URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [fs/] [reiserfs/] [ibalance.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README */ #include <linux/config.h> #include <asm/uaccess.h> #include <linux/string.h> #include <linux/sched.h> #include <linux/reiserfs_fs.h> /* this is one and only function that is used outside (do_balance.c) */ int balance_internal ( struct tree_balance * , int, int, struct item_head * , struct buffer_head ** ); /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */ #define INTERNAL_SHIFT_FROM_S_TO_L 0 #define INTERNAL_SHIFT_FROM_R_TO_S 1 #define INTERNAL_SHIFT_FROM_L_TO_S 2 #define INTERNAL_SHIFT_FROM_S_TO_R 3 #define INTERNAL_INSERT_TO_S 4 #define INTERNAL_INSERT_TO_L 5 #define INTERNAL_INSERT_TO_R 6 static void internal_define_dest_src_infos ( int shift_mode, struct tree_balance * tb, int h, struct buffer_info * dest_bi, struct buffer_info * src_bi, int * d_key, struct buffer_head ** cf ) { memset (dest_bi, 0, sizeof (struct buffer_info)); memset (src_bi, 0, sizeof (struct buffer_info)); /* define dest, src, dest parent, dest position */ switch (shift_mode) { case INTERNAL_SHIFT_FROM_S_TO_L: /* used in internal_shift_left */ src_bi->tb = tb; src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); dest_bi->tb = tb; dest_bi->bi_bh = tb->L[h]; dest_bi->bi_parent = tb->FL[h]; dest_bi->bi_position = get_left_neighbor_position (tb, h); *d_key = tb->lkey[h]; *cf = tb->CFL[h]; break; case INTERNAL_SHIFT_FROM_L_TO_S: src_bi->tb = tb; src_bi->bi_bh = tb->L[h]; src_bi->bi_parent = tb->FL[h]; src_bi->bi_position = get_left_neighbor_position (tb, h); dest_bi->tb = tb; dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */ *d_key = tb->lkey[h]; *cf = tb->CFL[h]; break; case INTERNAL_SHIFT_FROM_R_TO_S: /* used in internal_shift_left */ src_bi->tb = tb; src_bi->bi_bh = tb->R[h]; src_bi->bi_parent = tb->FR[h]; src_bi->bi_position = get_right_neighbor_position (tb, h); dest_bi->tb = tb; dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); *d_key = tb->rkey[h]; *cf = tb->CFR[h]; break; case INTERNAL_SHIFT_FROM_S_TO_R: src_bi->tb = tb; src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); dest_bi->tb = tb; dest_bi->bi_bh = tb->R[h]; dest_bi->bi_parent = tb->FR[h]; dest_bi->bi_position = get_right_neighbor_position (tb, h); *d_key = tb->rkey[h]; *cf = tb->CFR[h]; break; case INTERNAL_INSERT_TO_L: dest_bi->tb = tb; dest_bi->bi_bh = tb->L[h]; dest_bi->bi_parent = tb->FL[h]; dest_bi->bi_position = get_left_neighbor_position (tb, h); break; case INTERNAL_INSERT_TO_S: dest_bi->tb = tb; dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); break; case INTERNAL_INSERT_TO_R: dest_bi->tb = tb; dest_bi->bi_bh = tb->R[h]; dest_bi->bi_parent = tb->FR[h]; dest_bi->bi_position = get_right_neighbor_position (tb, h); break; default: reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode); } } /* Insert count node pointers into buffer cur before position to + 1. * Insert count items into buffer cur before position to. * Items and node pointers are specified by inserted and bh respectively. */ static void internal_insert_childs (struct buffer_info * cur_bi, int to, int count, struct item_head * inserted, struct buffer_head ** bh ) { struct buffer_head * cur = cur_bi->bi_bh; struct block_head * blkh; int nr; struct key * ih; struct disk_child new_dc[2]; struct disk_child * dc; int i; if (count <= 0) return; blkh = B_BLK_HEAD(cur); nr = blkh_nr_item(blkh); RFALSE( count > 2, "too many children (%d) are to be inserted", count); RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE), "no enough free space (%d), needed %d bytes", B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE)); /* prepare space for count disk_child */ dc = B_N_CHILD(cur,to+1); memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE); /* copy to_be_insert disk children */ for (i = 0; i < count; i ++) { put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i])); put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr ); } memcpy (dc, new_dc, DC_SIZE * count); /* prepare space for count items */ ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to)); memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE); /* copy item headers (keys) */ memcpy (ih, inserted, KEY_SIZE); if ( count > 1 ) memcpy (ih + 1, inserted + 1, KEY_SIZE); /* sizes, item number */ set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count ); set_blkh_free_space( blkh, blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) ); do_balance_mark_internal_dirty (cur_bi->tb, cur,0); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ check_internal (cur); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ if (cur_bi->bi_parent) { struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position); put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE))); do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ check_internal (cur_bi->bi_parent); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ } } /* Delete del_num items and node pointers from buffer cur starting from * * the first_i'th item and first_p'th pointers respectively. */ static void internal_delete_pointers_items ( struct buffer_info * cur_bi, int first_p, int first_i, int del_num ) { struct buffer_head * cur = cur_bi->bi_bh; int nr; struct block_head * blkh; struct key * key; struct disk_child * dc; RFALSE( cur == NULL, "buffer is 0"); RFALSE( del_num < 0, "negative number of items (%d) can not be deleted", del_num); RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0, "first pointer order (%d) < 0 or " "no so many pointers (%d), only (%d) or " "first key order %d < 0", first_p, first_p + del_num, B_NR_ITEMS (cur) + 1, first_i); if ( del_num == 0 ) return; blkh = B_BLK_HEAD(cur); nr = blkh_nr_item(blkh); if ( first_p == 0 && del_num == nr + 1 ) { RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i); make_empty_node (cur_bi); return; } RFALSE( first_i + del_num > B_NR_ITEMS (cur), "first_i = %d del_num = %d " "no so many keys (%d) in the node (%b)(%z)", first_i, del_num, first_i + del_num, cur, cur); /* deleting */ dc = B_N_CHILD (cur, first_p); memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE); key = B_N_PDELIM_KEY (cur, first_i); memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE); /* sizes, item number */ set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num ); set_blkh_free_space( blkh, blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) ); do_balance_mark_internal_dirty (cur_bi->tb, cur, 0); /*&&&&&&&&&&&&&&&&&&&&&&&*/ check_internal (cur); /*&&&&&&&&&&&&&&&&&&&&&&&*/ if (cur_bi->bi_parent) { struct disk_child *t_dc; t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position); put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) ); do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ check_internal (cur_bi->bi_parent); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ } } /* delete n node pointers and items starting from given position */ static void internal_delete_childs (struct buffer_info * cur_bi, int from, int n) { int i_from; i_from = (from == 0) ? from : from - 1; /* delete n pointers starting from `from' position in CUR; delete n keys starting from 'i_from' position in CUR; */ internal_delete_pointers_items (cur_bi, from, i_from, n); } /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest */ static void internal_copy_pointers_items ( struct buffer_info * dest_bi, struct buffer_head * src, int last_first, int cpy_num ) { /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST * * as delimiting key have already inserted to buffer dest.*/ struct buffer_head * dest = dest_bi->bi_bh; int nr_dest, nr_src; int dest_order, src_order; struct block_head * blkh; struct key * key; struct disk_child * dc; nr_src = B_NR_ITEMS (src); RFALSE( dest == NULL || src == NULL, "src (%p) or dest (%p) buffer is 0", src, dest); RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST, "invalid last_first parameter (%d)", last_first); RFALSE( nr_src < cpy_num - 1, "no so many items (%d) in src (%d)", cpy_num, nr_src); RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num); RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest), "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)", cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest)); if ( cpy_num == 0 ) return; /* coping */ blkh = B_BLK_HEAD(dest); nr_dest = blkh_nr_item(blkh); /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/ /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/ (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order = nr_src - cpy_num + 1) : (dest_order = nr_dest, src_order = 0); /* prepare space for cpy_num pointers */ dc = B_N_CHILD (dest, dest_order); memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE); /* insert pointers */ memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num); /* prepare space for cpy_num - 1 item headers */ key = B_N_PDELIM_KEY(dest, dest_order); memmove (key + cpy_num - 1, key, KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num)); /* insert headers */ memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1)); /* sizes, item number */ set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) ); set_blkh_free_space( blkh, blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) ); do_balance_mark_internal_dirty (dest_bi->tb, dest, 0); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ check_internal (dest); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ if (dest_bi->bi_parent) { struct disk_child *t_dc; t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position); put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) ); do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ check_internal (dest_bi->bi_parent); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ } } /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest. * Delete cpy_num - del_par items and node pointers from buffer src. * last_first == FIRST_TO_LAST means, that we copy/delete first items from src. * last_first == LAST_TO_FIRST means, that we copy/delete last items from src. */ static void internal_move_pointers_items (struct buffer_info * dest_bi, struct buffer_info * src_bi, int last_first, int cpy_num, int del_par) { int first_pointer; int first_item; internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num); if (last_first == FIRST_TO_LAST) { /* shift_left occurs */ first_pointer = 0; first_item = 0; /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer, for key - with first_item */ internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par); } else { /* shift_right occurs */ int i, j; i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par; internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par); } } /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */ static void internal_insert_key (struct buffer_info * dest_bi, int dest_position_before, /* insert key before key with n_dest number */ struct buffer_head * src, int src_position) { struct buffer_head * dest = dest_bi->bi_bh; int nr; struct block_head * blkh; struct key * key; RFALSE( dest == NULL || src == NULL, "source(%p) or dest(%p) buffer is 0", src, dest); RFALSE( dest_position_before < 0 || src_position < 0, "source(%d) or dest(%d) key number less than 0", src_position, dest_position_before); RFALSE( dest_position_before > B_NR_ITEMS (dest) || src_position >= B_NR_ITEMS(src), "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))", dest_position_before, B_NR_ITEMS (dest), src_position, B_NR_ITEMS(src)); RFALSE( B_FREE_SPACE (dest) < KEY_SIZE, "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest)); blkh = B_BLK_HEAD(dest); nr = blkh_nr_item(blkh); /* prepare space for inserting key */ key = B_N_PDELIM_KEY (dest, dest_position_before); memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE); /* insert key */ memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE); /* Change dirt, free space, item number fields. */ set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 ); set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE ); do_balance_mark_internal_dirty (dest_bi->tb, dest, 0); if (dest_bi->bi_parent) { struct disk_child *t_dc; t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position); put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE ); do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0); } } /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest. * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest. * Replace d_key'th key in buffer cfl. * Delete pointer_amount items and node pointers from buffer src. */ /* this can be invoked both to shift from S to L and from R to S */ static void internal_shift_left ( int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */ struct tree_balance * tb, int h, int pointer_amount ) { struct buffer_info dest_bi, src_bi; struct buffer_head * cf; int d_key_position; internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); /*printk("pointer_amount = %d\n",pointer_amount);*/ if (pointer_amount) { /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */ internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position); if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) { if (src_bi.bi_position/*src->b_item_order*/ == 0) replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0); } else replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1); } /* last parameter is del_parameter */ internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0); } /* Insert delimiting key to L[h]. * Copy n node pointers and n - 1 items from buffer S[h] to L[h]. * Delete n - 1 items and node pointers from buffer S[h]. */ /* it always shifts from S[h] to L[h] */ static void internal_shift1_left ( struct tree_balance * tb, int h, int pointer_amount ) { struct buffer_info dest_bi, src_bi; struct buffer_head * cf; int d_key_position; internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); if ( pointer_amount > 0 ) /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */ internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position); /* internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/ /* last parameter is del_parameter */ internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1); /* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/ } /* Insert d_key'th (delimiting) key from buffer cfr to head of dest. * Copy n node pointers and n - 1 items from buffer src to buffer dest. * Replace d_key'th key in buffer cfr. * Delete n items and node pointers from buffer src. */ static void internal_shift_right ( int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */ struct tree_balance * tb, int h, int pointer_amount ) { struct buffer_info dest_bi, src_bi; struct buffer_head * cf; int d_key_position; int nr; internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); nr = B_NR_ITEMS (src_bi.bi_bh); if (pointer_amount > 0) { /* insert delimiting key from common father of dest and src to dest node into position 0 */ internal_insert_key (&dest_bi, 0, cf, d_key_position); if (nr == pointer_amount - 1) { RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ || dest_bi.bi_bh != tb->R[h], "src (%p) must be == tb->S[h](%p) when it disappears", src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h)); /* when S[h] disappers replace left delemiting key as well */ if (tb->CFL[h]) replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]); } else replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount); } /* last parameter is del_parameter */ internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0); } /* Insert delimiting key to R[h]. * Copy n node pointers and n - 1 items from buffer S[h] to R[h]. * Delete n - 1 items and node pointers from buffer S[h]. */ /* it always shift from S[h] to R[h] */ static void internal_shift1_right ( struct tree_balance * tb, int h, int pointer_amount ) { struct buffer_info dest_bi, src_bi; struct buffer_head * cf; int d_key_position; internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */ internal_insert_key (&dest_bi, 0, cf, d_key_position); /* internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/ /* last parameter is del_parameter */ internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1); /* internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/ } /* Delete insert_num node pointers together with their left items * and balance current node.*/ static void balance_internal_when_delete (struct tree_balance * tb, int h, int child_pos) { int insert_num; int n; struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h); struct buffer_info bi; insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE)); /* delete child-node-pointer(s) together with their left item(s) */ bi.tb = tb; bi.bi_bh = tbSh; bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h); bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1); internal_delete_childs (&bi, child_pos, -insert_num); RFALSE( tb->blknum[h] > 1, "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]); n = B_NR_ITEMS(tbSh); if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) { if ( tb->blknum[h] == 0 ) { /* node S[h] (root of the tree) is empty now */ struct buffer_head *new_root; RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE, "buffer must have only 0 keys (%d)", n); RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent); /* choose a new root */ if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) ) new_root = tb->R[h-1]; else new_root = tb->L[h-1]; /* switch super block's tree root block number to the new value */ PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr ); //tb->tb_sb->u.reiserfs_sb.s_rs->s_tree_height --; PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 ); do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1); /*&&&&&&&&&&&&&&&&&&&&&&*/ if (h > 1) /* use check_internal if new root is an internal node */ check_internal (new_root); /*&&&&&&&&&&&&&&&&&&&&&&*/ tb->tb_sb->s_dirt = 1; /* do what is needed for buffer thrown from tree */ reiserfs_invalidate_buffer(tb, tbSh); return; } return; } if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */ RFALSE( tb->rnum[h] != 0, "invalid tb->rnum[%d]==%d when joining S[h] with L[h]", h, tb->rnum[h]); internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1); reiserfs_invalidate_buffer(tb, tbSh); return; } if ( tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */ RFALSE( tb->lnum[h] != 0, "invalid tb->lnum[%d]==%d when joining S[h] with R[h]", h, tb->lnum[h]); internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1); reiserfs_invalidate_buffer(tb,tbSh); return; } if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */ RFALSE( tb->rnum[h] != 0, "wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]); /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/ internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]); return; } if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */ RFALSE( tb->lnum[h] != 0, "invalid tb->lnum[%d]==%d when borrow from R[h]", h, tb->lnum[h]); internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/ return; } if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */ RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1, "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them", h, tb->lnum[h], h, tb->rnum[h], n); internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/ internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]); reiserfs_invalidate_buffer (tb, tbSh); return; } reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d", h, tb->lnum[h], h, tb->rnum[h]); } /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/ void replace_lkey ( struct tree_balance * tb, int h, struct item_head * key ) { RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL, "L[h](%p) and CFL[h](%p) must exist in replace_lkey", tb->L[h], tb->CFL[h]); if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0) return; memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE); do_balance_mark_internal_dirty (tb, tb->CFL[h],0); } /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/ void replace_rkey ( struct tree_balance * tb, int h, struct item_head * key ) { RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL, "R[h](%p) and CFR[h](%p) must exist in replace_rkey", tb->R[h], tb->CFR[h]); RFALSE( B_NR_ITEMS(tb->R[h]) == 0, "R[h] can not be empty if it exists (item number=%d)", B_NR_ITEMS(tb->R[h])); memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE); do_balance_mark_internal_dirty (tb, tb->CFR[h], 0); } int balance_internal (struct tree_balance * tb, /* tree_balance structure */ int h, /* level of the tree */ int child_pos, struct item_head * insert_key, /* key for insertion on higher level */ struct buffer_head ** insert_ptr /* node for insertion on higher level*/ ) /* if inserting/pasting { child_pos is the position of the node-pointer in S[h] that * pointed to S[h-1] before balancing of the h-1 level; * this means that new pointers and items must be inserted AFTER * child_pos } else { it is the position of the leftmost pointer that must be deleted (together with its corresponding key to the left of the pointer) as a result of the previous level's balancing. } */ { struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h); struct buffer_info bi; int order; /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */ int insert_num, n, k; struct buffer_head * S_new; struct item_head new_insert_key; struct buffer_head * new_insert_ptr = NULL; struct item_head * new_insert_key_addr = insert_key; RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h); PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] ); order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0; /* Using insert_size[h] calculate the number insert_num of items that must be inserted to or deleted from S[h]. */ insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE)); /* Check whether insert_num is proper **/ RFALSE( insert_num < -2 || insert_num > 2, "incorrect number of items inserted to the internal node (%d)", insert_num); RFALSE( h > 1 && (insert_num > 1 || insert_num < -1), "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level", insert_num, h); /* Make balance in case insert_num < 0 */ if ( insert_num < 0 ) { balance_internal_when_delete (tb, h, child_pos); return order; } k = 0; if ( tb->lnum[h] > 0 ) { /* shift lnum[h] items from S[h] to the left neighbor L[h]. check how many of new items fall into L[h] or CFL[h] after shifting */ n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */ if ( tb->lnum[h] <= child_pos ) { /* new items don't fall into L[h] or CFL[h] */ internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/ child_pos -= tb->lnum[h]; } else if ( tb->lnum[h] > child_pos + insert_num ) { /* all new items fall into L[h] */ internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num); /* internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh, tb->lnum[h]-insert_num); */ /* insert insert_num keys and node-pointers into L[h] */ bi.tb = tb; bi.bi_bh = tb->L[h]; bi.bi_parent = tb->FL[h]; bi.bi_position = get_left_neighbor_position (tb, h); internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1, insert_num,insert_key,insert_ptr); insert_num = 0; } else { struct disk_child * dc; /* some items fall into L[h] or CFL[h], but some don't fall */ internal_shift1_left(tb,h,child_pos+1); /* calculate number of new items that fall into L[h] */ k = tb->lnum[h] - child_pos - 1; bi.tb = tb; bi.bi_bh = tb->L[h]; bi.bi_parent = tb->FL[h]; bi.bi_position = get_left_neighbor_position (tb, h); internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k, insert_key,insert_ptr); replace_lkey(tb,h,insert_key + k); /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */ dc = B_N_CHILD(tbSh, 0); put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k])); put_dc_block_number( dc, insert_ptr[k]->b_blocknr ); do_balance_mark_internal_dirty (tb, tbSh, 0); k++; insert_key += k; insert_ptr += k; insert_num -= k; child_pos = 0; } } /* tb->lnum[h] > 0 */ if ( tb->rnum[h] > 0 ) { /*shift rnum[h] items from S[h] to the right neighbor R[h]*/ /* check how many of new items fall into R or CFR after shifting */ n = B_NR_ITEMS (tbSh); /* number of items in S[h] */ if ( n - tb->rnum[h] >= child_pos ) /* new items fall into S[h] */ /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/ internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]); else if ( n + insert_num - tb->rnum[h] < child_pos ) { /* all new items fall into R[h] */ /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h], tb->rnum[h] - insert_num);*/ internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num); /* insert insert_num keys and node-pointers into R[h] */ bi.tb = tb; bi.bi_bh = tb->R[h]; bi.bi_parent = tb->FR[h]; bi.bi_position = get_right_neighbor_position (tb, h); internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1, insert_num,insert_key,insert_ptr); insert_num = 0; } else { struct disk_child * dc; /* one of the items falls into CFR[h] */ internal_shift1_right(tb,h,n - child_pos + 1); /* calculate number of new items that fall into R[h] */ k = tb->rnum[h] - n + child_pos - 1; bi.tb = tb; bi.bi_bh = tb->R[h]; bi.bi_parent = tb->FR[h]; bi.bi_position = get_right_neighbor_position (tb, h); internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1); replace_rkey(tb,h,insert_key + insert_num - k - 1); /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/ dc = B_N_CHILD(tb->R[h], 0); put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) - B_FREE_SPACE (insert_ptr[insert_num-k-1])); put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr ); do_balance_mark_internal_dirty (tb, tb->R[h],0); insert_num -= (k + 1); } } /** Fill new node that appears instead of S[h] **/ RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level"); RFALSE( tb->blknum[h] < 0, "blknum can not be < 0"); if ( ! tb->blknum[h] ) { /* node S[h] is empty now */ RFALSE( ! tbSh, "S[h] is equal NULL"); /* do what is needed for buffer thrown from tree */ reiserfs_invalidate_buffer(tb,tbSh); return order; } if ( ! tbSh ) { /* create new root */ struct disk_child * dc; struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1); struct block_head * blkh; if ( tb->blknum[h] != 1 ) reiserfs_panic(0, "balance_internal: One new node required for creating the new root"); /* S[h] = empty buffer from the list FEB. */ tbSh = get_FEB (tb); blkh = B_BLK_HEAD(tbSh); set_blkh_level( blkh, h + 1 ); /* Put the unique node-pointer to S[h] that points to S[h-1]. */ dc = B_N_CHILD(tbSh, 0); put_dc_block_number( dc, tbSh_1->b_blocknr ); put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1))); tb->insert_size[h] -= DC_SIZE; set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE ); do_balance_mark_internal_dirty (tb, tbSh, 0); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ check_internal (tbSh); /*&&&&&&&&&&&&&&&&&&&&&&&&*/ /* put new root into path structure */ PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh; /* Change root in structure super block. */ PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr ); PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 ); do_balance_mark_sb_dirty (tb, tb->tb_sb->u.reiserfs_sb.s_sbh, 1); tb->tb_sb->s_dirt = 1; } if ( tb->blknum[h] == 2 ) { int snum; struct buffer_info dest_bi, src_bi; /* S_new = free buffer from list FEB */ S_new = get_FEB(tb); set_blkh_level( B_BLK_HEAD(S_new), h + 1 ); dest_bi.tb = tb; dest_bi.bi_bh = S_new; dest_bi.bi_parent = 0; dest_bi.bi_position = 0; src_bi.tb = tb; src_bi.bi_bh = tbSh; src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h); src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1); n = B_NR_ITEMS (tbSh); /* number of items in S[h] */ snum = (insert_num + n + 1)/2; if ( n - snum >= child_pos ) { /* new items don't fall into S_new */ /* store the delimiting key for the next level */ /* new_insert_key = (n - snum)'th key in S[h] */ memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum), KEY_SIZE); /* last parameter is del_par */ internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0); /* internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/ } else if ( n + insert_num - snum < child_pos ) { /* all new items fall into S_new */ /* store the delimiting key for the next level */ /* new_insert_key = (n + insert_item - snum)'th key in S[h] */ memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum), KEY_SIZE); /* last parameter is del_par */ internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0); /* internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/ /* insert insert_num keys and node-pointers into S_new */ internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1, insert_num,insert_key,insert_ptr); insert_num = 0; } else { struct disk_child * dc; /* some items fall into S_new, but some don't fall */ /* last parameter is del_par */ internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1); /* internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/ /* calculate number of new items that fall into S_new */ k = snum - n + child_pos - 1; internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1); /* new_insert_key = insert_key[insert_num - k - 1] */ memcpy(&new_insert_key,insert_key + insert_num - k - 1, KEY_SIZE); /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */ dc = B_N_CHILD(S_new,0); put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) - B_FREE_SPACE(insert_ptr[insert_num-k-1])) ); put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr ); do_balance_mark_internal_dirty (tb, S_new,0); insert_num -= (k + 1); } /* new_insert_ptr = node_pointer to S_new */ new_insert_ptr = S_new; RFALSE(( buffer_locked(S_new) || atomic_read (&(S_new->b_count)) != 1) && (buffer_locked(S_new) || atomic_read(&(S_new->b_count)) > 2 || !(buffer_journaled(S_new) || buffer_journal_dirty(S_new))), "cm-00001: bad S_new (%b)", S_new); // S_new is released in unfix_nodes } n = B_NR_ITEMS (tbSh); /*number of items in S[h] */ if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) { bi.tb = tb; bi.bi_bh = tbSh; bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h); bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1); internal_insert_childs ( &bi,/*tbSh,*/ /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next,*/ child_pos,insert_num,insert_key,insert_ptr ); } memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE); insert_ptr[0] = new_insert_ptr; return order; }