URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [expm1q.c] - Rev 847
Go to most recent revision | Compare with Previous | Blame | View Log
/* expm1l.c * * Exponential function, minus 1 * 128-bit __float128 precision * * * * SYNOPSIS: * * __float128 x, y, expm1l(); * * y = expm1l( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power, minus one. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35 * */ /* Copyright 2001 by Stephen L. Moshier This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "quadmath-imp.h" /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) -.5 ln 2 < x < .5 ln 2 Theoretical peak relative error = 8.1e-36 */ static const __float128 P0 = 2.943520915569954073888921213330863757240E8Q, P1 = -5.722847283900608941516165725053359168840E7Q, P2 = 8.944630806357575461578107295909719817253E6Q, P3 = -7.212432713558031519943281748462837065308E5Q, P4 = 4.578962475841642634225390068461943438441E4Q, P5 = -1.716772506388927649032068540558788106762E3Q, P6 = 4.401308817383362136048032038528753151144E1Q, P7 = -4.888737542888633647784737721812546636240E-1Q, Q0 = 1.766112549341972444333352727998584753865E9Q, Q1 = -7.848989743695296475743081255027098295771E8Q, Q2 = 1.615869009634292424463780387327037251069E8Q, Q3 = -2.019684072836541751428967854947019415698E7Q, Q4 = 1.682912729190313538934190635536631941751E6Q, Q5 = -9.615511549171441430850103489315371768998E4Q, Q6 = 3.697714952261803935521187272204485251835E3Q, Q7 = -8.802340681794263968892934703309274564037E1Q, /* Q8 = 1.000000000000000000000000000000000000000E0 */ /* C1 + C2 = ln 2 */ C1 = 6.93145751953125E-1Q, C2 = 1.428606820309417232121458176568075500134E-6Q, /* ln (2^16384 * (1 - 2^-113)) */ maxlog = 1.1356523406294143949491931077970764891253E4Q, /* ln 2^-114 */ minarg = -7.9018778583833765273564461846232128760607E1Q; __float128 expm1q (__float128 x) { __float128 px, qx, xx; int32_t ix, sign; ieee854_float128 u; int k; /* Detect infinity and NaN. */ u.value = x; ix = u.words32.w0; sign = ix & 0x80000000; ix &= 0x7fffffff; if (ix >= 0x7fff0000) { /* Infinity. */ if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) { if (sign) return -1.0Q; else return x; } /* NaN. No invalid exception. */ return x; } /* expm1(+- 0) = +- 0. */ if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) return x; /* Overflow. */ if (x > maxlog) return (HUGE_VALQ * HUGE_VALQ); /* Minimum value. */ if (x < minarg) return (4.0/HUGE_VALQ - 1.0Q); /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ xx = C1 + C2; /* ln 2. */ px = floorq (0.5 + x / xx); k = px; /* remainder times ln 2 */ x -= px * C1; x -= px * C2; /* Approximate exp(remainder ln 2). */ px = (((((((P7 * x + P6) * x + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x; qx = (((((((x + Q7) * x + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; xx = x * x; qx = x + (0.5 * xx + xx * px / qx); /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). We have qx = exp(remainder ln 2) - 1, so exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ px = ldexpq (1.0Q, k); x = px * qx + (px - 1.0); return x; }
Go to most recent revision | Compare with Previous | Blame | View Log