BIT_AND_EXPR) oe->op = build_zero_cst (TREE_TYPE (oe->op)); else if (opcode == BIT_IOR_EXPR) oe->op = build_low_bits_mask (TREE_TYPE (oe->op), TYPE_PRECISION (TREE_TYPE (oe->op))); reassociate_stats.ops_eliminated += VEC_length (operand_entry_t, *ops) - 1; VEC_free (operand_entry_t, heap, *ops); *ops = NULL; VEC_safe_push (operand_entry_t, heap, *ops, oe); return true; } } return false; } /* Use constant value that may be present in OPS to try to eliminate operands. Note that this function is only really used when we've eliminated ops for other reasons, or merged constants. Across single statements, fold already does all of this, plus more. There is little point in duplicating logic, so I've only included the identities that I could ever construct testcases to trigger. */ static void eliminate_using_constants (enum tree_code opcode, VEC(operand_entry_t, heap) **ops) { operand_entry_t oelast = VEC_last (operand_entry_t, *ops); tree type = TREE_TYPE (oelast->op); if (oelast->rank == 0 && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type))) { switch (opcode) { case BIT_AND_EXPR: if (integer_zerop (oelast->op)) { if (VEC_length (operand_entry_t, *ops) != 1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found & 0, removing all other ops\n"); reassociate_stats.ops_eliminated += VEC_length (operand_entry_t, *ops) - 1; VEC_free (operand_entry_t, heap, *ops); *ops = NULL; VEC_safe_push (operand_entry_t, heap, *ops, oelast); return; } } else if (integer_all_onesp (oelast->op)) { if (VEC_length (operand_entry_t, *ops) != 1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found & -1, removing\n"); VEC_pop (operand_entry_t, *ops); reassociate_stats.ops_eliminated++; } } break; case BIT_IOR_EXPR: if (integer_all_onesp (oelast->op)) { if (VEC_length (operand_entry_t, *ops) != 1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found | -1, removing all other ops\n"); reassociate_stats.ops_eliminated += VEC_length (operand_entry_t, *ops) - 1; VEC_free (operand_entry_t, heap, *ops); *ops = NULL; VEC_safe_push (operand_entry_t, heap, *ops, oelast); return; } } else if (integer_zerop (oelast->op)) { if (VEC_length (operand_entry_t, *ops) != 1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found | 0, removing\n"); VEC_pop (operand_entry_t, *ops); reassociate_stats.ops_eliminated++; } } break; case MULT_EXPR: if (integer_zerop (oelast->op) || (FLOAT_TYPE_P (type) && !HONOR_NANS (TYPE_MODE (type)) && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)) && real_zerop (oelast->op))) { if (VEC_length (operand_entry_t, *ops) != 1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found * 0, removing all other ops\n"); reassociate_stats.ops_eliminated += VEC_length (operand_entry_t, *ops) - 1; VEC_free (operand_entry_t, heap, *ops); *ops = NULL; VEC_safe_push (operand_entry_t, heap, *ops, oelast); return; } } else if (integer_onep (oelast->op) || (FLOAT_TYPE_P (type) && !HONOR_SNANS (TYPE_MODE (type)) && real_onep (oelast->op))) { if (VEC_length (operand_entry_t, *ops) != 1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found * 1, removing\n"); VEC_pop (operand_entry_t, *ops); reassociate_stats.ops_eliminated++; return; } } break; case BIT_XOR_EXPR: case PLUS_EXPR: case MINUS_EXPR: if (integer_zerop (oelast->op) || (FLOAT_TYPE_P (type) && (opcode == PLUS_EXPR || opcode == MINUS_EXPR) && fold_real_zero_addition_p (type, oelast->op, opcode == MINUS_EXPR))) { if (VEC_length (operand_entry_t, *ops) != 1) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found [|^+] 0, removing\n"); VEC_pop (operand_entry_t, *ops); reassociate_stats.ops_eliminated++; return; } } break; default: break; } } } static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple, bool, bool); /* Structure for tracking and counting operands. */ typedef struct oecount_s { int cnt; int id; enum tree_code oecode; tree op; } oecount; DEF_VEC_O(oecount); DEF_VEC_ALLOC_O(oecount,heap); /* The heap for the oecount hashtable and the sorted list of operands. */ static VEC (oecount, heap) *cvec; /* Hash function for oecount. */ static hashval_t oecount_hash (const void *p) { const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42); return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode; } /* Comparison function for oecount. */ static int oecount_eq (const void *p1, const void *p2) { const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42); const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42); return (c1->oecode == c2->oecode && c1->op == c2->op); } /* Comparison function for qsort sorting oecount elements by count. */ static int oecount_cmp (const void *p1, const void *p2) { const oecount *c1 = (const oecount *)p1; const oecount *c2 = (const oecount *)p2; if (c1->cnt != c2->cnt) return c1->cnt - c2->cnt; else /* If counts are identical, use unique IDs to stabilize qsort. */ return c1->id - c2->id; } /* Walks the linear chain with result *DEF searching for an operation with operand OP and code OPCODE removing that from the chain. *DEF is updated if there is only one operand but no operation left. */ static void zero_one_operation (tree *def, enum tree_code opcode, tree op) { gimple stmt = SSA_NAME_DEF_STMT (*def); do { tree name = gimple_assign_rhs1 (stmt); /* If this is the operation we look for and one of the operands is ours simply propagate the other operand into the stmts single use. */ if (gimple_assign_rhs_code (stmt) == opcode && (name == op || gimple_assign_rhs2 (stmt) == op)) { gimple use_stmt; use_operand_p use; gimple_stmt_iterator gsi; if (name == op) name = gimple_assign_rhs2 (stmt); gcc_assert (has_single_use (gimple_assign_lhs (stmt))); single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt); if (gimple_assign_lhs (stmt) == *def) *def = name; SET_USE (use, name); if (TREE_CODE (name) != SSA_NAME) update_stmt (use_stmt); gsi = gsi_for_stmt (stmt); gsi_remove (&gsi, true); release_defs (stmt); return; } /* Continue walking the chain. */ gcc_assert (name != op && TREE_CODE (name) == SSA_NAME); stmt = SSA_NAME_DEF_STMT (name); } while (1); } /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for the result. Places the statement after the definition of either OP1 or OP2. Returns the new statement. */ static gimple build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode) { gimple op1def = NULL, op2def = NULL; gimple_stmt_iterator gsi; tree op; gimple sum; /* Create the addition statement. */ sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2); op = make_ssa_name (tmpvar, sum); gimple_assign_set_lhs (sum, op); /* Find an insertion place and insert. */ if (TREE_CODE (op1) == SSA_NAME) op1def = SSA_NAME_DEF_STMT (op1); if (TREE_CODE (op2) == SSA_NAME) op2def = SSA_NAME_DEF_STMT (op2); if ((!op1def || gimple_nop_p (op1def)) && (!op2def || gimple_nop_p (op2def))) { gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR)); gsi_insert_before (&gsi, sum, GSI_NEW_STMT); } else if ((!op1def || gimple_nop_p (op1def)) || (op2def && !gimple_nop_p (op2def) && stmt_dominates_stmt_p (op1def, op2def))) { if (gimple_code (op2def) == GIMPLE_PHI) { gsi = gsi_after_labels (gimple_bb (op2def)); gsi_insert_before (&gsi, sum, GSI_NEW_STMT); } else { if (!stmt_ends_bb_p (op2def)) { gsi = gsi_for_stmt (op2def); gsi_insert_after (&gsi, sum, GSI_NEW_STMT); } else { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs) if (e->flags & EDGE_FALLTHRU) gsi_insert_on_edge_immediate (e, sum); } } } else { if (gimple_code (op1def) == GIMPLE_PHI) { gsi = gsi_after_labels (gimple_bb (op1def)); gsi_insert_before (&gsi, sum, GSI_NEW_STMT); } else { if (!stmt_ends_bb_p (op1def)) { gsi = gsi_for_stmt (op1def); gsi_insert_after (&gsi, sum, GSI_NEW_STMT); } else { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs) if (e->flags & EDGE_FALLTHRU) gsi_insert_on_edge_immediate (e, sum); } } } update_stmt (sum); return sum; } /* Perform un-distribution of divisions and multiplications. A * X + B * X is transformed into (A + B) * X and A / X + B / X to (A + B) / X for real X. The algorithm is organized as follows. - First we walk the addition chain *OPS looking for summands that are defined by a multiplication or a real division. This results in the candidates bitmap with relevant indices into *OPS. - Second we build the chains of multiplications or divisions for these candidates, counting the number of occurences of (operand, code) pairs in all of the candidates chains. - Third we sort the (operand, code) pairs by number of occurence and process them starting with the pair with the most uses. * For each such pair we walk the candidates again to build a second candidate bitmap noting all multiplication/division chains that have at least one occurence of (operand, code). * We build an alternate addition chain only covering these candidates with one (operand, code) operation removed from their multiplication/division chain. * The first candidate gets replaced by the alternate addition chain multiplied/divided by the operand. * All candidate chains get disabled for further processing and processing of (operand, code) pairs continues. The alternate addition chains built are re-processed by the main reassociation algorithm which allows optimizing a * x * y + b * y * x to (a + b ) * x * y in one invocation of the reassociation pass. */ static bool undistribute_ops_list (enum tree_code opcode, VEC (operand_entry_t, heap) **ops, struct loop *loop) { unsigned int length = VEC_length (operand_entry_t, *ops); operand_entry_t oe1; unsigned i, j; sbitmap candidates, candidates2; unsigned nr_candidates, nr_candidates2; sbitmap_iterator sbi0; VEC (operand_entry_t, heap) **subops; htab_t ctable; bool changed = false; int next_oecount_id = 0; if (length <= 1 || opcode != PLUS_EXPR) return false; /* Build a list of candidates to process. */ candidates = sbitmap_alloc (length); sbitmap_zero (candidates); nr_candidates = 0; FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe1) { enum tree_code dcode; gimple oe1def; if (TREE_CODE (oe1->op) != SSA_NAME) continue; oe1def = SSA_NAME_DEF_STMT (oe1->op); if (!is_gimple_assign (oe1def)) continue; dcode = gimple_assign_rhs_code (oe1def); if ((dcode != MULT_EXPR && dcode != RDIV_EXPR) || !is_reassociable_op (oe1def, dcode, loop)) continue; SET_BIT (candidates, i); nr_candidates++; } if (nr_candidates < 2) { sbitmap_free (candidates); return false; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "searching for un-distribute opportunities "); print_generic_expr (dump_file, VEC_index (operand_entry_t, *ops, sbitmap_first_set_bit (candidates))->op, 0); fprintf (dump_file, " %d\n", nr_candidates); } /* Build linearized sub-operand lists and the counting table. */ cvec = NULL; ctable = htab_create (15, oecount_hash, oecount_eq, NULL); subops = XCNEWVEC (VEC (operand_entry_t, heap) *, VEC_length (operand_entry_t, *ops)); EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0) { gimple oedef; enum tree_code oecode; unsigned j; oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op); oecode = gimple_assign_rhs_code (oedef); linearize_expr_tree (&subops[i], oedef, associative_tree_code (oecode), false); FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1) { oecount c; void **slot; size_t idx; c.oecode = oecode; c.cnt = 1; c.id = next_oecount_id++; c.op = oe1->op; VEC_safe_push (oecount, heap, cvec, &c); idx = VEC_length (oecount, cvec) + 41; slot = htab_find_slot (ctable, (void *)idx, INSERT); if (!*slot) { *slot = (void *)idx; } else { VEC_pop (oecount, cvec); VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++; } } } htab_delete (ctable); /* Sort the counting table. */ VEC_qsort (oecount, cvec, oecount_cmp); if (dump_file && (dump_flags & TDF_DETAILS)) { oecount *c; fprintf (dump_file, "Candidates:\n"); FOR_EACH_VEC_ELT (oecount, cvec, j, c) { fprintf (dump_file, " %u %s: ", c->cnt, c->oecode == MULT_EXPR ? "*" : c->oecode == RDIV_EXPR ? "/" : "?"); print_generic_expr (dump_file, c->op, 0); fprintf (dump_file, "\n"); } } /* Process the (operand, code) pairs in order of most occurence. */ candidates2 = sbitmap_alloc (length); while (!VEC_empty (oecount, cvec)) { oecount *c = VEC_last (oecount, cvec); if (c->cnt < 2) break; /* Now collect the operands in the outer chain that contain the common operand in their inner chain. */ sbitmap_zero (candidates2); nr_candidates2 = 0; EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0) { gimple oedef; enum tree_code oecode; unsigned j; tree op = VEC_index (operand_entry_t, *ops, i)->op; /* If we undistributed in this chain already this may be a constant. */ if (TREE_CODE (op) != SSA_NAME) continue; oedef = SSA_NAME_DEF_STMT (op); oecode = gimple_assign_rhs_code (oedef); if (oecode != c->oecode) continue; FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1) { if (oe1->op == c->op) { SET_BIT (candidates2, i); ++nr_candidates2; break; } } } if (nr_candidates2 >= 2) { operand_entry_t oe1, oe2; tree tmpvar; gimple prod; int first = sbitmap_first_set_bit (candidates2); /* Build the new addition chain. */ oe1 = VEC_index (operand_entry_t, *ops, first); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Building ("); print_generic_expr (dump_file, oe1->op, 0); } tmpvar = create_tmp_reg (TREE_TYPE (oe1->op), NULL); add_referenced_var (tmpvar); zero_one_operation (&oe1->op, c->oecode, c->op); EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0) { gimple sum; oe2 = VEC_index (operand_entry_t, *ops, i); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " + "); print_generic_expr (dump_file, oe2->op, 0); } zero_one_operation (&oe2->op, c->oecode, c->op); sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode); oe2->op = build_zero_cst (TREE_TYPE (oe2->op)); oe2->rank = 0; oe1->op = gimple_get_lhs (sum); } /* Apply the multiplication/division. */ prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/"); print_generic_expr (dump_file, c->op, 0); fprintf (dump_file, "\n"); } /* Record it in the addition chain and disable further undistribution with this op. */ oe1->op = gimple_assign_lhs (prod); oe1->rank = get_rank (oe1->op); VEC_free (operand_entry_t, heap, subops[first]); changed = true; } VEC_pop (oecount, cvec); } for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i) VEC_free (operand_entry_t, heap, subops[i]); free (subops); VEC_free (oecount, heap, cvec); sbitmap_free (candidates); sbitmap_free (candidates2); return changed; } /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison expression, examine the other OPS to see if any of them are comparisons of the same values, which we may be able to combine or eliminate. For example, we can rewrite (a < b) | (a == b) as (a <= b). */ static bool eliminate_redundant_comparison (enum tree_code opcode, VEC (operand_entry_t, heap) **ops, unsigned int currindex, operand_entry_t curr) { tree op1, op2; enum tree_code lcode, rcode; gimple def1, def2; int i; operand_entry_t oe; if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR) return false; /* Check that CURR is a comparison. */ if (TREE_CODE (curr->op) != SSA_NAME) return false; def1 = SSA_NAME_DEF_STMT (curr->op); if (!is_gimple_assign (def1)) return false; lcode = gimple_assign_rhs_code (def1); if (TREE_CODE_CLASS (lcode) != tcc_comparison) return false; op1 = gimple_assign_rhs1 (def1); op2 = gimple_assign_rhs2 (def1); /* Now look for a similar comparison in the remaining OPS. */ for (i = currindex + 1; VEC_iterate (operand_entry_t, *ops, i, oe); i++) { tree t; if (TREE_CODE (oe->op) != SSA_NAME) continue; def2 = SSA_NAME_DEF_STMT (oe->op); if (!is_gimple_assign (def2)) continue; rcode = gimple_assign_rhs_code (def2); if (TREE_CODE_CLASS (rcode) != tcc_comparison) continue; /* If we got here, we have a match. See if we can combine the two comparisons. */ if (opcode == BIT_IOR_EXPR) t = maybe_fold_or_comparisons (lcode, op1, op2, rcode, gimple_assign_rhs1 (def2), gimple_assign_rhs2 (def2)); else t = maybe_fold_and_comparisons (lcode, op1, op2, rcode, gimple_assign_rhs1 (def2), gimple_assign_rhs2 (def2)); if (!t) continue; /* maybe_fold_and_comparisons and maybe_fold_or_comparisons always give us a boolean_type_node value back. If the original BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type, we need to convert. */ if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t))) t = fold_convert (TREE_TYPE (curr->op), t); if (TREE_CODE (t) != INTEGER_CST && !operand_equal_p (t, curr->op, 0)) { enum tree_code subcode; tree newop1, newop2; if (!COMPARISON_CLASS_P (t)) continue; extract_ops_from_tree (t, &subcode, &newop1, &newop2); STRIP_USELESS_TYPE_CONVERSION (newop1); STRIP_USELESS_TYPE_CONVERSION (newop2); if (!is_gimple_val (newop1) || !is_gimple_val (newop2)) continue; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Equivalence: "); print_generic_expr (dump_file, curr->op, 0); fprintf (dump_file, " %s ", op_symbol_code (opcode)); print_generic_expr (dump_file, oe->op, 0); fprintf (dump_file, " -> "); print_generic_expr (dump_file, t, 0); fprintf (dump_file, "\n"); } /* Now we can delete oe, as it has been subsumed by the new combined expression t. */ VEC_ordered_remove (operand_entry_t, *ops, i); reassociate_stats.ops_eliminated ++; /* If t is the same as curr->op, we're done. Otherwise we must replace curr->op with t. Special case is if we got a constant back, in which case we add it to the end instead of in place of the current entry. */ if (TREE_CODE (t) == INTEGER_CST) { VEC_ordered_remove (operand_entry_t, *ops, currindex); add_to_ops_vec (ops, t); } else if (!operand_equal_p (t, curr->op, 0)) { tree tmpvar; gimple sum; enum tree_code subcode; tree newop1; tree newop2; gcc_assert (COMPARISON_CLASS_P (t)); tmpvar = create_tmp_var (TREE_TYPE (t), NULL); add_referenced_var (tmpvar); extract_ops_from_tree (t, &subcode, &newop1, &newop2); STRIP_USELESS_TYPE_CONVERSION (newop1); STRIP_USELESS_TYPE_CONVERSION (newop2); gcc_checking_assert (is_gimple_val (newop1) && is_gimple_val (newop2)); sum = build_and_add_sum (tmpvar, newop1, newop2, subcode); curr->op = gimple_get_lhs (sum); } return true; } return false; } /* Perform various identities and other optimizations on the list of operand entries, stored in OPS. The tree code for the binary operation between all the operands is OPCODE. */ static void optimize_ops_list (enum tree_code opcode, VEC (operand_entry_t, heap) **ops) { unsigned int length = VEC_length (operand_entry_t, *ops); unsigned int i; operand_entry_t oe; operand_entry_t oelast = NULL; bool iterate = false; if (length == 1) return; oelast = VEC_last (operand_entry_t, *ops); /* If the last two are constants, pop the constants off, merge them and try the next two. */ if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op)) { operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2); if (oelm1->rank == 0 && is_gimple_min_invariant (oelm1->op) && useless_type_conversion_p (TREE_TYPE (oelm1->op), TREE_TYPE (oelast->op))) { tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op), oelm1->op, oelast->op); if (folded && is_gimple_min_invariant (folded)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Merging constants\n"); VEC_pop (operand_entry_t, *ops); VEC_pop (operand_entry_t, *ops); add_to_ops_vec (ops, folded); reassociate_stats.constants_eliminated++; optimize_ops_list (opcode, ops); return; } } } eliminate_using_constants (opcode, ops); oelast = NULL; for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);) { bool done = false; if (eliminate_not_pairs (opcode, ops, i, oe)) return; if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast) || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)) || (!done && eliminate_redundant_comparison (opcode, ops, i, oe))) { if (done) return; iterate = true; oelast = NULL; continue; } oelast = oe; i++; } length = VEC_length (operand_entry_t, *ops); oelast = VEC_last (operand_entry_t, *ops); if (iterate) optimize_ops_list (opcode, ops); } /* The following functions are subroutines to optimize_range_tests and allow it to try to change a logical combination of comparisons into a range test. For example, both X == 2 || X == 5 || X == 3 || X == 4 and X >= 2 && X <= 5 are converted to (unsigned) (X - 2) <= 3 For more information see comments above fold_test_range in fold-const.c, this implementation is for GIMPLE. */ struct range_entry { tree exp; tree low; tree high; bool in_p; bool strict_overflow_p; unsigned int idx, next; }; /* This is similar to make_range in fold-const.c, but on top of GIMPLE instead of trees. */ static void init_range_entry (struct range_entry *r, tree exp) { int in_p; tree low, high; bool is_bool, strict_overflow_p; r->exp = NULL_TREE; r->in_p = false; r->strict_overflow_p = false; r->low = NULL_TREE; r->high = NULL_TREE; if (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))) return; /* Start with simply saying "EXP != 0" and then look at the code of EXP and see if we can refine the range. Some of the cases below may not happen, but it doesn't seem worth worrying about this. We "continue" the outer loop when we've changed something; otherwise we "break" the switch, which will "break" the while. */ low = build_int_cst (TREE_TYPE (exp), 0); high = low; in_p = 0; strict_overflow_p = false; is_bool = false; if (TYPE_PRECISION (TREE_TYPE (exp)) == 1) { if (TYPE_UNSIGNED (TREE_TYPE (exp))) is_bool = true; else return; } else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE) is_bool = true; while (1) { gimple stmt; enum tree_code code; tree arg0, arg1, exp_type; tree nexp; location_t loc; if (TREE_CODE (exp) != SSA_NAME) break; stmt = SSA_NAME_DEF_STMT (exp); if (!is_gimple_assign (stmt)) break; code = gimple_assign_rhs_code (stmt); arg0 = gimple_assign_rhs1 (stmt); if (TREE_CODE (arg0) != SSA_NAME) break; arg1 = gimple_assign_rhs2 (stmt); exp_type = TREE_TYPE (exp); loc = gimple_location (stmt); switch (code) { case BIT_NOT_EXPR: if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE) { in_p = !in_p; exp = arg0; continue; } break; case SSA_NAME: exp = arg0; continue; CASE_CONVERT: if (is_bool) goto do_default; if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1) { if (TYPE_UNSIGNED (TREE_TYPE (arg0))) is_bool = true; else return; } else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE) is_bool = true; goto do_default; case EQ_EXPR: case NE_EXPR: case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR: is_bool = true; /* FALLTHRU */ default: if (!is_bool) return; do_default: nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low, &high, &in_p, &strict_overflow_p); if (nexp != NULL_TREE) { exp = nexp; gcc_assert (TREE_CODE (exp) == SSA_NAME); continue; } break; } break; } if (is_bool) { r->exp = exp; r->in_p = in_p; r->low = low; r->high = high; r->strict_overflow_p = strict_overflow_p; } } /* Comparison function for qsort. Sort entries without SSA_NAME exp first, then with SSA_NAMEs sorted by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs by increasing ->low and if ->low is the same, by increasing ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE maximum. */ static int range_entry_cmp (const void *a, const void *b) { const struct range_entry *p = (const struct range_entry *) a; const struct range_entry *q = (const struct range_entry *) b; if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME) { if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME) { /* Group range_entries for the same SSA_NAME together. */ if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp)) return -1; else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp)) return 1; /* If ->low is different, NULL low goes first, then by ascending low. */ if (p->low != NULL_TREE) { if (q->low != NULL_TREE) { tree tem = fold_binary (LT_EXPR, boolean_type_node, p->low, q->low); if (tem && integer_onep (tem)) return -1; tem = fold_binary (GT_EXPR, boolean_type_node, p->low, q->low); if (tem && integer_onep (tem)) return 1; } else return 1; } else if (q->low != NULL_TREE) return -1; /* If ->high is different, NULL high goes last, before that by ascending high. */ if (p->high != NULL_TREE) { if (q->high != NULL_TREE) { tree tem = fold_binary (LT_EXPR, boolean_type_node, p->high, q->high); if (tem && integer_onep (tem)) return -1; tem = fold_binary (GT_EXPR, boolean_type_node, p->high, q->high); if (tem && integer_onep (tem)) return 1; } else return -1; } else if (p->high != NULL_TREE) return 1; /* If both ranges are the same, sort below by ascending idx. */ } else return 1; } else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME) return -1; if (p->idx < q->idx) return -1; else { gcc_checking_assert (p->idx > q->idx); return 1; } } /* Helper routine of optimize_range_test. [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges, OPCODE and OPS are arguments of optimize_range_tests. Return true if the range merge has been successful. */ static bool update_range_test (struct range_entry *range, struct range_entry *otherrange, unsigned int count, enum tree_code opcode, VEC (operand_entry_t, heap) **ops, tree exp, bool in_p, tree low, tree high, bool strict_overflow_p) { tree op = VEC_index (operand_entry_t, *ops, range->idx)->op; location_t loc = gimple_location (SSA_NAME_DEF_STMT (op)); tree tem = build_range_check (loc, TREE_TYPE (op), exp, in_p, low, high); enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON; gimple_stmt_iterator gsi; if (tem == NULL_TREE) return false; if (strict_overflow_p && issue_strict_overflow_warning (wc)) warning_at (loc, OPT_Wstrict_overflow, "assuming signed overflow does not occur " "when simplifying range test"); if (dump_file && (dump_flags & TDF_DETAILS)) { struct range_entry *r; fprintf (dump_file, "Optimizing range tests "); print_generic_expr (dump_file, range->exp, 0); fprintf (dump_file, " %c[", range->in_p ? '+' : '-'); print_generic_expr (dump_file, range->low, 0); fprintf (dump_file, ", "); print_generic_expr (dump_file, range->high, 0); fprintf (dump_file, "]"); for (r = otherrange; r < otherrange + count; r++) { fprintf (dump_file, " and %c[", r->in_p ? '+' : '-'); print_generic_expr (dump_file, r->low, 0); fprintf (dump_file, ", "); print_generic_expr (dump_file, r->high, 0); fprintf (dump_file, "]"); } fprintf (dump_file, "\n into "); print_generic_expr (dump_file, tem, 0); fprintf (dump_file, "\n"); } if (opcode == BIT_IOR_EXPR) tem = invert_truthvalue_loc (loc, tem); tem = fold_convert_loc (loc, TREE_TYPE (op), tem); gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (op)); tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true, GSI_SAME_STMT); VEC_index (operand_entry_t, *ops, range->idx)->op = tem; range->exp = exp; range->low = low; range->high = high; range->in_p = in_p; range->strict_overflow_p = false; for (range = otherrange; range < otherrange + count; range++) { VEC_index (operand_entry_t, *ops, range->idx)->op = error_mark_node; range->exp = NULL_TREE; } return true; } /* Optimize range tests, similarly how fold_range_test optimizes it on trees. The tree code for the binary operation between all the operands is OPCODE. */ static void optimize_range_tests (enum tree_code opcode, VEC (operand_entry_t, heap) **ops) { unsigned int length = VEC_length (operand_entry_t, *ops), i, j, first; operand_entry_t oe; struct range_entry *ranges; bool any_changes = false; if (length == 1) return; ranges = XNEWVEC (struct range_entry, length); for (i = 0; i < length; i++) { ranges[i].idx = i; init_range_entry (ranges + i, VEC_index (operand_entry_t, *ops, i)->op); /* For | invert it now, we will invert it again before emitting the optimized expression. */ if (opcode == BIT_IOR_EXPR) ranges[i].in_p = !ranges[i].in_p; } qsort (ranges, length, sizeof (*ranges), range_entry_cmp); for (i = 0; i < length; i++) if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME) break; /* Try to merge ranges. */ for (first = i; i < length; i++) { tree low = ranges[i].low; tree high = ranges[i].high; int in_p = ranges[i].in_p; bool strict_overflow_p = ranges[i].strict_overflow_p; int update_fail_count = 0; for (j = i + 1; j < length; j++) { if (ranges[i].exp != ranges[j].exp) break; if (!merge_ranges (&in_p, &low, &high, in_p, low, high, ranges[j].in_p, ranges[j].low, ranges[j].high)) break; strict_overflow_p |= ranges[j].strict_overflow_p; } if (j == i + 1) continue; if (update_range_test (ranges + i, ranges + i + 1, j - i - 1, opcode, ops, ranges[i].exp, in_p, low, high, strict_overflow_p)) { i = j - 1; any_changes = true; } /* Avoid quadratic complexity if all merge_ranges calls would succeed, while update_range_test would fail. */ else if (update_fail_count == 64) i = j - 1; else ++update_fail_count; } /* Optimize X == CST1 || X == CST2 if popcount (CST1 ^ CST2) == 1 into (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)). Similarly for ranges. E.g. X != 2 && X != 3 && X != 10 && X != 11 will be transformed by the above loop into (X - 2U) <= 1U && (X - 10U) <= 1U and this loop can transform that into ((X & ~8) - 2U) <= 1U. */ for (i = first; i < length; i++) { tree lowi, highi, lowj, highj, type, lowxor, highxor, tem, exp; if (ranges[i].exp == NULL_TREE || ranges[i].in_p) continue; type = TREE_TYPE (ranges[i].exp); if (!INTEGRAL_TYPE_P (type)) continue; lowi = ranges[i].low; if (lowi == NULL_TREE) lowi = TYPE_MIN_VALUE (type); highi = ranges[i].high; if (highi == NULL_TREE) continue; for (j = i + 1; j < length && j < i + 64; j++) { if (ranges[j].exp == NULL_TREE) continue; if (ranges[i].exp != ranges[j].exp) break; if (ranges[j].in_p) continue; lowj = ranges[j].low; if (lowj == NULL_TREE) continue; highj = ranges[j].high; if (highj == NULL_TREE) highj = TYPE_MAX_VALUE (type); tem = fold_binary (GT_EXPR, boolean_type_node, lowj, highi); if (tem == NULL_TREE || !integer_onep (tem)) continue; lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj); if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST) continue; gcc_checking_assert (!integer_zerop (lowxor)); tem = fold_binary (MINUS_EXPR, type, lowxor, build_int_cst (type, 1)); if (tem == NULL_TREE) continue; tem = fold_binary (BIT_AND_EXPR, type, lowxor, tem); if (tem == NULL_TREE || !integer_zerop (tem)) continue; highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj); if (!tree_int_cst_equal (lowxor, highxor)) continue; tem = fold_build1 (BIT_NOT_EXPR, type, lowxor); exp = fold_build2 (BIT_AND_EXPR, type, ranges[i].exp, tem); lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem); highj = fold_build2 (BIT_AND_EXPR, type, highi, tem); if (update_range_test (ranges + i, ranges + j, 1, opcode, ops, exp, ranges[i].in_p, lowj, highj, ranges[i].strict_overflow_p || ranges[j].strict_overflow_p)) { any_changes = true; break; } } } if (any_changes) { j = 0; FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe) { if (oe->op == error_mark_node) continue; else if (i != j) VEC_replace (operand_entry_t, *ops, j, oe); j++; } VEC_truncate (operand_entry_t, *ops, j); } XDELETEVEC (ranges); } /* Return true if OPERAND is defined by a PHI node which uses the LHS of STMT in it's operands. This is also known as a "destructive update" operation. */ static bool is_phi_for_stmt (gimple stmt, tree operand) { gimple def_stmt; tree lhs; use_operand_p arg_p; ssa_op_iter i; if (TREE_CODE (operand) != SSA_NAME) return false; lhs = gimple_assign_lhs (stmt); def_stmt = SSA_NAME_DEF_STMT (operand); if (gimple_code (def_stmt) != GIMPLE_PHI) return false; FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE) if (lhs == USE_FROM_PTR (arg_p)) return true; return false; } /* Remove def stmt of VAR if VAR has zero uses and recurse on rhs1 operand if so. */ static void remove_visited_stmt_chain (tree var) { gimple stmt; gimple_stmt_iterator gsi; while (1) { if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var)) return; stmt = SSA_NAME_DEF_STMT (var); if (!is_gimple_assign (stmt) || !gimple_visited_p (stmt)) return; var = gimple_assign_rhs1 (stmt); gsi = gsi_for_stmt (stmt); gsi_remove (&gsi, true); release_defs (stmt); } } /* This function checks three consequtive operands in passed operands vector OPS starting from OPINDEX and swaps two operands if it is profitable for binary operation consuming OPINDEX + 1 abnd OPINDEX + 2 operands. We pair ops with the same rank if possible. The alternative we try is to see if STMT is a destructive update style statement, which is like: b = phi (a, ...) a = c + b; In that case, we want to use the destructive update form to expose the possible vectorizer sum reduction opportunity. In that case, the third operand will be the phi node. This check is not performed if STMT is null. We could, of course, try to be better as noted above, and do a lot of work to try to find these opportunities in >3 operand cases, but it is unlikely to be worth it. */ static void swap_ops_for_binary_stmt (VEC(operand_entry_t, heap) * ops, unsigned int opindex, gimple stmt) { operand_entry_t oe1, oe2, oe3; oe1 = VEC_index (operand_entry_t, ops, opindex); oe2 = VEC_index (operand_entry_t, ops, opindex + 1); oe3 = VEC_index (operand_entry_t, ops, opindex + 2); if ((oe1->rank == oe2->rank && oe2->rank != oe3->rank) || (stmt && is_phi_for_stmt (stmt, oe3->op) && !is_phi_for_stmt (stmt, oe1->op) && !is_phi_for_stmt (stmt, oe2->op))) { struct operand_entry temp = *oe3; oe3->op = oe1->op; oe3->rank = oe1->rank; oe1->op = temp.op; oe1->rank= temp.rank; } else if ((oe1->rank == oe3->rank && oe2->rank != oe3->rank) || (stmt && is_phi_for_stmt (stmt, oe2->op) && !is_phi_for_stmt (stmt, oe1->op) && !is_phi_for_stmt (stmt, oe3->op))) { struct operand_entry temp = *oe2; oe2->op = oe1->op; oe2->rank = oe1->rank; oe1->op = temp.op; oe1->rank= temp.rank; } } /* Recursively rewrite our linearized statements so that the operators match those in OPS[OPINDEX], putting the computation in rank order. */ static void rewrite_expr_tree (gimple stmt, unsigned int opindex, VEC(operand_entry_t, heap) * ops, bool moved) { tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); operand_entry_t oe; /* If we have three operands left, then we want to make sure the ones that get the double binary op are chosen wisely. */ if (opindex + 3 == VEC_length (operand_entry_t, ops)) swap_ops_for_binary_stmt (ops, opindex, stmt); /* The final recursion case for this function is that you have exactly two operations left. If we had one exactly one op in the entire list to start with, we would have never called this function, and the tail recursion rewrites them one at a time. */ if (opindex + 2 == VEC_length (operand_entry_t, ops)) { operand_entry_t oe1, oe2; oe1 = VEC_index (operand_entry_t, ops, opindex); oe2 = VEC_index (operand_entry_t, ops, opindex + 1); if (rhs1 != oe1->op || rhs2 != oe2->op) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Transforming "); print_gimple_stmt (dump_file, stmt, 0, 0); } gimple_assign_set_rhs1 (stmt, oe1->op); gimple_assign_set_rhs2 (stmt, oe2->op); update_stmt (stmt); if (rhs1 != oe1->op && rhs1 != oe2->op) remove_visited_stmt_chain (rhs1); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " into "); print_gimple_stmt (dump_file, stmt, 0, 0); } } return; } /* If we hit here, we should have 3 or more ops left. */ gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops)); /* Rewrite the next operator. */ oe = VEC_index (operand_entry_t, ops, opindex); if (oe->op != rhs2) { if (!moved) { gimple_stmt_iterator gsinow, gsirhs1; gimple stmt1 = stmt, stmt2; unsigned int count; gsinow = gsi_for_stmt (stmt); count = VEC_length (operand_entry_t, ops) - opindex - 2; while (count-- != 0) { stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1)); gsirhs1 = gsi_for_stmt (stmt2); gsi_move_before (&gsirhs1, &gsinow); gsi_prev (&gsinow); stmt1 = stmt2; } moved = true; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Transforming "); print_gimple_stmt (dump_file, stmt, 0, 0); } gimple_assign_set_rhs2 (stmt, oe->op); update_stmt (stmt); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " into "); print_gimple_stmt (dump_file, stmt, 0, 0); } } /* Recurse on the LHS of the binary operator, which is guaranteed to be the non-leaf side. */ rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved); } /* Find out how many cycles we need to compute statements chain. OPS_NUM holds number os statements in a chain. CPU_WIDTH is a maximum number of independent statements we may execute per cycle. */ static int get_required_cycles (int ops_num, int cpu_width) { int res; int elog; unsigned int rest; /* While we have more than 2 * cpu_width operands we may reduce number of operands by cpu_width per cycle. */ res = ops_num / (2 * cpu_width); /* Remained operands count may be reduced twice per cycle until we have only one operand. */ rest = (unsigned)(ops_num - res * cpu_width); elog = exact_log2 (rest); if (elog >= 0) res += elog; else res += floor_log2 (rest) + 1; return res; } /* Returns an optimal number of registers to use for computation of given statements. */ static int get_reassociation_width (int ops_num, enum tree_code opc, enum machine_mode mode) { int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH); int width; int width_min; int cycles_best; if (param_width > 0) width = param_width; else width = targetm.sched.reassociation_width (opc, mode); if (width == 1) return width; /* Get the minimal time required for sequence computation. */ cycles_best = get_required_cycles (ops_num, width); /* Check if we may use less width and still compute sequence for the same time. It will allow us to reduce registers usage. get_required_cycles is monotonically increasing with lower width so we can perform a binary search for the minimal width that still results in the optimal cycle count. */ width_min = 1; while (width > width_min) { int width_mid = (width + width_min) / 2; if (get_required_cycles (ops_num, width_mid) == cycles_best) width = width_mid; else if (width_min < width_mid) width_min = width_mid; else break; } return width; } /* Recursively rewrite our linearized statements so that the operators match those in OPS[OPINDEX], putting the computation in rank order and trying to allow operations to be executed in parallel. */ static void rewrite_expr_tree_parallel (gimple stmt, int width, VEC(operand_entry_t, heap) * ops) { enum tree_code opcode = gimple_assign_rhs_code (stmt); int op_num = VEC_length (operand_entry_t, ops); int stmt_num = op_num - 1; gimple *stmts = XALLOCAVEC (gimple, stmt_num); int op_index = op_num - 1; int stmt_index = 0; int ready_stmts_end = 0; int i = 0; tree last_rhs1 = gimple_assign_rhs1 (stmt); tree lhs_var; /* We start expression rewriting from the top statements. So, in this loop we create a full list of statements we will work with. */ stmts[stmt_num - 1] = stmt; for (i = stmt_num - 2; i >= 0; i--) stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1])); lhs_var = create_tmp_reg (TREE_TYPE (last_rhs1), NULL); add_referenced_var (lhs_var); for (i = 0; i < stmt_num; i++) { tree op1, op2; /* Determine whether we should use results of already handled statements or not. */ if (ready_stmts_end == 0 && (i - stmt_index >= width || op_index < 1)) ready_stmts_end = i; /* Now we choose operands for the next statement. Non zero value in ready_stmts_end means here that we should use the result of already generated statements as new operand. */ if (ready_stmts_end > 0) { op1 = gimple_assign_lhs (stmts[stmt_index++]); if (ready_stmts_end > stmt_index) op2 = gimple_assign_lhs (stmts[stmt_index++]); else if (op_index >= 0) op2 = VEC_index (operand_entry_t, ops, op_index--)->op; else { gcc_assert (stmt_index < i); op2 = gimple_assign_lhs (stmts[stmt_index++]); } if (stmt_index >= ready_stmts_end) ready_stmts_end = 0; } else { if (op_index > 1) swap_ops_for_binary_stmt (ops, op_index - 2, NULL); op2 = VEC_index (operand_entry_t, ops, op_index--)->op; op1 = VEC_index (operand_entry_t, ops, op_index--)->op; } /* If we emit the last statement then we should put operands into the last statement. It will also break the loop. */ if (op_index < 0 && stmt_index == i) i = stmt_num - 1; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Transforming "); print_gimple_stmt (dump_file, stmts[i], 0, 0); } /* We keep original statement only for the last one. All others are recreated. */ if (i == stmt_num - 1) { gimple_assign_set_rhs1 (stmts[i], op1); gimple_assign_set_rhs2 (stmts[i], op2); update_stmt (stmts[i]); } else stmts[i] = build_and_add_sum (lhs_var, op1, op2, opcode); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " into "); print_gimple_stmt (dump_file, stmts[i], 0, 0); } } remove_visited_stmt_chain (last_rhs1); } /* Transform STMT, which is really (A +B) + (C + D) into the left linear form, ((A+B)+C)+D. Recurse on D if necessary. */ static void linearize_expr (gimple stmt) { gimple_stmt_iterator gsinow, gsirhs; gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt)); enum tree_code rhscode = gimple_assign_rhs_code (stmt); gimple newbinrhs = NULL; struct loop *loop = loop_containing_stmt (stmt); gcc_assert (is_reassociable_op (binlhs, rhscode, loop) && is_reassociable_op (binrhs, rhscode, loop)); gsinow = gsi_for_stmt (stmt); gsirhs = gsi_for_stmt (binrhs); gsi_move_before (&gsirhs, &gsinow); gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs)); gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs)); gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs)); if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME) newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Linearized: "); print_gimple_stmt (dump_file, stmt, 0, 0); } reassociate_stats.linearized++; update_stmt (binrhs); update_stmt (binlhs); update_stmt (stmt); gimple_set_visited (stmt, true); gimple_set_visited (binlhs, true); gimple_set_visited (binrhs, true); /* Tail recurse on the new rhs if it still needs reassociation. */ if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop)) /* ??? This should probably be linearize_expr (newbinrhs) but I don't want to change the algorithm while converting to tuples. */ linearize_expr (stmt); } /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return it. Otherwise, return NULL. */ static gimple get_single_immediate_use (tree lhs) { use_operand_p immuse; gimple immusestmt; if (TREE_CODE (lhs) == SSA_NAME && single_imm_use (lhs, &immuse, &immusestmt) && is_gimple_assign (immusestmt)) return immusestmt; return NULL; } /* Recursively negate the value of TONEGATE, and return the SSA_NAME representing the negated value. Insertions of any necessary instructions go before GSI. This function is recursive in that, if you hand it "a_5" as the value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will transform b_3 + b_4 into a_5 = -b_3 + -b_4. */ static tree negate_value (tree tonegate, gimple_stmt_iterator *gsi) { gimple negatedefstmt= NULL; tree resultofnegate; /* If we are trying to negate a name, defined by an add, negate the add operands instead. */ if (TREE_CODE (tonegate) == SSA_NAME) negatedefstmt = SSA_NAME_DEF_STMT (tonegate); if (TREE_CODE (tonegate) == SSA_NAME && is_gimple_assign (negatedefstmt) && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME && has_single_use (gimple_assign_lhs (negatedefstmt)) && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR) { gimple_stmt_iterator gsi; tree rhs1 = gimple_assign_rhs1 (negatedefstmt); tree rhs2 = gimple_assign_rhs2 (negatedefstmt); gsi = gsi_for_stmt (negatedefstmt); rhs1 = negate_value (rhs1, &gsi); gimple_assign_set_rhs1 (negatedefstmt, rhs1); gsi = gsi_for_stmt (negatedefstmt); rhs2 = negate_value (rhs2, &gsi); gimple_assign_set_rhs2 (negatedefstmt, rhs2); update_stmt (negatedefstmt); return gimple_assign_lhs (negatedefstmt); } tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate); resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true, NULL_TREE, true, GSI_SAME_STMT); return resultofnegate; } /* Return true if we should break up the subtract in STMT into an add with negate. This is true when we the subtract operands are really adds, or the subtract itself is used in an add expression. In either case, breaking up the subtract into an add with negate exposes the adds to reassociation. */ static bool should_break_up_subtract (gimple stmt) { tree lhs = gimple_assign_lhs (stmt); tree binlhs = gimple_assign_rhs1 (stmt); tree binrhs = gimple_assign_rhs2 (stmt); gimple immusestmt; struct loop *loop = loop_containing_stmt (stmt); if (TREE_CODE (binlhs) == SSA_NAME && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop)) return true; if (TREE_CODE (binrhs) == SSA_NAME && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop)) return true; if (TREE_CODE (lhs) == SSA_NAME && (immusestmt = get_single_immediate_use (lhs)) && is_gimple_assign (immusestmt) && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR || gimple_assign_rhs_code (immusestmt) == MULT_EXPR)) return true; return false; } /* Transform STMT from A - B into A + -B. */ static void break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip) { tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Breaking up subtract "); print_gimple_stmt (dump_file, stmt, 0, 0); } rhs2 = negate_value (rhs2, gsip); gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2); update_stmt (stmt); } /* Recursively linearize a binary expression that is the RHS of STMT. Place the operands of the expression tree in the vector named OPS. */ static void linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt, bool is_associative, bool set_visited) { tree binlhs = gimple_assign_rhs1 (stmt); tree binrhs = gimple_assign_rhs2 (stmt); gimple binlhsdef, binrhsdef; bool binlhsisreassoc = false; bool binrhsisreassoc = false; enum tree_code rhscode = gimple_assign_rhs_code (stmt); struct loop *loop = loop_containing_stmt (stmt); if (set_visited) gimple_set_visited (stmt, true); if (TREE_CODE (binlhs) == SSA_NAME) { binlhsdef = SSA_NAME_DEF_STMT (binlhs); binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop) && !stmt_could_throw_p (binlhsdef)); } if (TREE_CODE (binrhs) == SSA_NAME) { binrhsdef = SSA_NAME_DEF_STMT (binrhs); binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop) && !stmt_could_throw_p (binrhsdef)); } /* If the LHS is not reassociable, but the RHS is, we need to swap them. If neither is reassociable, there is nothing we can do, so just put them in the ops vector. If the LHS is reassociable, linearize it. If both are reassociable, then linearize the RHS and the LHS. */ if (!binlhsisreassoc) { tree temp; /* If this is not a associative operation like division, give up. */ if (!is_associative) { add_to_ops_vec (ops, binrhs); return; } if (!binrhsisreassoc) { add_to_ops_vec (ops, binrhs); add_to_ops_vec (ops, binlhs); return; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "swapping operands of "); print_gimple_stmt (dump_file, stmt, 0, 0); } swap_tree_operands (stmt, gimple_assign_rhs1_ptr (stmt), gimple_assign_rhs2_ptr (stmt)); update_stmt (stmt); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " is now "); print_gimple_stmt (dump_file, stmt, 0, 0); } /* We want to make it so the lhs is always the reassociative op, so swap. */ temp = binlhs; binlhs = binrhs; binrhs = temp; } else if (binrhsisreassoc) { linearize_expr (stmt); binlhs = gimple_assign_rhs1 (stmt); binrhs = gimple_assign_rhs2 (stmt); } gcc_assert (TREE_CODE (binrhs) != SSA_NAME || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), rhscode, loop)); linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs), is_associative, set_visited); add_to_ops_vec (ops, binrhs); } /* Repropagate the negates back into subtracts, since no other pass currently does it. */ static void repropagate_negates (void) { unsigned int i = 0; tree negate; FOR_EACH_VEC_ELT (tree, plus_negates, i, negate) { gimple user = get_single_immediate_use (negate); if (!user || !is_gimple_assign (user)) continue; /* The negate operand can be either operand of a PLUS_EXPR (it can be the LHS if the RHS is a constant for example). Force the negate operand to the RHS of the PLUS_EXPR, then transform the PLUS_EXPR into a MINUS_EXPR. */ if (gimple_assign_rhs_code (user) == PLUS_EXPR) { /* If the negated operand appears on the LHS of the PLUS_EXPR, exchange the operands of the PLUS_EXPR to force the negated operand to the RHS of the PLUS_EXPR. */ if (gimple_assign_rhs1 (user) == negate) { swap_tree_operands (user, gimple_assign_rhs1_ptr (user), gimple_assign_rhs2_ptr (user)); } /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */ if (gimple_assign_rhs2 (user) == negate) { tree rhs1 = gimple_assign_rhs1 (user); tree rhs2 = get_unary_op (negate, NEGATE_EXPR); gimple_stmt_iterator gsi = gsi_for_stmt (user); gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2); update_stmt (user); } } else if (gimple_assign_rhs_code (user) == MINUS_EXPR) { if (gimple_assign_rhs1 (user) == negate) { /* We have x = -a y = x - b which we transform into x = a + b y = -x . This pushes down the negate which we possibly can merge into some other operation, hence insert it into the plus_negates vector. */ gimple feed = SSA_NAME_DEF_STMT (negate); tree a = gimple_assign_rhs1 (feed); tree rhs2 = gimple_assign_rhs2 (user); gimple_stmt_iterator gsi = gsi_for_stmt (feed), gsi2; gimple_replace_lhs (feed, negate); gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, a, rhs2); update_stmt (gsi_stmt (gsi)); gsi2 = gsi_for_stmt (user); gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, negate, NULL); update_stmt (gsi_stmt (gsi2)); gsi_move_before (&gsi, &gsi2); VEC_safe_push (tree, heap, plus_negates, gimple_assign_lhs (gsi_stmt (gsi2))); } else { /* Transform "x = -a; y = b - x" into "y = b + a", getting rid of one operation. */ gimple feed = SSA_NAME_DEF_STMT (negate); tree a = gimple_assign_rhs1 (feed); tree rhs1 = gimple_assign_rhs1 (user); gimple_stmt_iterator gsi = gsi_for_stmt (user); gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a); update_stmt (gsi_stmt (gsi)); } } } } /* Returns true if OP is of a type for which we can do reassociation. That is for integral or non-saturating fixed-point types, and for floating point type when associative-math is enabled. */ static bool can_reassociate_p (tree op) { tree type = TREE_TYPE (op); if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)) || NON_SAT_FIXED_POINT_TYPE_P (type) || (flag_associative_math && FLOAT_TYPE_P (type))) return true; return false; } /* Break up subtract operations in block BB. We do this top down because we don't know whether the subtract is part of a possible chain of reassociation except at the top. IE given d = f + g c = a + e b = c - d q = b - r k = t - q we want to break up k = t - q, but we won't until we've transformed q = b - r, which won't be broken up until we transform b = c - d. En passant, clear the GIMPLE visited flag on every statement. */ static void break_up_subtract_bb (basic_block bb) { gimple_stmt_iterator gsi; basic_block son; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); gimple_set_visited (stmt, false); if (!is_gimple_assign (stmt) || !can_reassociate_p (gimple_assign_lhs (stmt))) continue; /* Look for simple gimple subtract operations. */ if (gimple_assign_rhs_code (stmt) == MINUS_EXPR) { if (!can_reassociate_p (gimple_assign_rhs1 (stmt)) || !can_reassociate_p (gimple_assign_rhs2 (stmt))) continue; /* Check for a subtract used only in an addition. If this is the case, transform it into add of a negate for better reassociation. IE transform C = A-B into C = A + -B if C is only used in an addition. */ if (should_break_up_subtract (stmt)) break_up_subtract (stmt, &gsi); } else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR && can_reassociate_p (gimple_assign_rhs1 (stmt))) VEC_safe_push (tree, heap, plus_negates, gimple_assign_lhs (stmt)); } for (son = first_dom_son (CDI_DOMINATORS, bb); son; son = next_dom_son (CDI_DOMINATORS, son)) break_up_subtract_bb (son); } /* Reassociate expressions in basic block BB and its post-dominator as children. */ static void reassociate_bb (basic_block bb) { gimple_stmt_iterator gsi; basic_block son; for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) { gimple stmt = gsi_stmt (gsi); if (is_gimple_assign (stmt) && !stmt_could_throw_p (stmt)) { tree lhs, rhs1, rhs2; enum tree_code rhs_code = gimple_assign_rhs_code (stmt); /* If this is not a gimple binary expression, there is nothing for us to do with it. */ if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS) continue; /* If this was part of an already processed statement, we don't need to touch it again. */ if (gimple_visited_p (stmt)) { /* This statement might have become dead because of previous reassociations. */ if (has_zero_uses (gimple_get_lhs (stmt))) { gsi_remove (&gsi, true); release_defs (stmt); /* We might end up removing the last stmt above which places the iterator to the end of the sequence. Reset it to the last stmt in this case which might be the end of the sequence as well if we removed the last statement of the sequence. In which case we need to bail out. */ if (gsi_end_p (gsi)) { gsi = gsi_last_bb (bb); if (gsi_end_p (gsi)) break; } } continue; } lhs = gimple_assign_lhs (stmt); rhs1 = gimple_assign_rhs1 (stmt); rhs2 = gimple_assign_rhs2 (stmt); /* For non-bit or min/max operations we can't associate all types. Verify that here. */ if (rhs_code != BIT_IOR_EXPR && rhs_code != BIT_AND_EXPR && rhs_code != BIT_XOR_EXPR && rhs_code != MIN_EXPR && rhs_code != MAX_EXPR && (!can_reassociate_p (lhs) || !can_reassociate_p (rhs1) || !can_reassociate_p (rhs2))) continue; if (associative_tree_code (rhs_code)) { VEC(operand_entry_t, heap) *ops = NULL; /* There may be no immediate uses left by the time we get here because we may have eliminated them all. */ if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs)) continue; gimple_set_visited (stmt, true); linearize_expr_tree (&ops, stmt, true, true); VEC_qsort (operand_entry_t, ops, sort_by_operand_rank); optimize_ops_list (rhs_code, &ops); if (undistribute_ops_list (rhs_code, &ops, loop_containing_stmt (stmt))) { VEC_qsort (operand_entry_t, ops, sort_by_operand_rank); optimize_ops_list (rhs_code, &ops); } if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR) optimize_range_tests (rhs_code, &ops); if (VEC_length (operand_entry_t, ops) == 1) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Transforming "); print_gimple_stmt (dump_file, stmt, 0, 0); } rhs1 = gimple_assign_rhs1 (stmt); gimple_assign_set_rhs_from_tree (&gsi, VEC_last (operand_entry_t, ops)->op); update_stmt (stmt); remove_visited_stmt_chain (rhs1); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " into "); print_gimple_stmt (dump_file, stmt, 0, 0); } } else { enum machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); int ops_num = VEC_length (operand_entry_t, ops); int width = get_reassociation_width (ops_num, rhs_code, mode); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Width = %d was chosen for reassociation\n", width); if (width > 1 && VEC_length (operand_entry_t, ops) > 3) rewrite_expr_tree_parallel (stmt, width, ops); else rewrite_expr_tree (stmt, 0, ops, false); } VEC_free (operand_entry_t, heap, ops); } } } for (son = first_dom_son (CDI_POST_DOMINATORS, bb); son; son = next_dom_son (CDI_POST_DOMINATORS, son)) reassociate_bb (son); } void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops); void debug_ops_vector (VEC (operand_entry_t, heap) *ops); /* Dump the operand entry vector OPS to FILE. */ void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops) { operand_entry_t oe; unsigned int i; FOR_EACH_VEC_ELT (operand_entry_t, ops, i, oe) { fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank); print_generic_expr (file, oe->op, 0); } } /* Dump the operand entry vector OPS to STDERR. */ DEBUG_FUNCTION void debug_ops_vector (VEC (operand_entry_t, heap) *ops) { dump_ops_vector (stderr, ops); } static void do_reassoc (void) { break_up_subtract_bb (ENTRY_BLOCK_PTR); reassociate_bb (EXIT_BLOCK_PTR); } /* Initialize the reassociation pass. */ static void init_reassoc (void) { int i; long rank = 2; tree param; int *bbs = XNEWVEC (int, last_basic_block + 1); /* Find the loops, so that we can prevent moving calculations in them. */ loop_optimizer_init (AVOID_CFG_MODIFICATIONS); memset (&reassociate_stats, 0, sizeof (reassociate_stats)); operand_entry_pool = create_alloc_pool ("operand entry pool", sizeof (struct operand_entry), 30); next_operand_entry_id = 0; /* Reverse RPO (Reverse Post Order) will give us something where deeper loops come later. */ pre_and_rev_post_order_compute (NULL, bbs, false); bb_rank = XCNEWVEC (long, last_basic_block + 1); operand_rank = pointer_map_create (); /* Give each argument a distinct rank. */ for (param = DECL_ARGUMENTS (current_function_decl); param; param = DECL_CHAIN (param)) { if (gimple_default_def (cfun, param) != NULL) { tree def = gimple_default_def (cfun, param); insert_operand_rank (def, ++rank); } } /* Give the chain decl a distinct rank. */ if (cfun->static_chain_decl != NULL) { tree def = gimple_default_def (cfun, cfun->static_chain_decl); if (def != NULL) insert_operand_rank (def, ++rank); } /* Set up rank for each BB */ for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++) bb_rank[bbs[i]] = ++rank << 16; free (bbs); calculate_dominance_info (CDI_POST_DOMINATORS); plus_negates = NULL; } /* Cleanup after the reassociation pass, and print stats if requested. */ static void fini_reassoc (void) { statistics_counter_event (cfun, "Linearized", reassociate_stats.linearized); statistics_counter_event (cfun, "Constants eliminated", reassociate_stats.constants_eliminated); statistics_counter_event (cfun, "Ops eliminated", reassociate_stats.ops_eliminated); statistics_counter_event (cfun, "Statements rewritten", reassociate_stats.rewritten); pointer_map_destroy (operand_rank); free_alloc_pool (operand_entry_pool); free (bb_rank); VEC_free (tree, heap, plus_negates); free_dominance_info (CDI_POST_DOMINATORS); loop_optimizer_finalize (); } /* Gate and execute functions for Reassociation. */ static unsigned int execute_reassoc (void) { init_reassoc (); do_reassoc (); repropagate_negates (); fini_reassoc (); return 0; } static bool gate_tree_ssa_reassoc (void) { return flag_tree_reassoc != 0; } struct gimple_opt_pass pass_reassoc = { { GIMPLE_PASS, "reassoc", /* name */ gate_tree_ssa_reassoc, /* gate */ execute_reassoc, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_REASSOC, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_verify_ssa | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */ } };
Go to most recent revision | Compare with Previous | Blame | View Log