URL
https://opencores.org/ocsvn/xulalx25soc/xulalx25soc/trunk
Subversion Repositories xulalx25soc
[/] [xulalx25soc/] [trunk/] [sw/] [ziprun.cpp] - Rev 115
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: ziprun.cpp // // Project: XuLA2 board // // Purpose: To load a program for the ZipCPU into memory. // // Steps: // 1. Halt and reset the CPU // 2. Load memory // 3. Clear the cache // 4. Clear any registers // 5. Set the PC to point to the FPGA local memory // THIS DOES NOT START THE PROGRAM!! The CPU is left in the halt state. // To actually start the program, execute a ./wbregs cpu 0. (Actually, // any value between 0x0 and 0x1f will work, the difference being what // register you will be able to inspect while the CPU is running.) // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // // #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <strings.h> #include <ctype.h> #include <string.h> #include <signal.h> #include <assert.h> #include "usbi.h" #include "port.h" #include "regdefs.h" #include "flashdrvr.h" bool iself(const char *fname) { FILE *fp; bool ret = true; fp = fopen(fname, "rb"); if (!fp) return false; if (0x7f != fgetc(fp)) ret = false; if ('E' != fgetc(fp)) ret = false; if ('L' != fgetc(fp)) ret = false; if ('F' != fgetc(fp)) ret = false; fclose(fp); return ret; } long fgetwords(FILE *fp) { // Return the number of words in the current file, and return the // file as though it had never been adjusted long fpos, flen; fpos = ftell(fp); if (0 != fseek(fp, 0l, SEEK_END)) { fprintf(stderr, "ERR: Could not determine file size\n"); perror("O/S Err:"); exit(-2); } flen = ftell(fp); if (0 != fseek(fp, fpos, SEEK_SET)) { fprintf(stderr, "ERR: Could not seek on file\n"); perror("O/S Err:"); exit(-2); } flen /= sizeof(FPGA::BUSW); return flen; } FPGA *m_fpga; class SECTION { public: unsigned m_start, m_len; FPGA::BUSW m_data[1]; }; SECTION **singlesection(int nwords) { fprintf(stderr, "NWORDS = %d\n", nwords); size_t sz = (2*(sizeof(SECTION)+sizeof(SECTION *)) +(nwords-1)*(sizeof(FPGA::BUSW))); char *d = (char *)malloc(sz); SECTION **r = (SECTION **)d; memset(r, 0, sz); r[0] = (SECTION *)(&d[2*sizeof(SECTION *)]); r[0]->m_len = nwords; r[1] = (SECTION *)(&r[0]->m_data[r[0]->m_len]); r[0]->m_start = 0; r[1]->m_start = 0; r[1]->m_len = 0; return r; } SECTION **rawsection(const char *fname) { SECTION **secpp, *secp; unsigned num_words; FILE *fp; int nr; fp = fopen(fname, "r"); if (fp == NULL) { fprintf(stderr, "Could not open: %s\n", fname); exit(-1); } if ((num_words=fgetwords(fp)) > MEMWORDS) { fprintf(stderr, "File overruns Block RAM\n"); exit(-1); } secpp = singlesection(num_words); secp = secpp[0]; secp->m_start = RAMBASE; secp->m_len = num_words; nr= fread(secp->m_data, sizeof(FPGA::BUSW), num_words, fp); if (nr != (int)num_words) { fprintf(stderr, "Could not read entire file\n"); perror("O/S Err:"); exit(-2); } assert(secpp[1]->m_len == 0); return secpp; } unsigned byteswap(unsigned n) { unsigned r; r = (n&0x0ff); n>>= 8; r = (r<<8) | (n&0x0ff); n>>= 8; r = (r<<8) | (n&0x0ff); n>>= 8; r = (r<<8) | (n&0x0ff); n>>= 8; return r; } // #define CHEAP_AND_EASY #ifdef CHEAP_AND_EASY #else #include <libelf.h> #include <gelf.h> void elfread(const char *fname, unsigned &entry, SECTION **§ions) { Elf *e; int fd, i; size_t n; char *id; Elf_Kind ek; GElf_Ehdr ehdr; GElf_Phdr phdr; const bool dbg = false; if (elf_version(EV_CURRENT) == EV_NONE) { fprintf(stderr, "ELF library initialization err, %s\n", elf_errmsg(-1)); perror("O/S Err:"); exit(EXIT_FAILURE); } if ((fd = open(fname, O_RDONLY, 0)) < 0) { fprintf(stderr, "Could not open %s\n", fname); perror("O/S Err:"); exit(EXIT_FAILURE); } if ((e = elf_begin(fd, ELF_C_READ, NULL))==NULL) { fprintf(stderr, "Could not run elf_begin, %s\n", elf_errmsg(-1)); exit(EXIT_FAILURE); } ek = elf_kind(e); if (ek == ELF_K_ELF) { ; // This is the kind of file we should expect } else if (ek == ELF_K_AR) { fprintf(stderr, "Cannot run an archive!\n"); exit(EXIT_FAILURE); } else if (ek == ELF_K_NONE) { ; } else { fprintf(stderr, "Unexpected ELF file kind!\n"); exit(EXIT_FAILURE); } if (gelf_getehdr(e, &ehdr) == NULL) { fprintf(stderr, "getehdr() failed: %s\n", elf_errmsg(-1)); exit(EXIT_FAILURE); } if ((i=gelf_getclass(e)) == ELFCLASSNONE) { fprintf(stderr, "getclass() failed: %s\n", elf_errmsg(-1)); exit(EXIT_FAILURE); } if ((id = elf_getident(e, NULL)) == NULL) { fprintf(stderr, "getident() failed: %s\n", elf_errmsg(-1)); exit(EXIT_FAILURE); } if (i != ELFCLASS32) { fprintf(stderr, "This is a 64-bit ELF file, ZipCPU ELF files are all 32-bit\n"); exit(EXIT_FAILURE); } if (dbg) { printf(" %-20s 0x%jx\n", "e_type", (uintmax_t)ehdr.e_type); printf(" %-20s 0x%jx\n", "e_machine", (uintmax_t)ehdr.e_machine); printf(" %-20s 0x%jx\n", "e_version", (uintmax_t)ehdr.e_version); printf(" %-20s 0x%jx\n", "e_entry", (uintmax_t)ehdr.e_entry); printf(" %-20s 0x%jx\n", "e_phoff", (uintmax_t)ehdr.e_phoff); printf(" %-20s 0x%jx\n", "e_shoff", (uintmax_t)ehdr.e_shoff); printf(" %-20s 0x%jx\n", "e_flags", (uintmax_t)ehdr.e_flags); printf(" %-20s 0x%jx\n", "e_ehsize", (uintmax_t)ehdr.e_ehsize); printf(" %-20s 0x%jx\n", "e_phentsize", (uintmax_t)ehdr.e_phentsize); printf(" %-20s 0x%jx\n", "e_shentsize", (uintmax_t)ehdr.e_shentsize); printf("\n"); } // Check whether or not this is an ELF file for the ZipCPU ... if (ehdr.e_machine != 0x0dadd) { fprintf(stderr, "This is not a ZipCPU ELF file\n"); exit(EXIT_FAILURE); } // Get our entry address entry = ehdr.e_entry; // Now, let's go look at the program header if (elf_getphdrnum(e, &n) != 0) { fprintf(stderr, "elf_getphdrnum() failed: %s\n", elf_errmsg(-1)); exit(EXIT_FAILURE); } unsigned total_octets = 0, current_offset=0, current_section=0; for(i=0; i<(int)n; i++) { total_octets += sizeof(SECTION *)+sizeof(SECTION); if (gelf_getphdr(e, i, &phdr) != &phdr) { fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1)); exit(EXIT_FAILURE); } if (dbg) { printf(" %-20s 0x%x\n", "p_type", phdr.p_type); printf(" %-20s 0x%jx\n", "p_offset", phdr.p_offset); printf(" %-20s 0x%jx\n", "p_vaddr", phdr.p_vaddr); printf(" %-20s 0x%jx\n", "p_paddr", phdr.p_paddr); printf(" %-20s 0x%jx\n", "p_filesz", phdr.p_filesz); printf(" %-20s 0x%jx\n", "p_memsz", phdr.p_memsz); printf(" %-20s 0x%x [", "p_flags", phdr.p_flags); if (phdr.p_flags & PF_X) printf(" Execute"); if (phdr.p_flags & PF_R) printf(" Read"); if (phdr.p_flags & PF_W) printf(" Write"); printf("]\n"); printf(" %-20s 0x%jx\n", "p_align", phdr.p_align); } total_octets += phdr.p_memsz; } char *d = (char *)malloc(total_octets + sizeof(SECTION)+sizeof(SECTION *)); memset(d, 0, total_octets); SECTION **r = sections = (SECTION **)d; current_offset = (n+1)*sizeof(SECTION *); current_section = 0; for(i=0; i<(int)n; i++) { r[i] = (SECTION *)(&d[current_offset]); if (gelf_getphdr(e, i, &phdr) != &phdr) { fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1)); exit(EXIT_FAILURE); } if (dbg) { printf(" %-20s 0x%jx\n", "p_offset", phdr.p_offset); printf(" %-20s 0x%jx\n", "p_vaddr", phdr.p_vaddr); printf(" %-20s 0x%jx\n", "p_paddr", phdr.p_paddr); printf(" %-20s 0x%jx\n", "p_filesz", phdr.p_filesz); printf(" %-20s 0x%jx\n", "p_memsz", phdr.p_memsz); printf(" %-20s 0x%x [", "p_flags", phdr.p_flags); if (phdr.p_flags & PF_X) printf(" Execute"); if (phdr.p_flags & PF_R) printf(" Read"); if (phdr.p_flags & PF_W) printf(" Write"); printf("]\n"); printf(" %-20s 0x%jx\n", "p_align", phdr.p_align); } current_section++; r[i]->m_start = phdr.p_vaddr; r[i]->m_len = phdr.p_filesz/ sizeof(FPGA::BUSW); current_offset += phdr.p_memsz + sizeof(SECTION); // Now, let's read in our section ... if (lseek(fd, phdr.p_offset, SEEK_SET) < 0) { fprintf(stderr, "Could not seek to file position %08lx\n", phdr.p_offset); perror("O/S Err:"); exit(EXIT_FAILURE); } if (phdr.p_filesz > phdr.p_memsz) phdr.p_filesz = 0; if (read(fd, r[i]->m_data, phdr.p_filesz) != (int)phdr.p_filesz) { fprintf(stderr, "Didnt read entire section\n"); perror("O/S Err:"); exit(EXIT_FAILURE); } // Next, we need to byte swap it from big to little endian for(unsigned j=0; j<r[i]->m_len; j++) r[i]->m_data[j] = byteswap(r[i]->m_data[j]); if (dbg) for(unsigned j=0; j<r[i]->m_len; j++) fprintf(stderr, "ADR[%04x] = %08x\n", r[i]->m_start+j, r[i]->m_data[j]); } r[i] = (SECTION *)(&d[current_offset]); r[current_section]->m_start = 0; r[current_section]->m_len = 0; elf_end(e); close(fd); } #endif void usage(void) { printf("USAGE: ziprun [-hmprux] <zip-program-file>\n"); printf("\n" "\t-h\tDisplay this usage statement\n" "\t-m\tClear unused memory locations. Note this only applies to SDRAM\n" "\t\t(if used) and block ram, not flash.\n" "\t-p [PORT]\tConnect to the XuLA device across a network access\n" "\t\tconnection using port PORT, rather than attempting a USB\n" "\t\tconnection. If PORT is not given, %s:%d will be\n" "\t\tassumed as a default.\n" "\t-u\tAccess the XuLA board via the USB connector [DEFAULT]\n" "\t-x\tClear all of the ZipCPU registers to a known initial state\n\n", FPGAHOST,FPGAPORT); } int main(int argc, char **argv) { int skp=0, port = FPGAPORT; bool use_usb = true, permit_raw_files = false; unsigned entry = RAMBASE; bool clear_registers = false, clear_memory = false; FLASHDRVR *flash = NULL; if (argc < 2) { usage(); exit(EXIT_SUCCESS); } skp=1; for(int argn=0; argn<argc-skp; argn++) { if (argv[argn+skp][0] == '-') { switch(argv[argn+skp][1]) { case 'h': usage(); exit(EXIT_SUCCESS); case 'm': clear_memory = true; fprintf(stderr, "Clear memory feature not yet implemented\n"); exit(EXIT_FAILURE); break; case 'p': use_usb = false; if (isdigit(argv[argn+skp][2])) port = atoi(&argv[argn+skp][2]); break; case 'r': permit_raw_files = true; break; case 'u': use_usb = true; break; case 'x': clear_registers = true; break; } skp++; argn--; } else argv[argn] = argv[argn+skp]; } argc -= skp; if (use_usb) m_fpga = new FPGA(new USBI()); else m_fpga = new FPGA(new NETCOMMS(FPGAHOST, port)); if ((argc<=0)||(access(argv[0],R_OK)!=0)) { printf("Usage: ziprun obj-file\n"); printf("\n" "\tziprun loads the object file into memory, resets the CPU, and leaves it\n" "\tin a halted state ready to start running the object file.\n"); exit(-1); } const char *codef = argv[0]; printf("Halting the CPU\n"); m_fpga->usleep(5); m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT); try { SECTION **secpp = NULL, *secp; if(iself(codef)) { #ifndef CHEAP_AND_EASY // zip-readelf will help with both of these ... elfread(codef, entry, secpp); /* fprintf(stderr, "Secpp = %08lx\n", (unsigned long)secpp); for(int i=0; secpp[i]->m_len; i++) { secp = secpp[i]; fprintf(stderr, "Sec[%2d] - %08x - %08x\n", i, secp->m_start, secp->m_start+secp->m_len); } */ #else char tmpbuf[TMP_MAX], cmdbuf[256]; int unused_fd; strcpy(tmpbuf, "/var/tmp/ziprunXXXX"); // Make a temporary file unused_fd = mkostemp(tmpbuf, O_CREAT|O_TRUNC|O_RDWR); // Close it immediately, since we won't be writing to it // ourselves close(unused_fd); // Now we write to it, as part of calling objcopy // sprintf(cmdbuf, "zip-objcopy -S -O binary --reverse-bytes=4 %s %s", codef, tmpbuf); if (system(cmdbuf) != 0) { unlink(tmpbuf); fprintf(stderr, "ZIPRUN: Could not comprehend ELF binary\n"); exit(-2); } secpp = rawsection(tmpbuf); unlink(tmpbuf); entry = RAMBASE; #endif } else if (permit_raw_files) { secpp = rawsection(codef); entry = RAMBASE; } else { fprintf(stderr, "ERR: %s is not in ELF format\n", codef); exit(EXIT_FAILURE); } // assert(secpp[1]->m_len = 0); for(int i=0; secpp[i]->m_len; i++) { bool valid = false; secp= secpp[i]; if ((secp->m_start >= RAMBASE)&&(secp->m_start+secp->m_len <= RAMBASE+MEMWORDS)) valid = true; else if ((secp->m_start >= SDRAMBASE)&&(secp->m_start+secp->m_len <= SDRAMBASE+SDRAMWORDS)) valid = true; else if ((secp->m_start >= SPIFLASH)&&(secp->m_start+secp->m_len <= SPIFLASH+FLASHWORDS)) valid = true; if (!valid) { fprintf(stderr, "No such memory on board: 0x%08x - %08x\n", secp->m_start, secp->m_start+secp->m_len); exit(-2); } } if (clear_memory) for(int i=0; secpp[i]->m_len; i++) { secp = secpp[i]; if ((secp->m_start >= RAMBASE) &&(secp->m_start+secp->m_len <= RAMBASE+MEMWORDS)) { printf("Clearing Block ram\n"); FPGA::BUSW zbuf[128], a; memset(zbuf, 0, 128*sizeof(FPGA::BUSW)); for(a=RAMBASE; a<RAMBASE+MEMWORDS; a+=128) m_fpga->writei(a, 128, zbuf); break; } } m_fpga->readio(R_VERSION); // Check for buserrors if (clear_memory) for(int i=0; secpp[i]->m_len; i++) { secp = secpp[i]; if ((secp->m_start >= SDRAMBASE) &&(secp->m_start+secp->m_len <= SDRAMBASE+SDRAMWORDS)) { FPGA::BUSW zbuf[128], a; printf("Clearing SDRam\n"); memset(zbuf, 0, 128*sizeof(FPGA::BUSW)); for(a=SDRAMBASE; a<SDRAMBASE+SDRAMWORDS; a+=128) m_fpga->writei(a, 128, zbuf); break; } } m_fpga->readio(R_VERSION); // Check for buserrors printf("Loading memory\n"); for(int i=0; secpp[i]->m_len; i++) { bool inflash=false; secp = secpp[i]; if ((secp->m_start >= SPIFLASH) &&(secp->m_start+secp->m_len <= SPIFLASH+FLASHWORDS)) inflash = true; if (inflash) { if (!flash) flash = new FLASHDRVR(m_fpga); flash->write(secp->m_start, secp->m_len, secp->m_data, true); } else if (secp->m_len < (1<<16)) { m_fpga->writei(secp->m_start, secp->m_len, secp->m_data); } else { // The load amount is so big, we'd like to let // the user know where we're at along the way. for(unsigned k=0; k<secp->m_len; k+=(1<<16)) { unsigned ln = (1<<16), st = secp->m_start+k; if (st+ln > secp->m_start+secp->m_len) ln = (secp->m_start+secp->m_len-st); if (ln <= 0) break; printf("Loading MEM[%08x]-MEM[%08x] ...\r", st,st+ln-1); fflush(stdout); m_fpga->writei(st, ln, &secp->m_data[k]); m_fpga->readio(R_VERSION); // Check for buserrors } printf("Loaded MEM[%08x]-MEM[%08x] \n", secp->m_start, secp->m_start+secp->m_len-1); fflush(stdout); } printf("%08x - %08x\n", secp->m_start, secp->m_start+secp->m_len); } m_fpga->readio(R_ZIPCTRL); // Check for bus errors // Clear any buffers printf("Clearing the cache\n"); m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT|CPU_CLRCACHE); m_fpga->readio(R_VERSION); if (clear_registers) { printf("Clearing all registers to zero\n"); // Clear all registers to zero for(int i=0; i<32; i++) { m_fpga->writeio(R_ZIPCTRL, CPU_HALT|i); m_fpga->writeio(R_ZIPDATA, 0); } } m_fpga->readio(R_VERSION); // Check for bus errors // Start in interrupt mode m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_sCC); m_fpga->writeio(R_ZIPDATA, 0x000); // Set our entry point into our code m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_sPC); m_fpga->writeio(R_ZIPDATA, entry); printf("The CPU should be fully loaded, you may now start\n"); printf("it. To start the CPU, type wbregs cpu 0\n"); } catch(BUSERR a) { fprintf(stderr, "\nXULA-BUS error @0x%08x\n", a.addr); m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT|CPU_CLRCACHE); exit(-2); } delete m_fpga; }
Go to most recent revision | Compare with Previous | Blame | View Log