URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [mn10300/] [stdeval1/] [current/] [src/] [hal_diag.c] - Rev 786
Compare with Previous | Blame | View Log
/*============================================================================= // // hal_diag.c // // HAL diagnostic output code // //============================================================================= // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): nickg // Contributors: nickg // Date: 1998-03-02 // Purpose: HAL diagnostic output // Description: Implementations of HAL diagnostic output support. // //####DESCRIPTIONEND#### // //===========================================================================*/ #include <pkgconf/hal.h> #include <cyg/infra/cyg_type.h> // base types #include <cyg/infra/cyg_trac.h> // tracing macros #include <cyg/infra/cyg_ass.h> // assertion macros #include <cyg/hal/hal_diag.h> #include <cyg/hal/hal_intr.h> /*---------------------------------------------------------------------------*/ /* Select default diag channel to use */ //#define CYG_KERNEL_DIAG_ROMART //#define CYG_KERNEL_DIAG_SERIAL1 //#define CYG_KERNEL_DIAG_SERIAL2 //#define CYG_KERNEL_DIAG_GDB #if !defined(CYG_KERNEL_DIAG_SERIAL1) && \ !defined(CYG_KERNEL_DIAG_SERIAL2) && \ !defined(CYG_KERNEL_DIAG_ROMART) # if defined(CYG_HAL_MN10300_AM31_STDEVAL1) # if defined(CYG_HAL_STARTUP_RAM) # if defined(CYGSEM_HAL_USE_ROM_MONITOR_CygMon) // If loaded into RAM via CYGMON we diag via // serial 2 using GDB protocol # define CYG_KERNEL_DIAG_SERIAL2 # define CYG_KERNEL_DIAG_GDB # elif defined(CYGSEM_HAL_USE_ROM_MONITOR_Sload) // If loaded into RAM via SLOAD we diag via // serial 1 # define CYG_KERNEL_DIAG_SERIAL1 # elif defined(CYGSEM_HAL_USE_ROM_MONITOR_GDB_stubs) // If loaded into RAM via GDB STUB ROM we diag via // serial 1 using GDB protocol # define CYG_KERNEL_DIAG_SERIAL1 # define CYG_KERNEL_DIAG_GDB # endif // defined(CYGSEM_HAL_USE_ROM_MONITOR_CygMon) # elif defined(CYG_HAL_STARTUP_ROM) // If we are ROM resident, we diag via serial 1 # define CYG_KERNEL_DIAG_SERIAL1 # endif // defined(CYG_HAL_STARTUP_RAM) # endif // defined(CYG_HAL_MN10300_AM31_STDEVAL1) #endif // if ... /*---------------------------------------------------------------------------*/ // PromICE AI interface #if defined(CYG_HAL_MN10300_STDEVAL1_ROMART) || defined(CYG_KERNEL_DIAG_ROMART) #ifdef CYG_HAL_MN10300_AM31_STDEVAL1 #define PROMICE_AILOC 0x40008000 #endif #define PROMICE_BUS_SIZE 16 #define PROMICE_BURST_SIZE 1 #if PROMICE_BUS_SIZE == 16 typedef volatile struct { volatile cyg_uint16 zero; // cyg_uint16 pad1[PROMICE_BURST_SIZE]; volatile cyg_uint16 one; // cyg_uint16 pad2[PROMICE_BURST_SIZE]; volatile cyg_uint16 data; // cyg_uint16 pad3[PROMICE_BURST_SIZE]; volatile cyg_uint16 status; } AISTRUCT; #endif AISTRUCT *AI = (AISTRUCT *)PROMICE_AILOC; #define PROMICE_STATUS_TDA 0x01 #define PROMICE_STATUS_HDA 0x02 #define PROMICE_STATUS_OVR 0x04 void ai_diag_init() { volatile cyg_uint8 junk; while( AI->status == 0xCC ) continue; junk = AI->data; } static void ai_write_char(cyg_uint8 data) { volatile cyg_uint8 junk; int i; // Wait for tda == 0 while( (AI->status & PROMICE_STATUS_TDA) == PROMICE_STATUS_TDA ) continue; // Send start bit junk = AI->one; for( i = 0; i < 8; i++ ) { // send ls bit of data if( (data & 1) == 1 ) junk = AI->one; else junk = AI->zero; // shift down for next bit data >>= 1; } // Send stop bit junk = AI->one; // all done } void ai_diag_write_char(char c) { ai_write_char((cyg_uint8)c); } void ai_diag_drain() {} void ai_diag_read_char(char *c) { *c = '\n'; } void ai_writes(char *s) { while( *s ) ai_write_char( *s++ ); } void ai_write_hex( cyg_uint32 x) { int i; ai_writes("0x"); for( i = 28; i >=0 ; i-=4 ) { char *d = "0123456789ABCDEF"; ai_write_char( d[(x>>i)&0xf] ); } ai_write_char(' '); } #if defined(CYG_KERNEL_DIAG_ROMART) #define hal_diag_init_serial ai_diag_init #define hal_diag_write_char_serial ai_diag_write_char #define hal_diag_drain_serial ai_diag_drain #define hal_diag_read_char_serial ai_diag_read_char #endif #endif /*---------------------------------------------------------------------------*/ // MN10300 Serial line #if defined(CYG_HAL_MN10300_STDEVAL1_SERIAL1) || defined(CYG_KERNEL_DIAG_SERIAL1) // We use serial1 on MN103002 #define SERIAL1_CR ((volatile cyg_uint16 *)0x34000810) #define SERIAL1_ICR ((volatile cyg_uint8 *) 0x34000814) #define SERIAL1_TXR ((volatile cyg_uint8 *) 0x34000818) #define SERIAL1_RXR ((volatile cyg_uint8 *) 0x34000819) #define SERIAL1_SR ((volatile cyg_uint16 *)0x3400081c) // Timer 1 provided baud rate divisor #define TIMER1_MD ((volatile cyg_uint8 *)0x34001001) #define TIMER1_BR ((volatile cyg_uint8 *)0x34001011) #define TIMER1_CR ((volatile cyg_uint8 *)0x34001021) #define PORT3_MD ((volatile cyg_uint8 *)0x36008025) // Mystery register #define TMPSCNT ((volatile cyg_uint8 *)0x34001071) #define SIO1_LSTAT_TRDY 0x20 #define SIO1_LSTAT_RRDY 0x10 void hal_diag_init_serial1(void) { // 48 translates to 38400 baud. *TIMER1_BR = 48; // Timer1 sourced from IOCLK *TIMER1_MD = 0x80; // Mode on PORT3, used for serial line controls. *PORT3_MD = 0x01; // No interrupts for now. *SERIAL1_ICR = 0x00; // Source from timer 1, 8bit chars, enable tx and rx *SERIAL1_CR = 0xc084; } void hal_diag_write_char_serial1(char c) { register volatile cyg_uint16 *volatile tty_status = SERIAL1_SR; register volatile cyg_uint8 *volatile tty_tx = SERIAL1_TXR; while( (*tty_status & SIO1_LSTAT_TRDY) != 0 ) continue; *tty_tx = c; } void hal_diag_drain_serial1(void) { register volatile cyg_uint16 *volatile tty_status = SERIAL1_SR; while( (*tty_status & SIO1_LSTAT_TRDY) != 0 ) continue; } void hal_diag_read_char_serial1(char *c) { register volatile cyg_uint16 *volatile tty_status = SERIAL1_SR; register volatile cyg_uint8 *volatile tty_rx = SERIAL1_RXR; while( (*tty_status & SIO1_LSTAT_RRDY) == 0 ) continue; *c = *tty_rx; // We must ack the interrupt caused by that read to avoid // confusing cygmon. HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_SERIAL_1_RX ); } #if defined(CYG_KERNEL_DIAG_SERIAL1) #define hal_diag_init_serial hal_diag_init_serial1 #define hal_diag_write_char_serial hal_diag_write_char_serial1 #define hal_diag_drain_serial hal_diag_drain_serial1 #define hal_diag_read_char_serial hal_diag_read_char_serial1 #endif #endif #if defined(CYG_HAL_MN10300_AM31_STDEVAL1) void led(int x) { *((cyg_uint8 *)0x36008004) = x<<4; } #endif /*---------------------------------------------------------------------------*/ #if defined(CYG_HAL_MN10300_STDEVAL1_SERIAL2) || defined(CYG_KERNEL_DIAG_SERIAL2) // We use serial2 on MN103002 #define SERIAL2_CR ((volatile cyg_uint16 *)0x34000820) #define SERIAL2_ICR ((volatile cyg_uint8 *) 0x34000824) #define SERIAL2_TXR ((volatile cyg_uint8 *) 0x34000828) #define SERIAL2_RXR ((volatile cyg_uint8 *) 0x34000829) #define SERIAL2_SR ((volatile cyg_uint8 *)0x3400082c) #define SERIAL2_TR ((volatile cyg_uint8 *)0x3400082d) // Timer 2 provided baud rate divisor #define TIMER2_MD ((volatile cyg_uint8 *)0x34001002) #define TIMER2_BR ((volatile cyg_uint8 *)0x34001012) #define TIMER2_CR ((volatile cyg_uint8 *)0x34001022) #define PORT3_MD ((volatile cyg_uint8 *)0x36008025) // Mystery register #define TMPSCNT ((volatile cyg_uint8 *)0x34001071) #define SIO2_LSTAT_TRDY 0x20 #define SIO2_LSTAT_RRDY 0x10 void hal_diag_init_serial2(void) { #if !defined(CYGSEM_HAL_USE_ROM_MONITOR_CygMon) // 16 and 22 translate to 38400 baud. *TIMER2_BR = 16; *SERIAL2_TR = 22; // Timer2 sourced from IOCLK *TIMER2_MD = 0x80; // Mode on PORT3, used for serial line controls. *PORT3_MD = 0x01; // No interrupts for now. *SERIAL2_ICR = 0x00; // Source from timer 2, 8bit chars, enable tx and rx *SERIAL2_CR = 0xc081; #endif } void hal_diag_write_char_serial2(char c) { register volatile cyg_uint8 *volatile tty_status = SERIAL2_SR; register volatile cyg_uint8 *volatile tty_tx = SERIAL2_TXR; while( (*tty_status & SIO2_LSTAT_TRDY) != 0 ) continue; *tty_tx = c; } void hal_diag_drain_serial2(void) { register volatile cyg_uint8 *volatile tty_status = SERIAL2_SR; while( (*tty_status & SIO2_LSTAT_TRDY) != 0 ) continue; } void hal_diag_read_char_serial2(char *c) { register volatile cyg_uint8 *volatile tty_status = SERIAL2_SR; register volatile cyg_uint8 *volatile tty_rx = SERIAL2_RXR; while( (*tty_status & SIO2_LSTAT_RRDY) == 0 ) continue; *c = *tty_rx; #if !defined(CYGSEM_HAL_USE_ROM_MONITOR_CygMon) // We must ack the interrupt caused by that read to avoid // confusing the stubs. HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_SERIAL_2_RX ); #endif } #if defined(CYG_KERNEL_DIAG_SERIAL2) #define hal_diag_init_serial hal_diag_init_serial2 #define hal_diag_write_char_serial hal_diag_write_char_serial2 #define hal_diag_drain_serial hal_diag_drain_serial2 #define hal_diag_read_char_serial hal_diag_read_char_serial2 #endif #endif /*---------------------------------------------------------------------------*/ void hal_diag_init(void) { hal_diag_init_serial(); } void hal_diag_write_char(char c) { #ifdef CYG_KERNEL_DIAG_GDB static char line[100]; static int pos = 0; // No need to send CRs if( c == '\r' ) return; line[pos++] = c; if( c == '\n' || pos == sizeof(line) ) { // Disable interrupts. This prevents GDB trying to interrupt us // while we are in the middle of sending a packet. The serial // receive interrupt will be seen when we re-enable interrupts // later. CYG_INTERRUPT_STATE oldstate; CYG_BYTE wdcr; HAL_DISABLE_INTERRUPTS(oldstate); // Beacuse of problems with NT on the testfarm, we also have // to disable the watchdog here. This only matters in the // watchdog tests. And yes, this sends my irony meter off the // scale too. HAL_READ_UINT8( 0x34004002, wdcr ); HAL_WRITE_UINT8( 0x34004002, wdcr&0x3F ); while(1) { static char hex[] = "0123456789ABCDEF"; cyg_uint8 csum = 0; int i; hal_diag_write_char_serial('$'); hal_diag_write_char_serial('O'); csum += 'O'; for( i = 0; i < pos; i++ ) { char ch = line[i]; char h = hex[(ch>>4)&0xF]; char l = hex[ch&0xF]; hal_diag_write_char_serial(h); hal_diag_write_char_serial(l); csum += h; csum += l; } hal_diag_write_char_serial('#'); hal_diag_write_char_serial(hex[(csum>>4)&0xF]); hal_diag_write_char_serial(hex[csum&0xF]); #if !defined(CYGSEM_HAL_USE_ROM_MONITOR_CygMon) { char c1; hal_diag_read_char_serial( &c1 ); if( c1 == '+' ) break; if( cyg_hal_is_break( &c1, 1 ) ) cyg_hal_user_break( NULL ); } #else // When using Cygmon, the ack character is absorbed by cygmon's // serial interrupt handler that is looking for Ctrl-Cs. break; #endif } pos = 0; // Wait for tx buffer to drain hal_diag_drain_serial(); // And re-enable interrupts HAL_RESTORE_INTERRUPTS(oldstate); HAL_WRITE_UINT8( 0x34004002, wdcr ); } #else hal_diag_write_char_serial(c); #endif } void hal_diag_read_char(char *c) { hal_diag_read_char_serial(c); } /*---------------------------------------------------------------------------*/ /* End of hal_diag.c */