URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [sim/] [d10v/] [simops.c] - Rev 842
Compare with Previous | Blame | View Log
#include "config.h" #include <signal.h> #include <errno.h> #include <sys/types.h> #include <sys/stat.h> #ifdef HAVE_UNISTD_H #include <unistd.h> #endif #ifdef HAVE_STRING_H #include <string.h> #endif #include "d10v_sim.h" #include "simops.h" #include "targ-vals.h" extern char *strrchr (); enum op_types { OP_VOID, OP_REG, OP_REG_OUTPUT, OP_DREG, OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM_OUTPUT, OP_ACCUM_REVERSE, OP_CR, OP_CR_OUTPUT, OP_CR_REVERSE, OP_FLAG, OP_FLAG_OUTPUT, OP_CONSTANT16, OP_CONSTANT8, OP_CONSTANT3, OP_CONSTANT4, OP_MEMREF, OP_MEMREF2, OP_MEMREF3, OP_POSTDEC, OP_POSTINC, OP_PREDEC, OP_R0, OP_R1, OP_R2, }; enum { PSW_MASK = (PSW_SM_BIT | PSW_EA_BIT | PSW_DB_BIT | PSW_IE_BIT | PSW_RP_BIT | PSW_MD_BIT | PSW_FX_BIT | PSW_ST_BIT | PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT), /* The following bits in the PSW _can't_ be set by instructions such as mvtc. */ PSW_HW_MASK = (PSW_MASK | PSW_DM_BIT) }; reg_t move_to_cr (int cr, reg_t mask, reg_t val, int psw_hw_p) { /* A MASK bit is set when the corresponding bit in the CR should be left alone */ /* This assumes that (VAL & MASK) == 0 */ switch (cr) { case PSW_CR: if (psw_hw_p) val &= PSW_HW_MASK; else val &= PSW_MASK; if ((mask & PSW_SM_BIT) == 0) { int new_psw_sm = (val & PSW_SM_BIT) != 0; /* save old SP */ SET_HELD_SP (PSW_SM, GPR (SP_IDX)); if (PSW_SM != new_psw_sm) /* restore new SP */ SET_GPR (SP_IDX, HELD_SP (new_psw_sm)); } if ((mask & (PSW_ST_BIT | PSW_FX_BIT)) == 0) { if (val & PSW_ST_BIT && !(val & PSW_FX_BIT)) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR at PC 0x%x: ST can only be set when FX is set.\n", PC<<2); State.exception = SIGILL; } } /* keep an up-to-date psw around for tracing */ State.trace.psw = (State.trace.psw & mask) | val; break; case BPSW_CR: case DPSW_CR: /* Just like PSW, mask things like DM out. */ if (psw_hw_p) val &= PSW_HW_MASK; else val &= PSW_MASK; break; case MOD_S_CR: case MOD_E_CR: val &= ~1; break; default: break; } /* only issue an update if the register is being changed */ if ((State.cregs[cr] & ~mask) != val) SLOT_PEND_MASK (State.cregs[cr], mask, val); return val; } #ifdef DEBUG static void trace_input_func PARAMS ((char *name, enum op_types in1, enum op_types in2, enum op_types in3)); #define trace_input(name, in1, in2, in3) do { if (d10v_debug) trace_input_func (name, in1, in2, in3); } while (0) #ifndef SIZE_INSTRUCTION #define SIZE_INSTRUCTION 8 #endif #ifndef SIZE_OPERANDS #define SIZE_OPERANDS 18 #endif #ifndef SIZE_VALUES #define SIZE_VALUES 13 #endif #ifndef SIZE_LOCATION #define SIZE_LOCATION 20 #endif #ifndef SIZE_PC #define SIZE_PC 6 #endif #ifndef SIZE_LINE_NUMBER #define SIZE_LINE_NUMBER 4 #endif static void trace_input_func (name, in1, in2, in3) char *name; enum op_types in1; enum op_types in2; enum op_types in3; { char *comma; enum op_types in[3]; int i; char buf[1024]; char *p; long tmp; char *type; const char *filename; const char *functionname; unsigned int linenumber; bfd_vma byte_pc; if ((d10v_debug & DEBUG_TRACE) == 0) return; switch (State.ins_type) { default: case INS_UNKNOWN: type = " ?"; break; case INS_LEFT: type = " L"; break; case INS_RIGHT: type = " R"; break; case INS_LEFT_PARALLEL: type = "*L"; break; case INS_RIGHT_PARALLEL: type = "*R"; break; case INS_LEFT_COND_TEST: type = "?L"; break; case INS_RIGHT_COND_TEST: type = "?R"; break; case INS_LEFT_COND_EXE: type = "&L"; break; case INS_RIGHT_COND_EXE: type = "&R"; break; case INS_LONG: type = " B"; break; } if ((d10v_debug & DEBUG_LINE_NUMBER) == 0) (*d10v_callback->printf_filtered) (d10v_callback, "0x%.*x %s: %-*s ", SIZE_PC, (unsigned)PC, type, SIZE_INSTRUCTION, name); else { buf[0] = '\0'; byte_pc = decode_pc (); if (text && byte_pc >= text_start && byte_pc < text_end) { filename = (const char *)0; functionname = (const char *)0; linenumber = 0; if (bfd_find_nearest_line (prog_bfd, text, (struct bfd_symbol **)0, byte_pc - text_start, &filename, &functionname, &linenumber)) { p = buf; if (linenumber) { sprintf (p, "#%-*d ", SIZE_LINE_NUMBER, linenumber); p += strlen (p); } else { sprintf (p, "%-*s ", SIZE_LINE_NUMBER+1, "---"); p += SIZE_LINE_NUMBER+2; } if (functionname) { sprintf (p, "%s ", functionname); p += strlen (p); } else if (filename) { char *q = strrchr (filename, '/'); sprintf (p, "%s ", (q) ? q+1 : filename); p += strlen (p); } if (*p == ' ') *p = '\0'; } } (*d10v_callback->printf_filtered) (d10v_callback, "0x%.*x %s: %-*.*s %-*s ", SIZE_PC, (unsigned)PC, type, SIZE_LOCATION, SIZE_LOCATION, buf, SIZE_INSTRUCTION, name); } in[0] = in1; in[1] = in2; in[2] = in3; comma = ""; p = buf; for (i = 0; i < 3; i++) { switch (in[i]) { case OP_VOID: case OP_R0: case OP_R1: case OP_R2: break; case OP_REG: case OP_REG_OUTPUT: case OP_DREG: case OP_DREG_OUTPUT: sprintf (p, "%sr%d", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_CR: case OP_CR_OUTPUT: case OP_CR_REVERSE: sprintf (p, "%scr%d", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_ACCUM: case OP_ACCUM_OUTPUT: case OP_ACCUM_REVERSE: sprintf (p, "%sa%d", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_CONSTANT16: sprintf (p, "%s%d", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_CONSTANT8: sprintf (p, "%s%d", comma, SEXT8(OP[i])); p += strlen (p); comma = ","; break; case OP_CONSTANT4: sprintf (p, "%s%d", comma, SEXT4(OP[i])); p += strlen (p); comma = ","; break; case OP_CONSTANT3: sprintf (p, "%s%d", comma, SEXT3(OP[i])); p += strlen (p); comma = ","; break; case OP_MEMREF: sprintf (p, "%s@r%d", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_MEMREF2: sprintf (p, "%s@(%d,r%d)", comma, (int16)OP[i], OP[i+1]); p += strlen (p); comma = ","; break; case OP_MEMREF3: sprintf (p, "%s@%d", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_POSTINC: sprintf (p, "%s@r%d+", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_POSTDEC: sprintf (p, "%s@r%d-", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_PREDEC: sprintf (p, "%s@-r%d", comma, OP[i]); p += strlen (p); comma = ","; break; case OP_FLAG: case OP_FLAG_OUTPUT: if (OP[i] == 0) sprintf (p, "%sf0", comma); else if (OP[i] == 1) sprintf (p, "%sf1", comma); else sprintf (p, "%sc", comma); p += strlen (p); comma = ","; break; } } if ((d10v_debug & DEBUG_VALUES) == 0) { *p++ = '\n'; *p = '\0'; (*d10v_callback->printf_filtered) (d10v_callback, "%s", buf); } else { *p = '\0'; (*d10v_callback->printf_filtered) (d10v_callback, "%-*s", SIZE_OPERANDS, buf); p = buf; for (i = 0; i < 3; i++) { buf[0] = '\0'; switch (in[i]) { case OP_VOID: (*d10v_callback->printf_filtered) (d10v_callback, "%*s", SIZE_VALUES, ""); break; case OP_REG_OUTPUT: case OP_DREG_OUTPUT: case OP_CR_OUTPUT: case OP_ACCUM_OUTPUT: case OP_FLAG_OUTPUT: (*d10v_callback->printf_filtered) (d10v_callback, "%*s", SIZE_VALUES, "---"); break; case OP_REG: case OP_MEMREF: case OP_POSTDEC: case OP_POSTINC: case OP_PREDEC: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16) GPR (OP[i])); break; case OP_MEMREF3: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16) OP[i]); break; case OP_DREG: tmp = (long)((((uint32) GPR (OP[i])) << 16) | ((uint32) GPR (OP[i] + 1))); (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.8lx", SIZE_VALUES-10, "", tmp); break; case OP_CR: case OP_CR_REVERSE: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16) CREG (OP[i])); break; case OP_ACCUM: case OP_ACCUM_REVERSE: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.2x%.8lx", SIZE_VALUES-12, "", ((int)(ACC (OP[i]) >> 32) & 0xff), ((unsigned long) ACC (OP[i])) & 0xffffffff); break; case OP_CONSTANT16: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16)OP[i]); break; case OP_CONSTANT4: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16)SEXT4(OP[i])); break; case OP_CONSTANT8: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16)SEXT8(OP[i])); break; case OP_CONSTANT3: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16)SEXT3(OP[i])); break; case OP_FLAG: if (OP[i] == 0) (*d10v_callback->printf_filtered) (d10v_callback, "%*sF0 = %d", SIZE_VALUES-6, "", PSW_F0 != 0); else if (OP[i] == 1) (*d10v_callback->printf_filtered) (d10v_callback, "%*sF1 = %d", SIZE_VALUES-6, "", PSW_F1 != 0); else (*d10v_callback->printf_filtered) (d10v_callback, "%*sC = %d", SIZE_VALUES-5, "", PSW_C != 0); break; case OP_MEMREF2: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16)OP[i]); (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16)GPR (OP[i + 1])); i++; break; case OP_R0: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16) GPR (0)); break; case OP_R1: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16) GPR (1)); break; case OP_R2: (*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "", (uint16) GPR (2)); break; } } } (*d10v_callback->flush_stdout) (d10v_callback); } static void do_trace_output_flush (void) { (*d10v_callback->flush_stdout) (d10v_callback); } static void do_trace_output_finish (void) { (*d10v_callback->printf_filtered) (d10v_callback, " F0=%d F1=%d C=%d\n", (State.trace.psw & PSW_F0_BIT) != 0, (State.trace.psw & PSW_F1_BIT) != 0, (State.trace.psw & PSW_C_BIT) != 0); (*d10v_callback->flush_stdout) (d10v_callback); } static void trace_output_40 (uint64 val) { if ((d10v_debug & (DEBUG_TRACE | DEBUG_VALUES)) == (DEBUG_TRACE | DEBUG_VALUES)) { (*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.2x%.8lx", SIZE_VALUES - 12, "", ((int)(val >> 32) & 0xff), ((unsigned long) val) & 0xffffffff); do_trace_output_finish (); } } static void trace_output_32 (uint32 val) { if ((d10v_debug & (DEBUG_TRACE | DEBUG_VALUES)) == (DEBUG_TRACE | DEBUG_VALUES)) { (*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.8x", SIZE_VALUES - 10, "", (int) val); do_trace_output_finish (); } } static void trace_output_16 (uint16 val) { if ((d10v_debug & (DEBUG_TRACE | DEBUG_VALUES)) == (DEBUG_TRACE | DEBUG_VALUES)) { (*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.4x", SIZE_VALUES - 6, "", (int) val); do_trace_output_finish (); } } static void trace_output_void () { if ((d10v_debug & (DEBUG_TRACE | DEBUG_VALUES)) == (DEBUG_TRACE | DEBUG_VALUES)) { (*d10v_callback->printf_filtered) (d10v_callback, "\n"); do_trace_output_flush (); } } static void trace_output_flag () { if ((d10v_debug & (DEBUG_TRACE | DEBUG_VALUES)) == (DEBUG_TRACE | DEBUG_VALUES)) { (*d10v_callback->printf_filtered) (d10v_callback, " :: %*s", SIZE_VALUES, ""); do_trace_output_finish (); } } #else #define trace_input(NAME, IN1, IN2, IN3) #define trace_output(RESULT) #endif /* abs */ void OP_4607 () { int16 tmp; trace_input ("abs", OP_REG, OP_VOID, OP_VOID); SET_PSW_F1 (PSW_F0); tmp = GPR(OP[0]); if (tmp < 0) { tmp = - tmp; SET_PSW_F0 (1); } else SET_PSW_F0 (0); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* abs */ void OP_5607 () { int64 tmp; trace_input ("abs", OP_ACCUM, OP_VOID, OP_VOID); SET_PSW_F1 (PSW_F0); tmp = SEXT40 (ACC (OP[0])); if (tmp < 0 ) { tmp = - tmp; if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_PSW_F0 (1); } else { tmp = (tmp & MASK40); SET_PSW_F0 (0); } SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* add */ void OP_200 () { uint16 a = GPR (OP[0]); uint16 b = GPR (OP[1]); uint16 tmp = (a + b); trace_input ("add", OP_REG, OP_REG, OP_VOID); SET_PSW_C (a > tmp); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* add */ void OP_1201 () { int64 tmp; tmp = SEXT40(ACC (OP[0])) + (SEXT16 (GPR (OP[1])) << 16 | GPR (OP[1] + 1)); trace_input ("add", OP_ACCUM, OP_REG, OP_VOID); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* add */ void OP_1203 () { int64 tmp; tmp = SEXT40(ACC (OP[0])) + SEXT40(ACC (OP[1])); trace_input ("add", OP_ACCUM, OP_ACCUM, OP_VOID); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* add2w */ void OP_1200 () { uint32 tmp; uint32 a = (GPR (OP[0])) << 16 | GPR (OP[0] + 1); uint32 b = (GPR (OP[1])) << 16 | GPR (OP[1] + 1); trace_input ("add2w", OP_DREG, OP_DREG, OP_VOID); tmp = a + b; SET_PSW_C (tmp < a); SET_GPR (OP[0] + 0, (tmp >> 16)); SET_GPR (OP[0] + 1, (tmp & 0xFFFF)); trace_output_32 (tmp); } /* add3 */ void OP_1000000 () { uint16 a = GPR (OP[1]); uint16 b = OP[2]; uint16 tmp = (a + b); trace_input ("add3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16); SET_PSW_C (tmp < a); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* addac3 */ void OP_17000200 () { int64 tmp; tmp = SEXT40(ACC (OP[2])) + SEXT40 ((GPR (OP[1]) << 16) | GPR (OP[1] + 1)); trace_input ("addac3", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM); SET_GPR (OP[0] + 0, ((tmp >> 16) & 0xffff)); SET_GPR (OP[0] + 1, (tmp & 0xffff)); trace_output_32 (tmp); } /* addac3 */ void OP_17000202 () { int64 tmp; tmp = SEXT40(ACC (OP[1])) + SEXT40(ACC (OP[2])); trace_input ("addac3", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM); SET_GPR (OP[0] + 0, (tmp >> 16) & 0xffff); SET_GPR (OP[0] + 1, tmp & 0xffff); trace_output_32 (tmp); } /* addac3s */ void OP_17001200 () { int64 tmp; SET_PSW_F1 (PSW_F0); trace_input ("addac3s", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM); tmp = SEXT40 (ACC (OP[2])) + SEXT40 ((GPR (OP[1]) << 16) | GPR (OP[1] + 1)); if (tmp > SEXT40(MAX32)) { tmp = (MAX32); SET_PSW_F0 (1); } else if (tmp < SEXT40(MIN32)) { tmp = (MIN32); SET_PSW_F0 (1); } else { SET_PSW_F0 (0); } SET_GPR (OP[0] + 0, (tmp >> 16) & 0xffff); SET_GPR (OP[0] + 1, (tmp & 0xffff)); trace_output_32 (tmp); } /* addac3s */ void OP_17001202 () { int64 tmp; SET_PSW_F1 (PSW_F0); trace_input ("addac3s", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM); tmp = SEXT40(ACC (OP[1])) + SEXT40(ACC (OP[2])); if (tmp > SEXT40(MAX32)) { tmp = (MAX32); SET_PSW_F0 (1); } else if (tmp < SEXT40(MIN32)) { tmp = (MIN32); SET_PSW_F0 (1); } else { SET_PSW_F0 (0); } SET_GPR (OP[0] + 0, (tmp >> 16) & 0xffff); SET_GPR (OP[0] + 1, (tmp & 0xffff)); trace_output_32 (tmp); } /* addi */ void OP_201 () { uint16 a = GPR (OP[0]); uint16 b; uint16 tmp; if (OP[1] == 0) OP[1] = 16; b = OP[1]; tmp = (a + b); trace_input ("addi", OP_REG, OP_CONSTANT16, OP_VOID); SET_PSW_C (tmp < a); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* and */ void OP_C00 () { uint16 tmp = GPR (OP[0]) & GPR (OP[1]); trace_input ("and", OP_REG, OP_REG, OP_VOID); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* and3 */ void OP_6000000 () { uint16 tmp = GPR (OP[1]) & OP[2]; trace_input ("and3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* bclri */ void OP_C01 () { int16 tmp; trace_input ("bclri", OP_REG, OP_CONSTANT16, OP_VOID); tmp = (GPR (OP[0]) &~(0x8000 >> OP[1])); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* bl.s */ void OP_4900 () { trace_input ("bl.s", OP_CONSTANT8, OP_R0, OP_R1); SET_GPR (13, PC + 1); JMP( PC + SEXT8 (OP[0])); trace_output_void (); } /* bl.l */ void OP_24800000 () { trace_input ("bl.l", OP_CONSTANT16, OP_R0, OP_R1); SET_GPR (13, (PC + 1)); JMP (PC + OP[0]); trace_output_void (); } /* bnoti */ void OP_A01 () { int16 tmp; trace_input ("bnoti", OP_REG, OP_CONSTANT16, OP_VOID); tmp = (GPR (OP[0]) ^ (0x8000 >> OP[1])); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* bra.s */ void OP_4800 () { trace_input ("bra.s", OP_CONSTANT8, OP_VOID, OP_VOID); JMP (PC + SEXT8 (OP[0])); trace_output_void (); } /* bra.l */ void OP_24000000 () { trace_input ("bra.l", OP_CONSTANT16, OP_VOID, OP_VOID); JMP (PC + OP[0]); trace_output_void (); } /* brf0f.s */ void OP_4A00 () { trace_input ("brf0f.s", OP_CONSTANT8, OP_VOID, OP_VOID); if (!PSW_F0) JMP (PC + SEXT8 (OP[0])); trace_output_flag (); } /* brf0f.l */ void OP_25000000 () { trace_input ("brf0f.l", OP_CONSTANT16, OP_VOID, OP_VOID); if (!PSW_F0) JMP (PC + OP[0]); trace_output_flag (); } /* brf0t.s */ void OP_4B00 () { trace_input ("brf0t.s", OP_CONSTANT8, OP_VOID, OP_VOID); if (PSW_F0) JMP (PC + SEXT8 (OP[0])); trace_output_flag (); } /* brf0t.l */ void OP_25800000 () { trace_input ("brf0t.l", OP_CONSTANT16, OP_VOID, OP_VOID); if (PSW_F0) JMP (PC + OP[0]); trace_output_flag (); } /* bseti */ void OP_801 () { int16 tmp; trace_input ("bseti", OP_REG, OP_CONSTANT16, OP_VOID); tmp = (GPR (OP[0]) | (0x8000 >> OP[1])); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* btsti */ void OP_E01 () { trace_input ("btsti", OP_REG, OP_CONSTANT16, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((GPR (OP[0]) & (0x8000 >> OP[1])) ? 1 : 0); trace_output_flag (); } /* clrac */ void OP_5601 () { trace_input ("clrac", OP_ACCUM_OUTPUT, OP_VOID, OP_VOID); SET_ACC (OP[0], 0); trace_output_40 (0); } /* cmp */ void OP_600 () { trace_input ("cmp", OP_REG, OP_REG, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 (((int16)(GPR (OP[0])) < (int16)(GPR (OP[1]))) ? 1 : 0); trace_output_flag (); } /* cmp */ void OP_1603 () { trace_input ("cmp", OP_ACCUM, OP_ACCUM, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((SEXT40(ACC (OP[0])) < SEXT40(ACC (OP[1]))) ? 1 : 0); trace_output_flag (); } /* cmpeq */ void OP_400 () { trace_input ("cmpeq", OP_REG, OP_REG, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((GPR (OP[0]) == GPR (OP[1])) ? 1 : 0); trace_output_flag (); } /* cmpeq */ void OP_1403 () { trace_input ("cmpeq", OP_ACCUM, OP_ACCUM, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 (((ACC (OP[0]) & MASK40) == (ACC (OP[1]) & MASK40)) ? 1 : 0); trace_output_flag (); } /* cmpeqi.s */ void OP_401 () { trace_input ("cmpeqi.s", OP_REG, OP_CONSTANT4, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((GPR (OP[0]) == (reg_t) SEXT4 (OP[1])) ? 1 : 0); trace_output_flag (); } /* cmpeqi.l */ void OP_2000000 () { trace_input ("cmpeqi.l", OP_REG, OP_CONSTANT16, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((GPR (OP[0]) == (reg_t)OP[1]) ? 1 : 0); trace_output_flag (); } /* cmpi.s */ void OP_601 () { trace_input ("cmpi.s", OP_REG, OP_CONSTANT4, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 (((int16)(GPR (OP[0])) < (int16)SEXT4(OP[1])) ? 1 : 0); trace_output_flag (); } /* cmpi.l */ void OP_3000000 () { trace_input ("cmpi.l", OP_REG, OP_CONSTANT16, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 (((int16)(GPR (OP[0])) < (int16)(OP[1])) ? 1 : 0); trace_output_flag (); } /* cmpu */ void OP_4600 () { trace_input ("cmpu", OP_REG, OP_REG, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((GPR (OP[0]) < GPR (OP[1])) ? 1 : 0); trace_output_flag (); } /* cmpui */ void OP_23000000 () { trace_input ("cmpui", OP_REG, OP_CONSTANT16, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((GPR (OP[0]) < (reg_t)OP[1]) ? 1 : 0); trace_output_flag (); } /* cpfg */ void OP_4E09 () { uint8 val; trace_input ("cpfg", OP_FLAG_OUTPUT, OP_FLAG, OP_VOID); if (OP[1] == 0) val = PSW_F0; else if (OP[1] == 1) val = PSW_F1; else val = PSW_C; if (OP[0] == 0) SET_PSW_F0 (val); else SET_PSW_F1 (val); trace_output_flag (); } /* cpfg */ void OP_4E0F () { uint8 val; trace_input ("cpfg", OP_FLAG_OUTPUT, OP_FLAG, OP_VOID); if (OP[1] == 0) val = PSW_F0; else if (OP[1] == 1) val = PSW_F1; else val = PSW_C; if (OP[0] == 0) SET_PSW_F0 (val); else SET_PSW_F1 (val); trace_output_flag (); } /* dbt */ void OP_5F20 () { /* d10v_callback->printf_filtered(d10v_callback, "***** DBT ***** PC=%x\n",PC); */ /* GDB uses the instruction pair ``dbt || nop'' as a break-point. The conditional below is for either of the instruction pairs ``dbt -> XXX'' or ``dbt <- XXX'' and treats them as as cases where the dbt instruction should be interpreted. The module `sim-break' provides a more effective mechanism for detecting GDB planted breakpoints. The code below may, eventually, be changed to use that mechanism. */ if (State.ins_type == INS_LEFT || State.ins_type == INS_RIGHT) { trace_input ("dbt", OP_VOID, OP_VOID, OP_VOID); SET_DPC (PC + 1); SET_DPSW (PSW); SET_HW_PSW (PSW_DM_BIT | (PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT))); JMP (DBT_VECTOR_START); trace_output_void (); } else { State.exception = SIGTRAP; } } /* divs */ void OP_14002800 () { uint16 foo, tmp, tmpf; uint16 hi; uint16 lo; trace_input ("divs", OP_DREG, OP_REG, OP_VOID); foo = (GPR (OP[0]) << 1) | (GPR (OP[0] + 1) >> 15); tmp = (int16)foo - (int16)(GPR (OP[1])); tmpf = (foo >= GPR (OP[1])) ? 1 : 0; hi = ((tmpf == 1) ? tmp : foo); lo = ((GPR (OP[0] + 1) << 1) | tmpf); SET_GPR (OP[0] + 0, hi); SET_GPR (OP[0] + 1, lo); trace_output_32 (((uint32) hi << 16) | lo); } /* exef0f */ void OP_4E04 () { trace_input ("exef0f", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F0 == 0); trace_output_flag (); } /* exef0t */ void OP_4E24 () { trace_input ("exef0t", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F0 != 0); trace_output_flag (); } /* exef1f */ void OP_4E40 () { trace_input ("exef1f", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F1 == 0); trace_output_flag (); } /* exef1t */ void OP_4E42 () { trace_input ("exef1t", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F1 != 0); trace_output_flag (); } /* exefaf */ void OP_4E00 () { trace_input ("exefaf", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F0 == 0) & (PSW_F1 == 0); trace_output_flag (); } /* exefat */ void OP_4E02 () { trace_input ("exefat", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F0 == 0) & (PSW_F1 != 0); trace_output_flag (); } /* exetaf */ void OP_4E20 () { trace_input ("exetaf", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F0 != 0) & (PSW_F1 == 0); trace_output_flag (); } /* exetat */ void OP_4E22 () { trace_input ("exetat", OP_VOID, OP_VOID, OP_VOID); State.exe = (PSW_F0 != 0) & (PSW_F1 != 0); trace_output_flag (); } /* exp */ void OP_15002A00 () { uint32 tmp, foo; int i; trace_input ("exp", OP_REG_OUTPUT, OP_DREG, OP_VOID); if (((int16)GPR (OP[1])) >= 0) tmp = (GPR (OP[1]) << 16) | GPR (OP[1] + 1); else tmp = ~((GPR (OP[1]) << 16) | GPR (OP[1] + 1)); foo = 0x40000000; for (i=1;i<17;i++) { if (tmp & foo) { SET_GPR (OP[0], (i - 1)); trace_output_16 (i - 1); return; } foo >>= 1; } SET_GPR (OP[0], 16); trace_output_16 (16); } /* exp */ void OP_15002A02 () { int64 tmp, foo; int i; trace_input ("exp", OP_REG_OUTPUT, OP_ACCUM, OP_VOID); tmp = SEXT40(ACC (OP[1])); if (tmp < 0) tmp = ~tmp & MASK40; foo = 0x4000000000LL; for (i=1;i<25;i++) { if (tmp & foo) { SET_GPR (OP[0], i - 9); trace_output_16 (i - 9); return; } foo >>= 1; } SET_GPR (OP[0], 16); trace_output_16 (16); } /* jl */ void OP_4D00 () { trace_input ("jl", OP_REG, OP_R0, OP_R1); SET_GPR (13, PC + 1); JMP (GPR (OP[0])); trace_output_void (); } /* jmp */ void OP_4C00 () { trace_input ("jmp", OP_REG, (OP[0] == 13) ? OP_R0 : OP_VOID, (OP[0] == 13) ? OP_R1 : OP_VOID); JMP (GPR (OP[0])); trace_output_void (); } /* ld */ void OP_30000000 () { uint16 tmp; uint16 addr = OP[1] + GPR (OP[2]); trace_input ("ld", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RW (addr); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ld */ void OP_6401 () { uint16 tmp; uint16 addr = GPR (OP[1]); trace_input ("ld", OP_REG_OUTPUT, OP_POSTDEC, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RW (addr); SET_GPR (OP[0], tmp); if (OP[0] != OP[1]) INC_ADDR (OP[1], -2); trace_output_16 (tmp); } /* ld */ void OP_6001 () { uint16 tmp; uint16 addr = GPR (OP[1]); trace_input ("ld", OP_REG_OUTPUT, OP_POSTINC, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RW (addr); SET_GPR (OP[0], tmp); if (OP[0] != OP[1]) INC_ADDR (OP[1], 2); trace_output_16 (tmp); } /* ld */ void OP_6000 () { uint16 tmp; uint16 addr = GPR (OP[1]); trace_input ("ld", OP_REG_OUTPUT, OP_MEMREF, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RW (addr); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ld */ void OP_32010000 () { uint16 tmp; uint16 addr = OP[1]; trace_input ("ld", OP_REG_OUTPUT, OP_MEMREF3, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RW (addr); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ld2w */ void OP_31000000 () { int32 tmp; uint16 addr = OP[1] + GPR (OP[2]); trace_input ("ld2w", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RLW (addr); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* ld2w */ void OP_6601 () { uint16 addr = GPR (OP[1]); int32 tmp; trace_input ("ld2w", OP_REG_OUTPUT, OP_POSTDEC, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RLW (addr); SET_GPR32 (OP[0], tmp); if (OP[0] != OP[1] && ((OP[0] + 1) != OP[1])) INC_ADDR (OP[1], -4); trace_output_32 (tmp); } /* ld2w */ void OP_6201 () { int32 tmp; uint16 addr = GPR (OP[1]); trace_input ("ld2w", OP_REG_OUTPUT, OP_POSTINC, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RLW (addr); SET_GPR32 (OP[0], tmp); if (OP[0] != OP[1] && ((OP[0] + 1) != OP[1])) INC_ADDR (OP[1], 4); trace_output_32 (tmp); } /* ld2w */ void OP_6200 () { uint16 addr = GPR (OP[1]); int32 tmp; trace_input ("ld2w", OP_REG_OUTPUT, OP_MEMREF, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RLW (addr); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* ld2w */ void OP_33010000 () { int32 tmp; uint16 addr = OP[1]; trace_input ("ld2w", OP_REG_OUTPUT, OP_MEMREF3, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } tmp = RLW (addr); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* ldb */ void OP_38000000 () { int16 tmp; trace_input ("ldb", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID); tmp = SEXT8 (RB (OP[1] + GPR (OP[2]))); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ldb */ void OP_7000 () { int16 tmp; trace_input ("ldb", OP_REG_OUTPUT, OP_MEMREF, OP_VOID); tmp = SEXT8 (RB (GPR (OP[1]))); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ldi.s */ void OP_4001 () { int16 tmp; trace_input ("ldi.s", OP_REG_OUTPUT, OP_CONSTANT4, OP_VOID); tmp = SEXT4 (OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ldi.l */ void OP_20000000 () { int16 tmp; trace_input ("ldi.l", OP_REG_OUTPUT, OP_CONSTANT16, OP_VOID); tmp = OP[1]; SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ldub */ void OP_39000000 () { int16 tmp; trace_input ("ldub", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID); tmp = RB (OP[1] + GPR (OP[2])); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* ldub */ void OP_7200 () { int16 tmp; trace_input ("ldub", OP_REG_OUTPUT, OP_MEMREF, OP_VOID); tmp = RB (GPR (OP[1])); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mac */ void OP_2A00 () { int64 tmp; trace_input ("mac", OP_ACCUM, OP_REG, OP_REG); tmp = SEXT40 ((int16)(GPR (OP[1])) * (int16)(GPR (OP[2]))); if (PSW_FX) tmp = SEXT40( (tmp << 1) & MASK40); if (PSW_ST && tmp > SEXT40(MAX32)) tmp = (MAX32); tmp += SEXT40 (ACC (OP[0])); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* macsu */ void OP_1A00 () { int64 tmp; trace_input ("macsu", OP_ACCUM, OP_REG, OP_REG); tmp = SEXT40 ((int16) GPR (OP[1]) * GPR (OP[2])); if (PSW_FX) tmp = SEXT40 ((tmp << 1) & MASK40); tmp = ((SEXT40 (ACC (OP[0])) + tmp) & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* macu */ void OP_3A00 () { uint64 tmp; uint32 src1; uint32 src2; trace_input ("macu", OP_ACCUM, OP_REG, OP_REG); src1 = (uint16) GPR (OP[1]); src2 = (uint16) GPR (OP[2]); tmp = src1 * src2; if (PSW_FX) tmp = (tmp << 1); tmp = ((ACC (OP[0]) + tmp) & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* max */ void OP_2600 () { int16 tmp; trace_input ("max", OP_REG, OP_REG, OP_VOID); SET_PSW_F1 (PSW_F0); if ((int16) GPR (OP[1]) > (int16)GPR (OP[0])) { tmp = GPR (OP[1]); SET_PSW_F0 (1); } else { tmp = GPR (OP[0]); SET_PSW_F0 (0); } SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* max */ void OP_3600 () { int64 tmp; trace_input ("max", OP_ACCUM, OP_DREG, OP_VOID); SET_PSW_F1 (PSW_F0); tmp = SEXT16 (GPR (OP[1])) << 16 | GPR (OP[1] + 1); if (tmp > SEXT40 (ACC (OP[0]))) { tmp = (tmp & MASK40); SET_PSW_F0 (1); } else { tmp = ACC (OP[0]); SET_PSW_F0 (0); } SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* max */ void OP_3602 () { int64 tmp; trace_input ("max", OP_ACCUM, OP_ACCUM, OP_VOID); SET_PSW_F1 (PSW_F0); if (SEXT40 (ACC (OP[1])) > SEXT40 (ACC (OP[0]))) { tmp = ACC (OP[1]); SET_PSW_F0 (1); } else { tmp = ACC (OP[0]); SET_PSW_F0 (0); } SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* min */ void OP_2601 () { int16 tmp; trace_input ("min", OP_REG, OP_REG, OP_VOID); SET_PSW_F1 (PSW_F0); if ((int16)GPR (OP[1]) < (int16)GPR (OP[0])) { tmp = GPR (OP[1]); SET_PSW_F0 (1); } else { tmp = GPR (OP[0]); SET_PSW_F0 (0); } SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* min */ void OP_3601 () { int64 tmp; trace_input ("min", OP_ACCUM, OP_DREG, OP_VOID); SET_PSW_F1 (PSW_F0); tmp = SEXT16 (GPR (OP[1])) << 16 | GPR (OP[1] + 1); if (tmp < SEXT40(ACC (OP[0]))) { tmp = (tmp & MASK40); SET_PSW_F0 (1); } else { tmp = ACC (OP[0]); SET_PSW_F0 (0); } SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* min */ void OP_3603 () { int64 tmp; trace_input ("min", OP_ACCUM, OP_ACCUM, OP_VOID); SET_PSW_F1 (PSW_F0); if (SEXT40(ACC (OP[1])) < SEXT40(ACC (OP[0]))) { tmp = ACC (OP[1]); SET_PSW_F0 (1); } else { tmp = ACC (OP[0]); SET_PSW_F0 (0); } SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* msb */ void OP_2800 () { int64 tmp; trace_input ("msb", OP_ACCUM, OP_REG, OP_REG); tmp = SEXT40 ((int16)(GPR (OP[1])) * (int16)(GPR (OP[2]))); if (PSW_FX) tmp = SEXT40 ((tmp << 1) & MASK40); if (PSW_ST && tmp > SEXT40(MAX32)) tmp = (MAX32); tmp = SEXT40(ACC (OP[0])) - tmp; if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else { tmp = (tmp & MASK40); } SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* msbsu */ void OP_1800 () { int64 tmp; trace_input ("msbsu", OP_ACCUM, OP_REG, OP_REG); tmp = SEXT40 ((int16)GPR (OP[1]) * GPR (OP[2])); if (PSW_FX) tmp = SEXT40( (tmp << 1) & MASK40); tmp = ((SEXT40 (ACC (OP[0])) - tmp) & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* msbu */ void OP_3800 () { uint64 tmp; uint32 src1; uint32 src2; trace_input ("msbu", OP_ACCUM, OP_REG, OP_REG); src1 = (uint16) GPR (OP[1]); src2 = (uint16) GPR (OP[2]); tmp = src1 * src2; if (PSW_FX) tmp = (tmp << 1); tmp = ((ACC (OP[0]) - tmp) & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* mul */ void OP_2E00 () { int16 tmp; trace_input ("mul", OP_REG, OP_REG, OP_VOID); tmp = GPR (OP[0]) * GPR (OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mulx */ void OP_2C00 () { int64 tmp; trace_input ("mulx", OP_ACCUM_OUTPUT, OP_REG, OP_REG); tmp = SEXT40 ((int16)(GPR (OP[1])) * (int16)(GPR (OP[2]))); if (PSW_FX) tmp = SEXT40 ((tmp << 1) & MASK40); if (PSW_ST && tmp > SEXT40(MAX32)) tmp = (MAX32); else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* mulxsu */ void OP_1C00 () { int64 tmp; trace_input ("mulxsu", OP_ACCUM_OUTPUT, OP_REG, OP_REG); tmp = SEXT40 ((int16)(GPR (OP[1])) * GPR (OP[2])); if (PSW_FX) tmp <<= 1; tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* mulxu */ void OP_3C00 () { uint64 tmp; uint32 src1; uint32 src2; trace_input ("mulxu", OP_ACCUM_OUTPUT, OP_REG, OP_REG); src1 = (uint16) GPR (OP[1]); src2 = (uint16) GPR (OP[2]); tmp = src1 * src2; if (PSW_FX) tmp <<= 1; tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* mv */ void OP_4000 () { int16 tmp; trace_input ("mv", OP_REG_OUTPUT, OP_REG, OP_VOID); tmp = GPR (OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mv2w */ void OP_5000 () { int32 tmp; trace_input ("mv2w", OP_DREG_OUTPUT, OP_DREG, OP_VOID); tmp = GPR32 (OP[1]); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* mv2wfac */ void OP_3E00 () { int32 tmp; trace_input ("mv2wfac", OP_DREG_OUTPUT, OP_ACCUM, OP_VOID); tmp = ACC (OP[1]); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* mv2wtac */ void OP_3E01 () { int64 tmp; trace_input ("mv2wtac", OP_DREG, OP_ACCUM_OUTPUT, OP_VOID); tmp = ((SEXT16 (GPR (OP[0])) << 16 | GPR (OP[0] + 1)) & MASK40); SET_ACC (OP[1], tmp); trace_output_40 (tmp); } /* mvac */ void OP_3E03 () { int64 tmp; trace_input ("mvac", OP_ACCUM_OUTPUT, OP_ACCUM, OP_VOID); tmp = ACC (OP[1]); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* mvb */ void OP_5400 () { int16 tmp; trace_input ("mvb", OP_REG_OUTPUT, OP_REG, OP_VOID); tmp = SEXT8 (GPR (OP[1]) & 0xff); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mvf0f */ void OP_4400 () { int16 tmp; trace_input ("mvf0f", OP_REG_OUTPUT, OP_REG, OP_VOID); if (PSW_F0 == 0) { tmp = GPR (OP[1]); SET_GPR (OP[0], tmp); } else tmp = GPR (OP[0]); trace_output_16 (tmp); } /* mvf0t */ void OP_4401 () { int16 tmp; trace_input ("mvf0t", OP_REG_OUTPUT, OP_REG, OP_VOID); if (PSW_F0) { tmp = GPR (OP[1]); SET_GPR (OP[0], tmp); } else tmp = GPR (OP[0]); trace_output_16 (tmp); } /* mvfacg */ void OP_1E04 () { int16 tmp; trace_input ("mvfacg", OP_REG_OUTPUT, OP_ACCUM, OP_VOID); tmp = ((ACC (OP[1]) >> 32) & 0xff); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mvfachi */ void OP_1E00 () { int16 tmp; trace_input ("mvfachi", OP_REG_OUTPUT, OP_ACCUM, OP_VOID); tmp = (ACC (OP[1]) >> 16); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mvfaclo */ void OP_1E02 () { int16 tmp; trace_input ("mvfaclo", OP_REG_OUTPUT, OP_ACCUM, OP_VOID); tmp = ACC (OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mvfc */ void OP_5200 () { int16 tmp; trace_input ("mvfc", OP_REG_OUTPUT, OP_CR, OP_VOID); tmp = CREG (OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* mvtacg */ void OP_1E41 () { int64 tmp; trace_input ("mvtacg", OP_REG, OP_ACCUM, OP_VOID); tmp = ((ACC (OP[1]) & MASK32) | ((int64)(GPR (OP[0]) & 0xff) << 32)); SET_ACC (OP[1], tmp); trace_output_40 (tmp); } /* mvtachi */ void OP_1E01 () { uint64 tmp; trace_input ("mvtachi", OP_REG, OP_ACCUM, OP_VOID); tmp = ACC (OP[1]) & 0xffff; tmp = ((SEXT16 (GPR (OP[0])) << 16 | tmp) & MASK40); SET_ACC (OP[1], tmp); trace_output_40 (tmp); } /* mvtaclo */ void OP_1E21 () { int64 tmp; trace_input ("mvtaclo", OP_REG, OP_ACCUM, OP_VOID); tmp = ((SEXT16 (GPR (OP[0]))) & MASK40); SET_ACC (OP[1], tmp); trace_output_40 (tmp); } /* mvtc */ void OP_5600 () { int16 tmp; trace_input ("mvtc", OP_REG, OP_CR_OUTPUT, OP_VOID); tmp = GPR (OP[0]); tmp = SET_CREG (OP[1], tmp); trace_output_16 (tmp); } /* mvub */ void OP_5401 () { int16 tmp; trace_input ("mvub", OP_REG_OUTPUT, OP_REG, OP_VOID); tmp = (GPR (OP[1]) & 0xff); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* neg */ void OP_4605 () { int16 tmp; trace_input ("neg", OP_REG, OP_VOID, OP_VOID); tmp = - GPR (OP[0]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* neg */ void OP_5605 () { int64 tmp; trace_input ("neg", OP_ACCUM, OP_VOID, OP_VOID); tmp = -SEXT40(ACC (OP[0])); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* nop */ void OP_5E00 () { trace_input ("nop", OP_VOID, OP_VOID, OP_VOID); ins_type_counters[ (int)State.ins_type ]--; /* don't count nops as normal instructions */ switch (State.ins_type) { default: ins_type_counters[ (int)INS_UNKNOWN ]++; break; case INS_LEFT_PARALLEL: /* Don't count a parallel op that includes a NOP as a true parallel op */ ins_type_counters[ (int)INS_RIGHT_PARALLEL ]--; ins_type_counters[ (int)INS_RIGHT ]++; ins_type_counters[ (int)INS_LEFT_NOPS ]++; break; case INS_LEFT: case INS_LEFT_COND_EXE: ins_type_counters[ (int)INS_LEFT_NOPS ]++; break; case INS_RIGHT_PARALLEL: /* Don't count a parallel op that includes a NOP as a true parallel op */ ins_type_counters[ (int)INS_LEFT_PARALLEL ]--; ins_type_counters[ (int)INS_LEFT ]++; ins_type_counters[ (int)INS_RIGHT_NOPS ]++; break; case INS_RIGHT: case INS_RIGHT_COND_EXE: ins_type_counters[ (int)INS_RIGHT_NOPS ]++; break; } trace_output_void (); } /* not */ void OP_4603 () { int16 tmp; trace_input ("not", OP_REG, OP_VOID, OP_VOID); tmp = ~GPR (OP[0]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* or */ void OP_800 () { int16 tmp; trace_input ("or", OP_REG, OP_REG, OP_VOID); tmp = (GPR (OP[0]) | GPR (OP[1])); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* or3 */ void OP_4000000 () { int16 tmp; trace_input ("or3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16); tmp = (GPR (OP[1]) | OP[2]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* rac */ void OP_5201 () { int64 tmp; int shift = SEXT3 (OP[2]); trace_input ("rac", OP_DREG_OUTPUT, OP_ACCUM, OP_CONSTANT3); if (OP[1] != 0) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR at PC 0x%x: instruction only valid for A0\n", PC<<2); State.exception = SIGILL; } SET_PSW_F1 (PSW_F0); tmp = SEXT56 ((ACC (0) << 16) | (ACC (1) & 0xffff)); if (shift >=0) tmp <<= shift; else tmp >>= -shift; tmp += 0x8000; tmp >>= 16; /* look at bits 0:43 */ if (tmp > SEXT44 (SIGNED64 (0x0007fffffff))) { tmp = 0x7fffffff; SET_PSW_F0 (1); } else if (tmp < SEXT44 (SIGNED64 (0xfff80000000))) { tmp = 0x80000000; SET_PSW_F0 (1); } else { SET_PSW_F0 (0); } SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* rachi */ void OP_4201 () { signed64 tmp; int shift = SEXT3 (OP[2]); trace_input ("rachi", OP_REG_OUTPUT, OP_ACCUM, OP_CONSTANT3); SET_PSW_F1 (PSW_F0); if (shift >=0) tmp = SEXT40 (ACC (OP[1])) << shift; else tmp = SEXT40 (ACC (OP[1])) >> -shift; tmp += 0x8000; if (tmp > SEXT44 (SIGNED64 (0x0007fffffff))) { tmp = 0x7fff; SET_PSW_F0 (1); } else if (tmp < SEXT44 (SIGNED64 (0xfff80000000))) { tmp = 0x8000; SET_PSW_F0 (1); } else { tmp = (tmp >> 16); SET_PSW_F0 (0); } SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* rep */ void OP_27000000 () { trace_input ("rep", OP_REG, OP_CONSTANT16, OP_VOID); SET_RPT_S (PC + 1); SET_RPT_E (PC + OP[1]); SET_RPT_C (GPR (OP[0])); SET_PSW_RP (1); if (GPR (OP[0]) == 0) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: rep with count=0 is illegal.\n"); State.exception = SIGILL; } if (OP[1] < 4) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: rep must include at least 4 instructions.\n"); State.exception = SIGILL; } trace_output_void (); } /* repi */ void OP_2F000000 () { trace_input ("repi", OP_CONSTANT16, OP_CONSTANT16, OP_VOID); SET_RPT_S (PC + 1); SET_RPT_E (PC + OP[1]); SET_RPT_C (OP[0]); SET_PSW_RP (1); if (OP[0] == 0) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: repi with count=0 is illegal.\n"); State.exception = SIGILL; } if (OP[1] < 4) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: repi must include at least 4 instructions.\n"); State.exception = SIGILL; } trace_output_void (); } /* rtd */ void OP_5F60 () { trace_input ("rtd", OP_VOID, OP_VOID, OP_VOID); SET_CREG (PSW_CR, DPSW); JMP(DPC); trace_output_void (); } /* rte */ void OP_5F40 () { trace_input ("rte", OP_VOID, OP_VOID, OP_VOID); SET_CREG (PSW_CR, BPSW); JMP(BPC); trace_output_void (); } /* sac */ void OP_5209 () { int64 tmp; trace_input ("sac", OP_REG_OUTPUT, OP_ACCUM, OP_VOID); tmp = SEXT40(ACC (OP[1])); SET_PSW_F1 (PSW_F0); if (tmp > SEXT40(MAX32)) { tmp = (MAX32); SET_PSW_F0 (1); } else if (tmp < SEXT40(MIN32)) { tmp = 0x80000000; SET_PSW_F0 (1); } else { tmp = (tmp & MASK32); SET_PSW_F0 (0); } SET_GPR32 (OP[0], tmp); trace_output_40 (tmp); } /* sachi */ void OP_4209 () { int64 tmp; trace_input ("sachi", OP_REG_OUTPUT, OP_ACCUM, OP_VOID); tmp = SEXT40(ACC (OP[1])); SET_PSW_F1 (PSW_F0); if (tmp > SEXT40(MAX32)) { tmp = 0x7fff; SET_PSW_F0 (1); } else if (tmp < SEXT40(MIN32)) { tmp = 0x8000; SET_PSW_F0 (1); } else { tmp >>= 16; SET_PSW_F0 (0); } SET_GPR (OP[0], tmp); trace_output_16 (OP[0]); } /* sadd */ void OP_1223 () { int64 tmp; trace_input ("sadd", OP_ACCUM, OP_ACCUM, OP_VOID); tmp = SEXT40(ACC (OP[0])) + (SEXT40(ACC (OP[1])) >> 16); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* setf0f */ void OP_4611 () { int16 tmp; trace_input ("setf0f", OP_REG_OUTPUT, OP_VOID, OP_VOID); tmp = ((PSW_F0 == 0) ? 1 : 0); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* setf0t */ void OP_4613 () { int16 tmp; trace_input ("setf0t", OP_REG_OUTPUT, OP_VOID, OP_VOID); tmp = ((PSW_F0 == 1) ? 1 : 0); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* slae */ void OP_3220 () { int64 tmp; int16 reg; trace_input ("slae", OP_ACCUM, OP_REG, OP_VOID); reg = SEXT16 (GPR (OP[1])); if (reg >= 17 || reg <= -17) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: shift value %d too large.\n", reg); State.exception = SIGILL; return; } tmp = SEXT40 (ACC (OP[0])); if (PSW_ST && (tmp < SEXT40 (MIN32) || tmp > SEXT40 (MAX32))) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: accumulator value 0x%.2x%.8lx out of range\n", ((int)(tmp >> 32) & 0xff), ((unsigned long) tmp) & 0xffffffff); State.exception = SIGILL; return; } if (reg >= 0 && reg <= 16) { tmp = SEXT56 ((SEXT56 (tmp)) << (GPR (OP[1]))); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); } else { tmp = (SEXT40 (ACC (OP[0]))) >> (-GPR (OP[1])); } SET_ACC(OP[0], tmp); trace_output_40(tmp); } /* sleep */ void OP_5FC0 () { trace_input ("sleep", OP_VOID, OP_VOID, OP_VOID); SET_PSW_IE (1); trace_output_void (); } /* sll */ void OP_2200 () { int16 tmp; trace_input ("sll", OP_REG, OP_REG, OP_VOID); tmp = (GPR (OP[0]) << (GPR (OP[1]) & 0xf)); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* sll */ void OP_3200 () { int64 tmp; trace_input ("sll", OP_ACCUM, OP_REG, OP_VOID); if ((GPR (OP[1]) & 31) <= 16) tmp = SEXT40 (ACC (OP[0])) << (GPR (OP[1]) & 31); else { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: shift value %d too large.\n", GPR (OP[1]) & 31); State.exception = SIGILL; return; } if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* slli */ void OP_2201 () { int16 tmp; trace_input ("slli", OP_REG, OP_CONSTANT16, OP_VOID); tmp = (GPR (OP[0]) << OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* slli */ void OP_3201 () { int64 tmp; if (OP[1] == 0) OP[1] = 16; trace_input ("slli", OP_ACCUM, OP_CONSTANT16, OP_VOID); tmp = SEXT40(ACC (OP[0])) << OP[1]; if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* slx */ void OP_460B () { int16 tmp; trace_input ("slx", OP_REG, OP_VOID, OP_VOID); tmp = ((GPR (OP[0]) << 1) | PSW_F0); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* sra */ void OP_2400 () { int16 tmp; trace_input ("sra", OP_REG, OP_REG, OP_VOID); tmp = (((int16)(GPR (OP[0]))) >> (GPR (OP[1]) & 0xf)); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* sra */ void OP_3400 () { trace_input ("sra", OP_ACCUM, OP_REG, OP_VOID); if ((GPR (OP[1]) & 31) <= 16) { int64 tmp = ((SEXT40(ACC (OP[0])) >> (GPR (OP[1]) & 31)) & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } else { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: shift value %d too large.\n", GPR (OP[1]) & 31); State.exception = SIGILL; return; } } /* srai */ void OP_2401 () { int16 tmp; trace_input ("srai", OP_REG, OP_CONSTANT16, OP_VOID); tmp = (((int16)(GPR (OP[0]))) >> OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* srai */ void OP_3401 () { int64 tmp; if (OP[1] == 0) OP[1] = 16; trace_input ("srai", OP_ACCUM, OP_CONSTANT16, OP_VOID); tmp = ((SEXT40(ACC (OP[0])) >> OP[1]) & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* srl */ void OP_2000 () { int16 tmp; trace_input ("srl", OP_REG, OP_REG, OP_VOID); tmp = (GPR (OP[0]) >> (GPR (OP[1]) & 0xf)); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* srl */ void OP_3000 () { trace_input ("srl", OP_ACCUM, OP_REG, OP_VOID); if ((GPR (OP[1]) & 31) <= 16) { int64 tmp = ((uint64)((ACC (OP[0]) & MASK40) >> (GPR (OP[1]) & 31))); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } else { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: shift value %d too large.\n", GPR (OP[1]) & 31); State.exception = SIGILL; return; } } /* srli */ void OP_2001 () { int16 tmp; trace_input ("srli", OP_REG, OP_CONSTANT16, OP_VOID); tmp = (GPR (OP[0]) >> OP[1]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* srli */ void OP_3001 () { int64 tmp; if (OP[1] == 0) OP[1] = 16; trace_input ("srli", OP_ACCUM, OP_CONSTANT16, OP_VOID); tmp = ((uint64)(ACC (OP[0]) & MASK40) >> OP[1]); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* srx */ void OP_4609 () { uint16 tmp; trace_input ("srx", OP_REG, OP_VOID, OP_VOID); tmp = PSW_F0 << 15; tmp = ((GPR (OP[0]) >> 1) | tmp); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* st */ void OP_34000000 () { uint16 addr = OP[1] + GPR (OP[2]); trace_input ("st", OP_REG, OP_MEMREF2, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr, GPR (OP[0])); trace_output_void (); } /* st */ void OP_6800 () { uint16 addr = GPR (OP[1]); trace_input ("st", OP_REG, OP_MEMREF, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr, GPR (OP[0])); trace_output_void (); } /* st */ /* st Rsrc1,@-SP */ void OP_6C1F () { uint16 addr = GPR (OP[1]) - 2; trace_input ("st", OP_REG, OP_PREDEC, OP_VOID); if (OP[1] != 15) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot pre-decrement any registers but r15 (SP).\n"); State.exception = SIGILL; return; } if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr, GPR (OP[0])); SET_GPR (OP[1], addr); trace_output_void (); } /* st */ void OP_6801 () { uint16 addr = GPR (OP[1]); trace_input ("st", OP_REG, OP_POSTINC, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr, GPR (OP[0])); INC_ADDR (OP[1], 2); trace_output_void (); } /* st */ void OP_6C01 () { uint16 addr = GPR (OP[1]); trace_input ("st", OP_REG, OP_POSTDEC, OP_VOID); if ( OP[1] == 15 ) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot post-decrement register r15 (SP).\n"); State.exception = SIGILL; return; } if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr, GPR (OP[0])); INC_ADDR (OP[1], -2); trace_output_void (); } /* st */ void OP_36010000 () { uint16 addr = OP[1]; trace_input ("st", OP_REG, OP_MEMREF3, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr, GPR (OP[0])); trace_output_void (); } /* st2w */ void OP_35000000 () { uint16 addr = GPR (OP[2])+ OP[1]; trace_input ("st2w", OP_DREG, OP_MEMREF2, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr + 0, GPR (OP[0] + 0)); SW (addr + 2, GPR (OP[0] + 1)); trace_output_void (); } /* st2w */ void OP_6A00 () { uint16 addr = GPR (OP[1]); trace_input ("st2w", OP_DREG, OP_MEMREF, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr + 0, GPR (OP[0] + 0)); SW (addr + 2, GPR (OP[0] + 1)); trace_output_void (); } /* st2w */ void OP_6E1F () { uint16 addr = GPR (OP[1]) - 4; trace_input ("st2w", OP_DREG, OP_PREDEC, OP_VOID); if ( OP[1] != 15 ) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot pre-decrement any registers but r15 (SP).\n"); State.exception = SIGILL; return; } if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr + 0, GPR (OP[0] + 0)); SW (addr + 2, GPR (OP[0] + 1)); SET_GPR (OP[1], addr); trace_output_void (); } /* st2w */ void OP_6A01 () { uint16 addr = GPR (OP[1]); trace_input ("st2w", OP_DREG, OP_POSTINC, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr + 0, GPR (OP[0] + 0)); SW (addr + 2, GPR (OP[0] + 1)); INC_ADDR (OP[1], 4); trace_output_void (); } /* st2w */ void OP_6E01 () { uint16 addr = GPR (OP[1]); trace_input ("st2w", OP_DREG, OP_POSTDEC, OP_VOID); if ( OP[1] == 15 ) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot post-decrement register r15 (SP).\n"); State.exception = SIGILL; return; } if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr + 0, GPR (OP[0] + 0)); SW (addr + 2, GPR (OP[0] + 1)); INC_ADDR (OP[1], -4); trace_output_void (); } /* st2w */ void OP_37010000 () { uint16 addr = OP[1]; trace_input ("st2w", OP_DREG, OP_MEMREF3, OP_VOID); if ((addr & 1)) { State.exception = SIG_D10V_BUS; State.pc_changed = 1; /* Don't increment the PC. */ trace_output_void (); return; } SW (addr + 0, GPR (OP[0] + 0)); SW (addr + 2, GPR (OP[0] + 1)); trace_output_void (); } /* stb */ void OP_3C000000 () { trace_input ("stb", OP_REG, OP_MEMREF2, OP_VOID); SB (GPR (OP[2]) + OP[1], GPR (OP[0])); trace_output_void (); } /* stb */ void OP_7800 () { trace_input ("stb", OP_REG, OP_MEMREF, OP_VOID); SB (GPR (OP[1]), GPR (OP[0])); trace_output_void (); } /* stop */ void OP_5FE0 () { trace_input ("stop", OP_VOID, OP_VOID, OP_VOID); State.exception = SIG_D10V_STOP; trace_output_void (); } /* sub */ void OP_0 () { uint16 a = GPR (OP[0]); uint16 b = GPR (OP[1]); uint16 tmp = (a - b); trace_input ("sub", OP_REG, OP_REG, OP_VOID); /* see ../common/sim-alu.h for a more extensive discussion on how to compute the carry/overflow bits. */ SET_PSW_C (a >= b); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* sub */ void OP_1001 () { int64 tmp; trace_input ("sub", OP_ACCUM, OP_DREG, OP_VOID); tmp = SEXT40(ACC (OP[0])) - (SEXT16 (GPR (OP[1])) << 16 | GPR (OP[1] + 1)); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* sub */ void OP_1003 () { int64 tmp; trace_input ("sub", OP_ACCUM, OP_ACCUM, OP_VOID); tmp = SEXT40(ACC (OP[0])) - SEXT40(ACC (OP[1])); if (PSW_ST) { if (tmp > SEXT40(MAX32)) tmp = (MAX32); else if (tmp < SEXT40(MIN32)) tmp = (MIN32); else tmp = (tmp & MASK40); } else tmp = (tmp & MASK40); SET_ACC (OP[0], tmp); trace_output_40 (tmp); } /* sub2w */ void OP_1000 () { uint32 tmp, a, b; trace_input ("sub2w", OP_DREG, OP_DREG, OP_VOID); a = (uint32)((GPR (OP[0]) << 16) | GPR (OP[0] + 1)); b = (uint32)((GPR (OP[1]) << 16) | GPR (OP[1] + 1)); /* see ../common/sim-alu.h for a more extensive discussion on how to compute the carry/overflow bits */ tmp = a - b; SET_PSW_C (a >= b); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* subac3 */ void OP_17000000 () { int64 tmp; trace_input ("subac3", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM); tmp = SEXT40 ((GPR (OP[1]) << 16) | GPR (OP[1] + 1)) - SEXT40 (ACC (OP[2])); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* subac3 */ void OP_17000002 () { int64 tmp; trace_input ("subac3", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM); tmp = SEXT40 (ACC (OP[1])) - SEXT40(ACC (OP[2])); SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* subac3s */ void OP_17001000 () { int64 tmp; trace_input ("subac3s", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM); SET_PSW_F1 (PSW_F0); tmp = SEXT40 ((GPR (OP[1]) << 16) | GPR (OP[1] + 1)) - SEXT40(ACC (OP[2])); if (tmp > SEXT40(MAX32)) { tmp = (MAX32); SET_PSW_F0 (1); } else if (tmp < SEXT40(MIN32)) { tmp = (MIN32); SET_PSW_F0 (1); } else { SET_PSW_F0 (0); } SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* subac3s */ void OP_17001002 () { int64 tmp; trace_input ("subac3s", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM); SET_PSW_F1 (PSW_F0); tmp = SEXT40(ACC (OP[1])) - SEXT40(ACC (OP[2])); if (tmp > SEXT40(MAX32)) { tmp = (MAX32); SET_PSW_F0 (1); } else if (tmp < SEXT40(MIN32)) { tmp = (MIN32); SET_PSW_F0 (1); } else { SET_PSW_F0 (0); } SET_GPR32 (OP[0], tmp); trace_output_32 (tmp); } /* subi */ void OP_1 () { unsigned tmp; if (OP[1] == 0) OP[1] = 16; trace_input ("subi", OP_REG, OP_CONSTANT16, OP_VOID); /* see ../common/sim-alu.h for a more extensive discussion on how to compute the carry/overflow bits. */ /* since OP[1] is never <= 0, -OP[1] == ~OP[1]+1 can never overflow */ tmp = ((unsigned)(unsigned16) GPR (OP[0]) + (unsigned)(unsigned16) ( - OP[1])); SET_PSW_C (tmp >= (1 << 16)); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* trap */ void OP_5F00 () { trace_input ("trap", OP_CONSTANT4, OP_VOID, OP_VOID); trace_output_void (); switch (OP[0]) { default: #if (DEBUG & DEBUG_TRAP) == 0 { uint16 vec = OP[0] + TRAP_VECTOR_START; SET_BPC (PC + 1); SET_BPSW (PSW); SET_PSW (PSW & PSW_SM_BIT); JMP (vec); break; } #else /* if debugging use trap to print registers */ { int i; static int first_time = 1; if (first_time) { first_time = 0; (*d10v_callback->printf_filtered) (d10v_callback, "Trap # PC "); for (i = 0; i < 16; i++) (*d10v_callback->printf_filtered) (d10v_callback, " %sr%d", (i > 9) ? "" : " ", i); (*d10v_callback->printf_filtered) (d10v_callback, " a0 a1 f0 f1 c\n"); } (*d10v_callback->printf_filtered) (d10v_callback, "Trap %2d 0x%.4x:", (int)OP[0], (int)PC); for (i = 0; i < 16; i++) (*d10v_callback->printf_filtered) (d10v_callback, " %.4x", (int) GPR (i)); for (i = 0; i < 2; i++) (*d10v_callback->printf_filtered) (d10v_callback, " %.2x%.8lx", ((int)(ACC (i) >> 32) & 0xff), ((unsigned long) ACC (i)) & 0xffffffff); (*d10v_callback->printf_filtered) (d10v_callback, " %d %d %d\n", PSW_F0 != 0, PSW_F1 != 0, PSW_C != 0); (*d10v_callback->flush_stdout) (d10v_callback); break; } #endif case 15: /* new system call trap */ /* Trap 15 is used for simulating low-level I/O */ { unsigned32 result = 0; errno = 0; /* Registers passed to trap 0 */ #define FUNC GPR (4) /* function number */ #define PARM1 GPR (0) /* optional parm 1 */ #define PARM2 GPR (1) /* optional parm 2 */ #define PARM3 GPR (2) /* optional parm 3 */ #define PARM4 GPR (3) /* optional parm 3 */ /* Registers set by trap 0 */ #define RETVAL(X) do { result = (X); SET_GPR (0, result); } while (0) #define RETVAL32(X) do { result = (X); SET_GPR (0, result >> 16); SET_GPR (1, result); } while (0) #define RETERR(X) SET_GPR (4, (X)) /* return error code */ /* Turn a pointer in a register into a pointer into real memory. */ #define MEMPTR(x) ((char *)(dmem_addr(x))) switch (FUNC) { #if !defined(__GO32__) && !defined(_WIN32) case TARGET_SYS_fork: trace_input ("<fork>", OP_VOID, OP_VOID, OP_VOID); RETVAL (fork ()); trace_output_16 (result); break; #define getpid() 47 case TARGET_SYS_getpid: trace_input ("<getpid>", OP_VOID, OP_VOID, OP_VOID); RETVAL (getpid ()); trace_output_16 (result); break; case TARGET_SYS_kill: trace_input ("<kill>", OP_R0, OP_R1, OP_VOID); if (PARM1 == getpid ()) { trace_output_void (); State.exception = PARM2; } else { int os_sig = -1; switch (PARM2) { #ifdef SIGHUP case 1: os_sig = SIGHUP; break; #endif #ifdef SIGINT case 2: os_sig = SIGINT; break; #endif #ifdef SIGQUIT case 3: os_sig = SIGQUIT; break; #endif #ifdef SIGILL case 4: os_sig = SIGILL; break; #endif #ifdef SIGTRAP case 5: os_sig = SIGTRAP; break; #endif #ifdef SIGABRT case 6: os_sig = SIGABRT; break; #elif defined(SIGIOT) case 6: os_sig = SIGIOT; break; #endif #ifdef SIGEMT case 7: os_sig = SIGEMT; break; #endif #ifdef SIGFPE case 8: os_sig = SIGFPE; break; #endif #ifdef SIGKILL case 9: os_sig = SIGKILL; break; #endif #ifdef SIGBUS case 10: os_sig = SIGBUS; break; #endif #ifdef SIGSEGV case 11: os_sig = SIGSEGV; break; #endif #ifdef SIGSYS case 12: os_sig = SIGSYS; break; #endif #ifdef SIGPIPE case 13: os_sig = SIGPIPE; break; #endif #ifdef SIGALRM case 14: os_sig = SIGALRM; break; #endif #ifdef SIGTERM case 15: os_sig = SIGTERM; break; #endif #ifdef SIGURG case 16: os_sig = SIGURG; break; #endif #ifdef SIGSTOP case 17: os_sig = SIGSTOP; break; #endif #ifdef SIGTSTP case 18: os_sig = SIGTSTP; break; #endif #ifdef SIGCONT case 19: os_sig = SIGCONT; break; #endif #ifdef SIGCHLD case 20: os_sig = SIGCHLD; break; #elif defined(SIGCLD) case 20: os_sig = SIGCLD; break; #endif #ifdef SIGTTIN case 21: os_sig = SIGTTIN; break; #endif #ifdef SIGTTOU case 22: os_sig = SIGTTOU; break; #endif #ifdef SIGIO case 23: os_sig = SIGIO; break; #elif defined (SIGPOLL) case 23: os_sig = SIGPOLL; break; #endif #ifdef SIGXCPU case 24: os_sig = SIGXCPU; break; #endif #ifdef SIGXFSZ case 25: os_sig = SIGXFSZ; break; #endif #ifdef SIGVTALRM case 26: os_sig = SIGVTALRM; break; #endif #ifdef SIGPROF case 27: os_sig = SIGPROF; break; #endif #ifdef SIGWINCH case 28: os_sig = SIGWINCH; break; #endif #ifdef SIGLOST case 29: os_sig = SIGLOST; break; #endif #ifdef SIGUSR1 case 30: os_sig = SIGUSR1; break; #endif #ifdef SIGUSR2 case 31: os_sig = SIGUSR2; break; #endif } if (os_sig == -1) { trace_output_void (); (*d10v_callback->printf_filtered) (d10v_callback, "Unknown signal %d\n", PARM2); (*d10v_callback->flush_stdout) (d10v_callback); State.exception = SIGILL; } else { RETVAL (kill (PARM1, PARM2)); trace_output_16 (result); } } break; case TARGET_SYS_execve: trace_input ("<execve>", OP_R0, OP_R1, OP_R2); RETVAL (execve (MEMPTR (PARM1), (char **) MEMPTR (PARM2), (char **)MEMPTR (PARM3))); trace_output_16 (result); break; #ifdef TARGET_SYS_execv case TARGET_SYS_execv: trace_input ("<execv>", OP_R0, OP_R1, OP_VOID); RETVAL (execve (MEMPTR (PARM1), (char **) MEMPTR (PARM2), NULL)); trace_output_16 (result); break; #endif case TARGET_SYS_pipe: { reg_t buf; int host_fd[2]; trace_input ("<pipe>", OP_R0, OP_VOID, OP_VOID); buf = PARM1; RETVAL (pipe (host_fd)); SW (buf, host_fd[0]); buf += sizeof(uint16); SW (buf, host_fd[1]); trace_output_16 (result); } break; #if 0 #ifdef TARGET_SYS_wait case TARGET_SYS_wait: { int status; trace_input ("<wait>", OP_R0, OP_VOID, OP_VOID); RETVAL (wait (&status)); if (PARM1) SW (PARM1, status); trace_output_16 (result); } break; #endif #endif #else case TARGET_SYS_getpid: trace_input ("<getpid>", OP_VOID, OP_VOID, OP_VOID); RETVAL (1); trace_output_16 (result); break; case TARGET_SYS_kill: trace_input ("<kill>", OP_REG, OP_REG, OP_VOID); trace_output_void (); State.exception = PARM2; break; #endif case TARGET_SYS_read: trace_input ("<read>", OP_R0, OP_R1, OP_R2); RETVAL (d10v_callback->read (d10v_callback, PARM1, MEMPTR (PARM2), PARM3)); trace_output_16 (result); break; case TARGET_SYS_write: trace_input ("<write>", OP_R0, OP_R1, OP_R2); if (PARM1 == 1) RETVAL ((int)d10v_callback->write_stdout (d10v_callback, MEMPTR (PARM2), PARM3)); else RETVAL ((int)d10v_callback->write (d10v_callback, PARM1, MEMPTR (PARM2), PARM3)); trace_output_16 (result); break; case TARGET_SYS_lseek: trace_input ("<lseek>", OP_R0, OP_R1, OP_R2); RETVAL32 (d10v_callback->lseek (d10v_callback, PARM1, ((((unsigned long) PARM2) << 16) || (unsigned long) PARM3), PARM4)); trace_output_32 (result); break; case TARGET_SYS_close: trace_input ("<close>", OP_R0, OP_VOID, OP_VOID); RETVAL (d10v_callback->close (d10v_callback, PARM1)); trace_output_16 (result); break; case TARGET_SYS_open: trace_input ("<open>", OP_R0, OP_R1, OP_R2); RETVAL (d10v_callback->open (d10v_callback, MEMPTR (PARM1), PARM2)); trace_output_16 (result); break; case TARGET_SYS_exit: trace_input ("<exit>", OP_R0, OP_VOID, OP_VOID); State.exception = SIG_D10V_EXIT; trace_output_void (); break; #ifdef TARGET_SYS_stat case TARGET_SYS_stat: trace_input ("<stat>", OP_R0, OP_R1, OP_VOID); /* stat system call */ { struct stat host_stat; reg_t buf; RETVAL (stat (MEMPTR (PARM1), &host_stat)); buf = PARM2; /* The hard-coded offsets and sizes were determined by using * the D10V compiler on a test program that used struct stat. */ SW (buf, host_stat.st_dev); SW (buf+2, host_stat.st_ino); SW (buf+4, host_stat.st_mode); SW (buf+6, host_stat.st_nlink); SW (buf+8, host_stat.st_uid); SW (buf+10, host_stat.st_gid); SW (buf+12, host_stat.st_rdev); SLW (buf+16, host_stat.st_size); SLW (buf+20, host_stat.st_atime); SLW (buf+28, host_stat.st_mtime); SLW (buf+36, host_stat.st_ctime); } trace_output_16 (result); break; #endif case TARGET_SYS_chown: trace_input ("<chown>", OP_R0, OP_R1, OP_R2); RETVAL (chown (MEMPTR (PARM1), PARM2, PARM3)); trace_output_16 (result); break; case TARGET_SYS_chmod: trace_input ("<chmod>", OP_R0, OP_R1, OP_R2); RETVAL (chmod (MEMPTR (PARM1), PARM2)); trace_output_16 (result); break; #if 0 #ifdef TARGET_SYS_utime case TARGET_SYS_utime: trace_input ("<utime>", OP_R0, OP_R1, OP_R2); /* Cast the second argument to void *, to avoid type mismatch if a prototype is present. */ RETVAL (utime (MEMPTR (PARM1), (void *) MEMPTR (PARM2))); trace_output_16 (result); break; #endif #endif #if 0 #ifdef TARGET_SYS_time case TARGET_SYS_time: trace_input ("<time>", OP_R0, OP_R1, OP_R2); RETVAL32 (time (PARM1 ? MEMPTR (PARM1) : NULL)); trace_output_32 (result); break; #endif #endif default: d10v_callback->error (d10v_callback, "Unknown syscall %d", FUNC); } if ((uint16) result == (uint16) -1) RETERR (d10v_callback->get_errno(d10v_callback)); else RETERR (0); break; } } } /* tst0i */ void OP_7000000 () { trace_input ("tst0i", OP_REG, OP_CONSTANT16, OP_VOID); SET_PSW_F1 (PSW_F0);; SET_PSW_F0 ((GPR (OP[0]) & OP[1]) ? 1 : 0); trace_output_flag (); } /* tst1i */ void OP_F000000 () { trace_input ("tst1i", OP_REG, OP_CONSTANT16, OP_VOID); SET_PSW_F1 (PSW_F0); SET_PSW_F0 ((~(GPR (OP[0])) & OP[1]) ? 1 : 0); trace_output_flag (); } /* wait */ void OP_5F80 () { trace_input ("wait", OP_VOID, OP_VOID, OP_VOID); SET_PSW_IE (1); trace_output_void (); } /* xor */ void OP_A00 () { int16 tmp; trace_input ("xor", OP_REG, OP_REG, OP_VOID); tmp = (GPR (OP[0]) ^ GPR (OP[1])); SET_GPR (OP[0], tmp); trace_output_16 (tmp); } /* xor3 */ void OP_5000000 () { int16 tmp; trace_input ("xor3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16); tmp = (GPR (OP[1]) ^ OP[2]); SET_GPR (OP[0], tmp); trace_output_16 (tmp); }