URL
https://opencores.org/ocsvn/wbddr3/wbddr3/trunk
Subversion Repositories wbddr3
[/] [wbddr3/] [trunk/] [rtl/] [wbddrsdram.v] - Rev 6
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: wbddrsdram.v // // Project: OpenArty, an entirely open SoC based upon the Arty platform // // Purpose: // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // // Possible commands to the DDR3 memory. These consist of settings for the // bits: o_wb_cs_n, o_wb_ras_n, o_wb_cas_n, and o_wb_we_n, respectively. `define DDR_MRSET 4'b0000 `define DDR_REFRESH 4'b0001 `define DDR_PRECHARGE 4'b0010 `define DDR_ACTIVATE 4'b0011 `define DDR_WRITE 4'b0100 `define DDR_READ 4'b0101 `define DDR_ZQS 4'b0110 `define DDR_NOOP 4'b0111 //`define DDR_DESELECT 4'b1??? // // In this controller, 24-bit commands tend to be passed around. These // 'commands' are bit fields. Here we specify the bits associated with // the bit fields. `define DDR_RSTDONE 24 // End the reset sequence? `define DDR_RSTTIMER 23 // Does this reset command take multiple clocks? `define DDR_RSTBIT 22 // Value to place on reset_n `define DDR_CKEBIT 21 // Should this reset command set CKE? `define DDR_CMDLEN 21 `define DDR_CSBIT 20 `define DDR_RASBIT 19 `define DDR_CASBIT 18 `define DDR_WEBIT 17 `define DDR_NOPTIMER 16 // Steal this from BA bits `define DDR_BABITS 3 // BABITS are really from 18:16, they are 3 bits `define DDR_ADDR_BITS 14 module wbddrsdram(i_clk, i_reset, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, o_wb_ack, o_wb_stall, o_wb_data, o_ddr_reset_n, o_ddr_cke, o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n, o_ddr_dqs, o_ddr_dm, o_ddr_odt, o_ddr_bus_oe, o_ddr_addr, o_ddr_ba, o_ddr_data, i_ddr_data, o_cmd_accepted); parameter CKREFI4 = 13'd6240, // 4 * 7.8us at 200 MHz clock CKRFC = 140, CKXPR = CKRFC+5+2; // Clocks per tXPR timeout input i_clk, i_reset; // Wishbone inputs input i_wb_cyc, i_wb_stb, i_wb_we; input [25:0] i_wb_addr; input [31:0] i_wb_data; // Wishbone outputs output reg o_wb_ack; output reg o_wb_stall; output reg [31:0] o_wb_data; // DDR3 RAM Controller output wire o_ddr_reset_n, o_ddr_cke; // Control outputs output reg o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n,o_ddr_we_n; // DQS outputs:set to 3'b010 when data is active, 3'b100 (i.e. 2'bzz) ow output wire o_ddr_dqs; output reg o_ddr_dm, o_ddr_odt, o_ddr_bus_oe; // Address outputs output reg [13:0] o_ddr_addr; output reg [2:0] o_ddr_ba; // And the data inputs and outputs output reg [31:0] o_ddr_data; input i_ddr_data; // And just for the test bench output reg o_cmd_accepted; always @(posedge i_clk) o_cmd_accepted <= (i_wb_stb)&&(~o_wb_stall); reg drive_dqs; // The pending transaction reg [31:0] r_data; reg r_pending, r_we; reg [25:0] r_addr; reg [13:0] r_row; reg [2:0] r_bank; reg [9:0] r_col; reg [1:0] r_sub; reg r_move; // It was accepted, and can move to next stage // Can the pending transaction be satisfied with the current (ongoing) // transaction? reg m_move, m_match, m_continue, m_pending, m_we; reg [25:0] m_addr; reg [13:0] m_row; reg [2:0] m_bank; reg [9:0] m_col; reg [1:0] m_sub; // Can we preload the next bank? reg [13:0] r_nxt_row; reg [2:0] r_nxt_bank; reg need_close_bank, need_close_this_bank, last_close_bank, maybe_close_next_bank, last_maybe_close, need_open_bank, last_open_bank, maybe_open_next_bank, last_maybe_open, valid_bank, last_valid_bank; reg [(`DDR_CMDLEN-1):0] close_bank_cmd, activate_bank_cmd, maybe_close_cmd, maybe_open_cmd, rw_cmd; // // tWTR = 7.5 // tRRD = 7.5 // tREFI= 7.8 // tFAW = 45 // tRTP = 7.5 // tCKE = 5.625 // tRFC = 160 // tRP = 13.5 // tRAS = 36 // tRCD = 13.5 // // RESET: // 1. Hold o_reset_n = 1'b0; for 200 us, or 40,000 clocks (65536 perhaps?) // Hold cke low during this time as well // The clock should be free running into the chip during this time // Leave command in NOOP state: {cs,ras,cas,we} = 4'h7; // ODT must be held low // 2. Hold cke low for another 500us, or 100,000 clocks // 3. Raise CKE, continue outputting a NOOP for // tXPR, tDLLk, and tZQInit // 4. Load MRS2, wait tMRD // 4. Load MRS3, wait tMRD // 4. Load MRS1, wait tMOD // Before using the SDRAM, we'll need to program at least 3 of the mode // registers, if not all 4. // tMOD clocks are required to program the mode registers, during which // time the RAM must be idle. // // NOOP: CS low, RAS, CAS, and WE high // // Reset logic should be simple, and is given as follows: // note that it depends upon a ROM memory, reset_mem, and an address into that // memory: reset_address. Each memory location provides either a "command" to // the DDR3 SDRAM, or a timer to wait until the next command. Further, the // timer commands indicate whether or not the command during the timer is to // be set to idle, or whether the command is instead left as it was. reg reset_override, reset_ztimer; reg [4:0] reset_address; reg [(`DDR_CMDLEN-1):0] reset_cmd, cmd, refresh_cmd; reg [24:0] reset_instruction; reg [16:0] reset_timer; initial reset_override = 1'b1; initial reset_address = 5'h0; always @(posedge i_clk) if (i_reset) begin reset_override <= 1'b1; reset_cmd <= { `DDR_NOOP, reset_instruction[16:0]}; end else if (reset_ztimer) begin if (reset_instruction[`DDR_RSTDONE]) reset_override <= 1'b0; reset_cmd <= reset_instruction[20:0]; end always @(posedge i_clk) if (i_reset) o_ddr_cke <= 1'b0; else if ((reset_override)&&(reset_ztimer)) o_ddr_cke <= reset_instruction[`DDR_CKEBIT]; initial reset_ztimer = 1'b0; // Is the timer zero? initial reset_timer = 17'h02; always @(posedge i_clk) if (i_reset) begin reset_ztimer <= 1'b0; reset_timer <= 17'd2; end else if (!reset_ztimer) begin reset_ztimer <= (reset_timer == 17'h01); reset_timer <= reset_timer - 17'h01; end else if (reset_instruction[`DDR_RSTTIMER]) begin reset_ztimer <= 1'b0; reset_timer <= reset_instruction[16:0]; end wire [16:0] w_ckXPR = CKXPR, w_ckRST = 4, w_ckRP = 3, w_ckRFC = CKRFC; always @(posedge i_clk) if (i_reset) reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 }; else if (reset_ztimer) case(reset_address) // RSTDONE, TIMER, CKE, ?? // 1. Reset asserted (active low) for 200 us. (@200MHz) 5'h0: reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 }; // 2. Reset de-asserted, wait 500 us before asserting CKE 5'h1: reset_instruction <= { 4'h6, `DDR_NOOP, 17'd100_000 }; // 3. Assert CKE, wait minimum of Reset CKE Exit time 5'h2: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckXPR }; // 4. Look MR2. (1CK, no TIMER) 5'h3: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h2, 3'h0, 2'b00, 1'b0, 1'b0, 1'b1, 3'b0, 3'b0 }; // MRS2 // 3. Wait 4 clocks (tMRD) 5'h4: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h02 }; // 5. Set MR1 5'h5: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h1, 1'h0, // Reserved for Future Use (RFU) 1'b0, // Qoff - output buffer enabled 1'b1, // TDQS ... enabled 1'b0, // RFU 1'b0, // High order bit, Rtt_Nom (3'b011) 1'b0, // RFU // 1'b0, // Disable write-leveling 1'b1, // Mid order bit of Rtt_Nom 1'b0, // High order bit of Output Drvr Impedence Ctrl 2'b0, // Additive latency = 0 1'b1, // Low order bit of Rtt_Nom 1'b1, // DIC set to 2'b01 1'b1 }; // MRS1, DLL enable // 7. Wait another 4 clocks 5'h6: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h02 }; // 8. Send MRS0 5'h7: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h0, 1'b0, // Reserved for future use 1'b0, // PPD control, (slow exit(DLL off)) 3'b1, // Write recovery for auto precharge 1'b0, // DLL Reset (No) // 1'b0, // TM mode normal 3'b01, // High 3-bits, CAS latency (=4'b0010 = 4'd5) 1'b0, // Read burst type = nibble sequential 1'b0, // Low bit of cas latency 2'b0 }; // Burst length = 8 (Fixed) // 9. Wait tMOD, is max(12 clocks, 15ns) 5'h8: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h0a }; // 10. Issue a ZQCL command to start ZQ calibration, A10 is high 5'h9: reset_instruction <= { 4'h3, `DDR_ZQS, 6'h0, 1'b1, 10'h0}; //11.Wait for both tDLLK and tZQinit completed, both are 512 cks 5'ha: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd512 }; // 12. Precharge all command 5'hb: reset_instruction <= { 4'h3, `DDR_PRECHARGE, 6'h0, 1'b1, 10'h0 }; // 13. Wait for the precharge to complete 5'hc: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRP }; // 14. A single Auto Refresh commands 5'hd: reset_instruction <= { 4'h3, `DDR_REFRESH, 17'h00 }; // 15. Wait for the auto refresh to complete 5'he: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRFC }; // Two Auto Refresh commands default: reset_instruction <={4'hb, `DDR_NOOP, 17'd00_000 }; endcase // reset_instruction <= reset_mem[reset_address]; initial reset_address = 5'h0; always @(posedge i_clk) if (i_reset) reset_address <= 5'h1; else if ((reset_ztimer)&&(reset_override)) reset_address <= reset_address + 5'h1; // // initial reset_mem = // 0. !DONE, TIMER,RESET_N=0, CKE=0, CMD = NOOP, TIMER = 200us ( 40,000) // 1. !DONE, TIMER,RESET_N=1, CKE=0, CMD = NOOP, TIMER = 500us (100,000) // 2. !DONE, TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = (Look me up) // 3. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS // 4. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS // 5. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS3 // 6. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS // 7. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1 // 8. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS // 9. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1 // 10. !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMOD // 11. !DONE,!TIMER,RESET_N=1, CKE=1, (Pre-charge all) // 12. !DONE,!TIMER,RESET_N=1, CKE=1, (wait) // 13. !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh) // 14. !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh) // 15. !DONE,!TIMER,RESET_N=1, CKE=1, (wait) // // // Let's keep track of any open banks. There are 8 of them to keep track of. // // A precharge requires 3 clocks at 200MHz to complete, 2 clocks at 100MHz. // // // reg need_refresh; wire w_precharge_all; reg banks_are_closing, all_banks_closed; reg [3:0] bank_status [0:7]; reg [13:0] bank_address [0:7]; always @(posedge i_clk) begin bank_status[0] <= { bank_status[0][2:0], bank_status[0][0] }; bank_status[1] <= { bank_status[1][2:0], bank_status[1][0] }; bank_status[2] <= { bank_status[2][2:0], bank_status[2][0] }; bank_status[3] <= { bank_status[3][2:0], bank_status[3][0] }; bank_status[4] <= { bank_status[4][2:0], bank_status[4][0] }; bank_status[5] <= { bank_status[5][2:0], bank_status[5][0] }; bank_status[6] <= { bank_status[6][2:0], bank_status[6][0] }; bank_status[7] <= { bank_status[7][2:0], bank_status[7][0] }; all_banks_closed <= (bank_status[0][2:0] == 3'b00) &&(bank_status[1][2:0] == 3'b00) &&(bank_status[2][2:0] == 3'b00) &&(bank_status[3][2:0] == 3'b00) &&(bank_status[4][2:0] == 3'b00) &&(bank_status[5][2:0] == 3'b00) &&(bank_status[6][2:0] == 3'b00) &&(bank_status[7][2:0] == 3'b00); if ((!reset_override)&&(need_refresh)||(w_precharge_all)) begin bank_status[0][0] <= 1'b0; bank_status[1][0] <= 1'b0; bank_status[2][0] <= 1'b0; bank_status[3][0] <= 1'b0; bank_status[4][0] <= 1'b0; bank_status[5][0] <= 1'b0; bank_status[6][0] <= 1'b0; bank_status[7][0] <= 1'b0; banks_are_closing <= 1'b1; end else if (need_close_bank) begin bank_status[close_bank_cmd[16:14]] <= { bank_status[close_bank_cmd[16:14]][2:0], 1'b1 }; // bank_status[close_bank_cmd[16:14]][0] <= 1'b0; end else if (need_open_bank) begin bank_status[activate_bank_cmd[16:14]] <= { bank_status[activate_bank_cmd[16:14]][2:0], 1'b1 }; // bank_status[activate_bank_cmd[16:14]][0] <= 1'b1; all_banks_closed <= 1'b0; banks_are_closing <= 1'b0; end else if ((valid_bank)&&(!r_move)) ; else if (maybe_close_next_bank) begin bank_status[maybe_close_cmd[16:14]] <= { bank_status[maybe_close_cmd[16:14]][2:0], 1'b1 }; end else if (maybe_open_next_bank) begin bank_status[maybe_open_cmd[16:14]] <= { bank_status[maybe_open_cmd[16:14]][2:0], 1'b1 }; // bank_status[activate_bank_cmd[16:14]][0] <= 1'b1; all_banks_closed <= 1'b0; banks_are_closing <= 1'b0; end end always @(posedge i_clk) // if (cmd[22:19] == `DDR_ACTIVATE) if (need_open_bank) bank_address[activate_bank_cmd[16:14]] <= activate_bank_cmd[13:0]; // // // Okay, let's investigate when we need to do a refresh. Our plan will be to // do 4 refreshes every tREFI*4 seconds. tREFI = 7.8us, but its a parameter // in the number of clocks so that we can handle both 100MHz and 200MHz clocks. // // Note that 160ns are needed between refresh commands (JEDEC, p172), or // 320 clocks @200MHz, or equivalently 160 clocks @100MHz. Thus to issue 4 // of these refresh cycles will require 4*320=1280 clocks@200 MHz. After this // time, no more refreshes will be needed for 6240 clocks. // // Let's think this through: // REFRESH_COST = (n*(320)+24)/(n*1560) // // // reg midrefresh, refresh_clear, endrefresh; reg [12:0] refresh_clk; reg [2:0] midrefresh_hctr; // How many refresh cycles? reg [8:0] midrefresh_lctr; // How many clks in this refresh cycle always @(posedge i_clk) if ((reset_override)||(refresh_clear)) refresh_clk <= CKREFI4; else if (|refresh_clk) refresh_clk <= refresh_clk-1; always @(posedge i_clk) if (refresh_clk == 0) need_refresh <= 1'b1; else if (endrefresh) need_refresh <= 1'b0; always @(posedge i_clk) if (!need_refresh) refresh_cmd <= { `DDR_NOOP, 17'h00 }; else if (~banks_are_closing) refresh_cmd <= { `DDR_PRECHARGE, 3'h0, 3'h0, 1'b1, 10'h00 }; else if (~all_banks_closed) refresh_cmd <= { `DDR_NOOP, 17'h00 }; else refresh_cmd <= { `DDR_REFRESH, 17'h00 }; always @(posedge i_clk) midrefresh <= (need_refresh)&&(all_banks_closed)&&(~refresh_clear); always @(posedge i_clk) if (!need_refresh) midrefresh_hctr <= 3'h0; else if ((midrefresh_lctr == 0)&&(!midrefresh_hctr[2])) midrefresh_hctr <= midrefresh_hctr + 3'h1; always @(posedge i_clk) if ((!need_refresh)||(!midrefresh)) endrefresh <= 1'b0; else if (midrefresh_hctr == 3'h0) endrefresh <= 1'b1; always @(posedge i_clk) if (!need_refresh) midrefresh_lctr <= CKRFC; else if (midrefresh_lctr == 0) midrefresh_lctr <= CKRFC; else midrefresh_lctr <= midrefresh_lctr-1; always @(posedge i_clk) refresh_clear <= (need_refresh)&&(endrefresh)&&(midrefresh_lctr == 0); // // // Let's track: when will our bus be active? When will we be reading or // writing? // // reg [8:0] bus_active, bus_read; reg [1:0] bus_subaddr [8:0]; initial bus_active = 0; always @(posedge i_clk) begin bus_active[8:0] <= { bus_active[7:0], 1'b0 }; bus_read[8:0] <= { bus_read[7:0], 1'b0 }; // Drive the d-bus? //bus_mask[8:0] <= { bus_mask[7:0], 1'b1 }; // Write this value? bus_subaddr[8] <= bus_subaddr[7]; bus_subaddr[7] <= bus_subaddr[6]; bus_subaddr[6] <= bus_subaddr[5]; bus_subaddr[5] <= bus_subaddr[4]; bus_subaddr[4] <= bus_subaddr[3]; bus_subaddr[3] <= bus_subaddr[2]; bus_subaddr[2] <= bus_subaddr[1]; bus_subaddr[1] <= bus_subaddr[0]; bus_subaddr[0] <= 2'h3; if ((!reset_override)&&(!need_refresh)&&(!need_close_bank) &&(!need_open_bank)&&(valid_bank)) begin bus_active[3:0]<= 4'hf; // Once per clock bus_read[3:0] <= 4'hf; // These will be reads bus_subaddr[3] <= 2'h0; bus_subaddr[2] <= 2'h1; bus_subaddr[1] <= 2'h2; bus_read[3:0] <= (r_we)? 4'h0:4'hf; end end always @(posedge i_clk) drive_dqs <= (~bus_read[8])&&(|bus_active[8:7]); // // // Now, let's see, can we issue a read command? // // always @(posedge i_clk) begin if ((i_wb_stb)&&(~o_wb_stall)) begin r_pending <= 1'b1; o_wb_stall <= 1'b1; end else if ((r_move)||(m_move)) begin r_pending <= 1'b0; o_wb_stall <= 1'b0; end if (~o_wb_stall) begin r_we <= i_wb_we; r_addr <= i_wb_addr; r_data <= i_wb_data; r_row <= i_wb_addr[25:12]; r_bank <= i_wb_addr[11:9]; r_col <= { i_wb_addr[8:2], 3'b000 }; // 9:2 r_sub <= i_wb_addr[1:0]; // pre-emptive work r_nxt_row <= (i_wb_addr[11:9]==3'h7)?i_wb_addr[25:12]+14'h1:i_wb_addr[25:12]; r_nxt_bank <= i_wb_addr[11:9]+3'h1; end end wire w_need_close_this_bank, w_need_open_bank; assign w_need_close_this_bank = (r_pending)&&(bank_status[r_bank][0]) &&(r_row != bank_address[r_bank]); assign w_need_open_bank = (r_pending)&&(bank_status[r_bank][1:0]==2'b00); wire w_this_closing_bank, w_this_opening_bank, w_this_maybe_close, w_this_maybe_open; reg last_closing_bank, last_opening_bank; always @(posedge i_clk) begin need_close_bank <= (w_need_close_this_bank) &&(!w_this_closing_bank)&&(!last_closing_bank); maybe_close_next_bank <= (r_pending) &&(bank_status[r_nxt_bank][0]) &&(r_nxt_row != bank_address[r_nxt_bank]) &&(!w_this_maybe_close)&&(!last_maybe_close); close_bank_cmd <= { `DDR_PRECHARGE, r_bank, r_row[13:11], 1'b0, r_row[9:0] }; maybe_close_cmd <= { `DDR_PRECHARGE, r_nxt_bank, r_nxt_row[13:11], 1'b0, r_nxt_row[9:0] }; need_open_bank <= (w_need_open_bank) &&(!w_this_opening_bank)&&(!last_opening_bank); last_open_bank <= (w_this_opening_bank); maybe_open_next_bank <= (r_pending) &&(bank_status[r_bank][0] == 1'b1) &&(bank_status[r_nxt_bank][1:0] == 2'b00) &&(!w_this_maybe_open)&&(!last_maybe_open); last_maybe_open <= (w_this_maybe_open); activate_bank_cmd<= { `DDR_ACTIVATE, r_bank, r_row[13:0] }; maybe_open_cmd <= { `DDR_ACTIVATE,r_nxt_bank, r_nxt_row[13:0] }; valid_bank <= (r_pending)&&(bank_status[r_bank][3]) &&(bank_address[r_bank]==r_row) &&(!last_valid_bank)&&(!r_move) &&(!bus_active[0]); last_valid_bank <= r_move; rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (~r_pending)?`DDR_NOOP:((r_we)?`DDR_WRITE:`DDR_READ); rw_cmd[`DDR_WEBIT-1:0] <= { r_bank, 3'h0, 1'b0, r_col }; end // Match registers, to see if we can move forward without sending a // new command always @(posedge i_clk) begin if (r_move) begin m_pending <= r_pending; m_we <= r_we; m_addr <= r_addr; m_row <= r_row; m_bank <= r_bank; m_col <= r_col; m_sub <= r_sub; end else if (m_match) m_sub <= r_sub; m_match <= (m_pending)&&(r_pending)&&(r_we == m_we) &&(r_row == m_row)&&(r_bank == m_bank) &&(r_col == m_col) &&(r_sub > m_sub); m_continue <= (m_pending)&&(r_pending)&&(r_we == m_we) &&(r_row == m_row)&&(r_bank == m_bank) &&(r_col == m_col+10'h1); // m_nextbank <= (m_pending)&&(r_pending)&&(r_we == m_we) // &&(r_row == m_row)&&(r_bank == m_bank); end // // // Okay, let's look at the last assignment in our chain. It should look // something like: always @(posedge i_clk) if (i_reset) o_ddr_reset_n <= 1'b0; else if (reset_ztimer) o_ddr_reset_n <= reset_instruction[`DDR_RSTBIT]; always @(posedge i_clk) if (i_reset) o_ddr_cke <= 1'b0; else if (reset_ztimer) o_ddr_cke <= reset_instruction[`DDR_CKEBIT]; assign w_this_closing_bank = (!reset_override)&&(!need_refresh) &&(need_close_bank); assign w_this_opening_bank = (!reset_override)&&(!need_refresh) &&(!need_close_bank)&&(need_open_bank); assign w_this_maybe_close = (!reset_override)&&(!need_refresh) &&(!need_close_bank)&&(!need_open_bank) &&((!valid_bank)||(r_move)) &&(maybe_close_next_bank); assign w_this_maybe_open = (!reset_override)&&(!need_refresh) &&(!need_close_bank)&&(!need_open_bank) &&((!valid_bank)||(r_move)) &&(!maybe_close_next_bank) &&(maybe_open_next_bank); always @(posedge i_clk) begin last_opening_bank <= 1'b0; last_closing_bank <= 1'b0; last_maybe_open <= 1'b0; last_maybe_close <= 1'b0; r_move <= 1'b0; if (reset_override) cmd <= reset_cmd[`DDR_CSBIT:0]; else if (need_refresh) begin cmd <= refresh_cmd; // The command from the refresh logc end else if (need_close_bank) begin cmd <= close_bank_cmd; last_closing_bank <= 1'b1; end else if (need_open_bank) begin cmd <= activate_bank_cmd; last_opening_bank <= 1'b1; end else if ((valid_bank)&&(!r_move)) begin cmd <= rw_cmd; r_move <= 1'b1; end else if (maybe_close_next_bank) begin cmd <= maybe_close_cmd; last_maybe_close <= 1'b1; end else if (maybe_open_next_bank) begin cmd <= maybe_open_cmd; last_maybe_open <= 1'b1; end else cmd <= { `DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] }; end reg [31:0] bus_data[8:0]; assign o_ddr_cs_n = cmd[`DDR_CSBIT]; assign o_ddr_ras_n = cmd[`DDR_RASBIT]; assign o_ddr_cas_n = cmd[`DDR_CASBIT]; assign o_ddr_we_n = cmd[`DDR_WEBIT]; assign o_ddr_dqs = drive_dqs; assign o_ddr_addr = cmd[(`DDR_ADDR_BITS-1):0]; assign o_ddr_ba = cmd[(`DDR_BABITS+`DDR_ADDR_BITS-1):`DDR_ADDR_BITS]; assign o_ddr_data = bus_data[8]; assign w_precharge_all = (cmd[`DDR_CSBIT:`DDR_WEBIT]==`DDR_PRECHARGE) &&(o_ddr_addr[10]); // 5 bits // Need to set o_wb_dqs high one clock prior to any read. // As per spec, ODT = 0 during reads assign o_ddr_bus_oe = ~bus_read[8]; // ODT must be in high impedence while reset_n=0, then it can be set // to low or high. assign o_ddr_odt = o_ddr_bus_oe; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log