URL
https://opencores.org/ocsvn/s6soc/s6soc/trunk
Subversion Repositories s6soc
[/] [s6soc/] [trunk/] [rtl/] [txuart.v] - Rev 13
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: txuart.v // // Project: CMod S6 System on a Chip, ZipCPU demonstration project // // Purpose: Transmit outputs over a single UART line. // // To interface with this module, connect it to your system clock, // pass it the 32 bit setup register (defined below) and the byte // of data you wish to transmit. Strobe the i_wr line high for one // clock cycle, and your data will be off. Wait until the 'o_busy' // line is low before strobing the i_wr line again--this implementation // has NO BUFFER, so strobing i_wr while the core is busy will just // cause your data to be lost. The output will be placed on the o_txuart // output line. If you wish to set/send a break condition, assert the // i_break line otherwise leave it low. // // There is a synchronous reset line, logic high. // // Now for the setup register. The register is 32 bits, so that this // UART may be set up over a 32-bit bus. // // i_setup[29:28] Indicates the number of data bits per word. This will // either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10 // for a six bit word, or 2'b11 for a five bit word. // // i_setup[27] Indicates whether or not to use one or two stop bits. // Set this to one to expect two stop bits, zero for one. // // i_setup[26] Indicates whether or not a parity bit exists. Set this // to 1'b1 to include parity. // // i_setup[25] Indicates whether or not the parity bit is fixed. Set // to 1'b1 to include a fixed bit of parity, 1'b0 to allow the // parity to be set based upon data. (Both assume the parity // enable value is set.) // // i_setup[24] This bit is ignored if parity is not used. Otherwise, // in the case of a fixed parity bit, this bit indicates whether // mark (1'b1) or space (1'b0) parity is used. Likewise if the // parity is not fixed, a 1'b1 selects even parity, and 1'b0 // selects odd. // // i_setup[23:0] Indicates the speed of the UART in terms of clocks. // So, for example, if you have a 200 MHz clock and wish to // run your UART at 9600 baud, you would take 200 MHz and divide // by 9600 to set this value to 24'd20834. Likewise if you wished // to run this serial port at 115200 baud from a 200 MHz clock, // you would set the value to 24'd1736 // // Thus, to set the UART for the common setting of an 8-bit word, // one stop bit, no parity, and 115200 baud over a 200 MHz clock, you // would want to set the setup value to: // // 32'h0006c8 // For 115,200 baud, 8 bit, no parity // 32'h005161 // For 9600 baud, 8 bit, no parity // // Creator: Dan Gisselquist // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // // `define TXU_BIT_ZERO 4'h0 `define TXU_BIT_ONE 4'h1 `define TXU_BIT_TWO 4'h2 `define TXU_BIT_THREE 4'h3 `define TXU_BIT_FOUR 4'h4 `define TXU_BIT_FIVE 4'h5 `define TXU_BIT_SIX 4'h6 `define TXU_BIT_SEVEN 4'h7 `define TXU_PARITY 4'h8 // Constant 1 `define TXU_STOP 4'h9 // Constant 1 `define TXU_SECOND_STOP 4'ha // 4'hb // Unused // 4'hc // Unused // `define TXU_START 4'hd // An unused state `define TXU_BREAK 4'he `define TXU_IDLE 4'hf // // module txuart(i_clk, i_reset, i_setup, i_break, i_wr, i_data, o_uart, o_busy); input i_clk, i_reset; input [29:0] i_setup; input i_break; input i_wr; input [7:0] i_data; output reg o_uart; output wire o_busy; wire [27:0] clocks_per_baud, break_condition; wire [1:0] data_bits; wire use_parity, parity_even, dblstop, fixd_parity; reg [29:0] r_setup; assign clocks_per_baud = { 4'h0, r_setup[23:0] }; assign break_condition = { r_setup[23:0], 4'h0 }; assign data_bits = r_setup[29:28]; assign dblstop = r_setup[27]; assign use_parity = r_setup[26]; assign fixd_parity = r_setup[25]; assign parity_even = r_setup[24]; reg [27:0] baud_counter; reg [3:0] state; reg [7:0] lcl_data; reg calc_parity; reg r_busy; initial o_uart = 1'b1; initial r_busy = 1'b1; initial state = `TXU_IDLE; // initial baud_counter = clocks_per_baud; always @(posedge i_clk) begin if (i_reset) begin baud_counter <= clocks_per_baud; o_uart <= 1'b1; r_busy <= 1'b1; state <= `TXU_IDLE; lcl_data <= 8'h0; calc_parity <= 1'b0; end else if (i_break) begin baud_counter <= break_condition; o_uart <= 1'b0; state <= `TXU_BREAK; calc_parity <= 1'b0; r_busy <= 1'b1; end else if (baud_counter != 0) begin // r_busy needs to be set coming into here baud_counter <= baud_counter - 28'h01; r_busy <= 1'b1; end else if (state == `TXU_BREAK) begin state <= `TXU_IDLE; r_busy <= 1'b1; o_uart <= 1'b1; calc_parity <= 1'b0; // Give us two stop bits before becoming available baud_counter <= clocks_per_baud<<2; end else if (state == `TXU_IDLE) // STATE_IDLE begin // baud_counter <= 0; r_setup <= i_setup; calc_parity <= 1'b0; if ((i_wr)&&(~r_busy)) begin // Immediately start us off with a start bit o_uart <= 1'b0; r_busy <= 1'b1; case(data_bits) 2'b00: state <= `TXU_BIT_ZERO; 2'b01: state <= `TXU_BIT_ONE; 2'b10: state <= `TXU_BIT_TWO; 2'b11: state <= `TXU_BIT_THREE; endcase lcl_data <= i_data; baud_counter <= clocks_per_baud-28'h01; end else begin // Stay in idle o_uart <= 1'b1; r_busy <= 0; // lcl_data is irrelevant // state <= state; end end else begin // One clock tick in each of these states ... baud_counter <= clocks_per_baud - 28'h01; r_busy <= 1'b1; if (state[3] == 0) // First 8 bits begin o_uart <= lcl_data[0]; calc_parity <= calc_parity ^ lcl_data[0]; if (state == `TXU_BIT_SEVEN) state <= (use_parity)?`TXU_PARITY:`TXU_STOP; else state <= state + 1; lcl_data <= { 1'b0, lcl_data[7:1] }; end else if (state == `TXU_PARITY) begin state <= `TXU_STOP; if (fixd_parity) o_uart <= parity_even; else o_uart <= calc_parity^((parity_even)? 1'b1:1'b0); end else if (state == `TXU_STOP) begin // two stop bit(s) o_uart <= 1'b1; if (dblstop) state <= `TXU_SECOND_STOP; else state <= `TXU_IDLE; calc_parity <= 1'b0; end else // `TXU_SECOND_STOP and default: begin state <= `TXU_IDLE; // Go back to idle o_uart <= 1'b1; // Still r_busy, since we need to wait // for the baud clock to finish counting // out this last bit. end end end assign o_busy = (r_busy); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log