URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [or1200/] [rtl/] [verilog/] [or1200_mult_mac.v] - Rev 189
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// OR1200's Top level multiplier and MAC //// //// //// //// This file is part of the OpenRISC 1200 project //// //// http://www.opencores.org/cores/or1k/ //// //// //// //// Description //// //// Multiplier is 32x32 however multiply instructions only //// //// use lower 32 bits of the result. MAC is 32x32=64+64. //// //// //// //// To Do: //// //// - make signed division better, w/o negating the operands //// //// //// //// Author(s): //// //// - Damjan Lampret, lampret@opencores.org //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: or1200_mult_mac.v,v $ // Revision 2.0 2010/06/30 11:00:00 ORSoC // Minor update: // Bugs fixed. // // Revision 1.5 2006/04/09 01:32:29 lampret // See OR1200_MAC_SHIFTBY in or1200_defines.v for explanation of the change. Since now no more 28 bits shift for l.macrc insns however for backward compatbility it is possible to set arbitry number of shifts. // // Revision 1.4 2004/06/08 18:17:36 lampret // Non-functional changes. Coding style fixes. // // Revision 1.3 2003/04/24 00:16:07 lampret // No functional changes. Added defines to disable implementation of multiplier/MAC // // Revision 1.2 2002/09/08 05:52:16 lampret // Added optional l.div/l.divu insns. By default they are disabled. // // Revision 1.1 2002/01/03 08:16:15 lampret // New prefixes for RTL files, prefixed module names. Updated cache controllers and MMUs. // // Revision 1.3 2001/10/21 17:57:16 lampret // Removed params from generic_XX.v. Added translate_off/on in sprs.v and id.v. Removed spr_addr from dc.v and ic.v. Fixed CR+LF. // // Revision 1.2 2001/10/14 13:12:09 lampret // MP3 version. // // Revision 1.1.1.1 2001/10/06 10:18:38 igorm // no message // // // synopsys translate_off `include "timescale.v" // synopsys translate_on `include "or1200_defines.v" module or1200_mult_mac( // Clock and reset clk, rst, // Multiplier/MAC interface ex_freeze, id_macrc_op, macrc_op, a, b, mac_op, alu_op, result, mac_stall_r, // SPR interface spr_cs, spr_write, spr_addr, spr_dat_i, spr_dat_o ); parameter width = `OR1200_OPERAND_WIDTH; // // I/O // // // Clock and reset // input clk; input rst; // // Multiplier/MAC interface // input ex_freeze; input id_macrc_op; input macrc_op; input [width-1:0] a; input [width-1:0] b; input [`OR1200_MACOP_WIDTH-1:0] mac_op; input [`OR1200_ALUOP_WIDTH-1:0] alu_op; output [width-1:0] result; output mac_stall_r; // // SPR interface // input spr_cs; input spr_write; input [31:0] spr_addr; input [31:0] spr_dat_i; output [31:0] spr_dat_o; // // Internal wires and regs // `ifdef OR1200_MULT_IMPLEMENTED reg [width-1:0] result; reg [2*width-1:0] mul_prod_r; `else wire [width-1:0] result; wire [2*width-1:0] mul_prod_r; `endif wire [2*width-1:0] mul_prod; wire [`OR1200_MACOP_WIDTH-1:0] mac_op; `ifdef OR1200_MAC_IMPLEMENTED reg [`OR1200_MACOP_WIDTH-1:0] mac_op_r1; reg [`OR1200_MACOP_WIDTH-1:0] mac_op_r2; reg [`OR1200_MACOP_WIDTH-1:0] mac_op_r3; reg mac_stall_r; reg [2*width-1:0] mac_r; `else wire [`OR1200_MACOP_WIDTH-1:0] mac_op_r1; wire [`OR1200_MACOP_WIDTH-1:0] mac_op_r2; wire [`OR1200_MACOP_WIDTH-1:0] mac_op_r3; wire mac_stall_r; wire [2*width-1:0] mac_r; `endif wire [width-1:0] x; wire [width-1:0] y; wire spr_maclo_we; wire spr_machi_we; wire alu_op_div_divu; wire alu_op_div; reg div_free; `ifdef OR1200_IMPL_DIV wire [width-1:0] div_tmp; reg [5:0] div_cntr; `endif // // Combinatorial logic // `ifdef OR1200_MAC_IMPLEMENTED assign spr_maclo_we = spr_cs & spr_write & spr_addr[`OR1200_MAC_ADDR]; assign spr_machi_we = spr_cs & spr_write & !spr_addr[`OR1200_MAC_ADDR]; assign spr_dat_o = spr_addr[`OR1200_MAC_ADDR] ? mac_r[31:0] : mac_r[63:32]; `else assign spr_maclo_we = 1'b0; assign spr_machi_we = 1'b0; assign spr_dat_o = 32'h0000_0000; `endif `ifdef OR1200_LOWPWR_MULT assign x = (alu_op_div & a[31]) ? ~a + 1'b1 : alu_op_div_divu | (alu_op == `OR1200_ALUOP_MUL) | (|mac_op) ? a : 32'h0000_0000; assign y = (alu_op_div & b[31]) ? ~b + 1'b1 : alu_op_div_divu | (alu_op == `OR1200_ALUOP_MUL) | (|mac_op) ? b : 32'h0000_0000; `else assign x = alu_op_div & a[31] ? ~a + 32'b1 : a; assign y = alu_op_div & b[31] ? ~b + 32'b1 : b; `endif `ifdef OR1200_IMPL_DIV assign alu_op_div = (alu_op == `OR1200_ALUOP_DIV); assign alu_op_div_divu = alu_op_div | (alu_op == `OR1200_ALUOP_DIVU); assign div_tmp = mul_prod_r[63:32] - y; `else assign alu_op_div = 1'b0; assign alu_op_div_divu = 1'b0; `endif `ifdef OR1200_MULT_IMPLEMENTED // // Select result of current ALU operation to be forwarded // to next instruction and to WB stage // always @(alu_op or mul_prod_r or mac_r or a or b) casex(alu_op) // synopsys parallel_case `ifdef OR1200_IMPL_DIV `OR1200_ALUOP_DIV: result = a[31] ^ b[31] ? ~mul_prod_r[31:0] + 1'b1 : mul_prod_r[31:0]; `OR1200_ALUOP_DIVU, `endif `OR1200_ALUOP_MUL: begin result = mul_prod_r[31:0]; end default: `ifdef OR1200_MAC_SHIFTBY result = mac_r[`OR1200_MAC_SHIFTBY+31:`OR1200_MAC_SHIFTBY]; `else result = mac_r[31:0]; `endif endcase // // Instantiation of the multiplier // `ifdef OR1200_ASIC_MULTP2_32X32 or1200_amultp2_32x32 or1200_amultp2_32x32( .X(x), .Y(y), .RST(rst), .CLK(clk), .P(mul_prod) ); `else // OR1200_ASIC_MULTP2_32X32 or1200_gmultp2_32x32 or1200_gmultp2_32x32( .X(x), .Y(y), .RST(rst), .CLK(clk), .P(mul_prod) ); `endif // OR1200_ASIC_MULTP2_32X32 // // Registered output from the multiplier and // an optional divider // always @(posedge rst or posedge clk) if (rst) begin mul_prod_r <= #1 64'h0000_0000_0000_0000; div_free <= #1 1'b1; `ifdef OR1200_IMPL_DIV div_cntr <= #1 6'b00_0000; `endif end `ifdef OR1200_IMPL_DIV else if (|div_cntr) begin if (div_tmp[31]) mul_prod_r <= #1 {mul_prod_r[62:0], 1'b0}; else mul_prod_r <= #1 {div_tmp[30:0], mul_prod_r[31:0], 1'b1}; div_cntr <= #1 div_cntr - 1'b1; end else if (alu_op_div_divu && div_free) begin mul_prod_r <= #1 {31'b0, x[31:0], 1'b0}; div_cntr <= #1 6'b10_0000; div_free <= #1 1'b0; end `endif // OR1200_IMPL_DIV else if (div_free | !ex_freeze) begin mul_prod_r <= #1 mul_prod[63:0]; div_free <= #1 1'b1; end `else // OR1200_MULT_IMPLEMENTED assign result = {width{1'b0}}; assign mul_prod = {2*width{1'b0}}; assign mul_prod_r = {2*width{1'b0}}; `endif // OR1200_MULT_IMPLEMENTED `ifdef OR1200_MAC_IMPLEMENTED // // Propagation of l.mac opcode // always @(posedge clk or posedge rst) if (rst) mac_op_r1 <= #1 `OR1200_MACOP_WIDTH'b0; else mac_op_r1 <= #1 mac_op; // // Propagation of l.mac opcode // always @(posedge clk or posedge rst) if (rst) mac_op_r2 <= #1 `OR1200_MACOP_WIDTH'b0; else mac_op_r2 <= #1 mac_op_r1; // // Propagation of l.mac opcode // always @(posedge clk or posedge rst) if (rst) mac_op_r3 <= #1 `OR1200_MACOP_WIDTH'b0; else mac_op_r3 <= #1 mac_op_r2; // // Implementation of MAC // always @(posedge rst or posedge clk) if (rst) mac_r <= #1 64'h0000_0000_0000_0000; `ifdef OR1200_MAC_SPR_WE else if (spr_maclo_we) mac_r[31:0] <= #1 spr_dat_i; else if (spr_machi_we) mac_r[63:32] <= #1 spr_dat_i; `endif else if (mac_op_r3 == `OR1200_MACOP_MAC) mac_r <= #1 mac_r + mul_prod_r; else if (mac_op_r3 == `OR1200_MACOP_MSB) mac_r <= #1 mac_r - mul_prod_r; else if (macrc_op && !ex_freeze) mac_r <= #1 64'h0000_0000_0000_0000; // // Stall CPU if l.macrc is in ID and MAC still has to process l.mac instructions // in EX stage (e.g. inside multiplier) // This stall signal is also used by the divider. // always @(posedge rst or posedge clk) if (rst) mac_stall_r <= #1 1'b0; else mac_stall_r <= #1 (|mac_op | (|mac_op_r1) | (|mac_op_r2)) & (id_macrc_op | mac_stall_r) `ifdef OR1200_IMPL_DIV | (|div_cntr) `endif ; `else // OR1200_MAC_IMPLEMENTED assign mac_stall_r = 1'b0; assign mac_r = {2*width{1'b0}}; assign mac_op_r1 = `OR1200_MACOP_WIDTH'b0; assign mac_op_r2 = `OR1200_MACOP_WIDTH'b0; assign mac_op_r3 = `OR1200_MACOP_WIDTH'b0; `endif // OR1200_MAC_IMPLEMENTED endmodule
Go to most recent revision | Compare with Previous | Blame | View Log