URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [cpuops.v] - Rev 91
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////// // // Filename: cpuops.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This supports the instruction set reordering of operations // created by the second generation instruction set, as well as // the new operations of POPC (population count) and BREV (bit reversal). // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // /////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////// // module cpuops(i_clk,i_rst, i_ce, i_valid, i_op, i_a, i_b, o_c, o_f, o_valid, o_illegal, o_busy); parameter IMPLEMENT_MPY = 1; input i_clk, i_rst, i_ce; input [3:0] i_op; input [31:0] i_a, i_b; input i_valid; output reg [31:0] o_c; output wire [3:0] o_f; output reg o_valid; output wire o_illegal; output wire o_busy; // Rotate-left pre-logic wire [63:0] w_rol_tmp; assign w_rol_tmp = { i_a, i_a } << i_b[4:0]; wire [31:0] w_rol_result; assign w_rol_result = w_rol_tmp[63:32]; // Won't set flags // Shift register pre-logic wire [32:0] w_lsr_result, w_asr_result; assign w_asr_result = (|i_b[31:5])? {(33){i_a[31]}} : ( {i_a, 1'b0 } >>> (i_b[4:0]) );// ASR assign w_lsr_result = (|i_b[31:5])? 33'h00 : ( { i_a, 1'b0 } >> (i_b[4:0]) );// LSR // Bit reversal pre-logic wire [31:0] w_brev_result; genvar k; generate for(k=0; k<32; k=k+1) begin : bit_reversal_cpuop assign w_brev_result[k] = i_b[31-k]; end endgenerate // Popcount pre-logic wire [31:0] w_popc_result; assign w_popc_result[5:0]= ({5'h0,i_b[ 0]}+{5'h0,i_b[ 1]}+{5'h0,i_b[ 2]}+{5'h0,i_b[ 3]}) +({5'h0,i_b[ 4]}+{5'h0,i_b[ 5]}+{5'h0,i_b[ 6]}+{5'h0,i_b[ 7]}) +({5'h0,i_b[ 8]}+{5'h0,i_b[ 9]}+{5'h0,i_b[10]}+{5'h0,i_b[11]}) +({5'h0,i_b[12]}+{5'h0,i_b[13]}+{5'h0,i_b[14]}+{5'h0,i_b[15]}) +({5'h0,i_b[16]}+{5'h0,i_b[17]}+{5'h0,i_b[18]}+{5'h0,i_b[19]}) +({5'h0,i_b[20]}+{5'h0,i_b[21]}+{5'h0,i_b[22]}+{5'h0,i_b[23]}) +({5'h0,i_b[24]}+{5'h0,i_b[25]}+{5'h0,i_b[26]}+{5'h0,i_b[27]}) +({5'h0,i_b[28]}+{5'h0,i_b[29]}+{5'h0,i_b[30]}+{5'h0,i_b[31]}); assign w_popc_result[31:6] = 26'h00; // Prelogic for our flags registers wire z, n, v; reg c, pre_sign, set_ovfl; always @(posedge i_clk) if (i_ce) // 1 LUT set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP ||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD ||(i_op == 4'h6) // LSL ||(i_op == 4'h5)); // LSR // A 4-way multiplexer can be done in one 6-LUT. // A 16-way multiplexer can therefore be done in 4x 6-LUT's with // the Xilinx multiplexer fabric that follows. // Given that we wish to apply this multiplexer approach to 33-bits, // this will cost a minimum of 132 6-LUTs. generate if (IMPLEMENT_MPY == 0) begin always @(posedge i_clk) if (i_ce) begin pre_sign <= (i_a[31]); c <= 1'b0; casez(i_op) 4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB 4'b0001: o_c <= i_a & i_b; // BTST/And 4'b0010:{c,o_c } <= i_a + i_b; // Add 4'b0011: o_c <= i_a | i_b; // Or 4'b0100: o_c <= i_a ^ i_b; // Xor 4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR 4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL 4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR 4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI 4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO // 4'h1010: The unimplemented MPYU, // 4'h1011: and here for the unimplemented MPYS 4'b1100: o_c <= w_brev_result; // BREV 4'b1101: o_c <= w_popc_result; // POPC 4'b1110: o_c <= w_rol_result; // ROL default: o_c <= i_b; // MOV, LDI endcase end assign o_busy = 1'b0; reg r_illegal; always @(posedge i_clk) r_illegal <= (i_ce)&&((i_op == 4'h3)||(i_op == 4'h4)); assign o_illegal = r_illegal; end else begin // // Multiply pre-logic // wire signed [16:0] w_mpy_a_input, w_mpy_b_input; wire [33:0] w_mpy_result; reg [31:0] r_mpy_result; assign w_mpy_a_input ={ ((i_a[15])&(i_op[0])), i_a[15:0] }; assign w_mpy_b_input ={ ((i_b[15])&(i_op[0])), i_b[15:0] }; assign w_mpy_result = w_mpy_a_input * w_mpy_b_input; always @(posedge i_clk) if (i_ce) r_mpy_result = w_mpy_result[31:0]; // // The master ALU case statement // always @(posedge i_clk) if (i_ce) begin pre_sign <= (i_a[31]); c <= 1'b0; casez(i_op) 4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB 4'b0001: o_c <= i_a & i_b; // BTST/And 4'b0010:{c,o_c } <= i_a + i_b; // Add 4'b0011: o_c <= i_a | i_b; // Or 4'b0100: o_c <= i_a ^ i_b; // Xor 4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR 4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL 4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR 4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI 4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO 4'b1010: o_c <= r_mpy_result; // MPYU 4'b1011: o_c <= r_mpy_result; // MPYS 4'b1100: o_c <= w_brev_result; // BREV 4'b1101: o_c <= w_popc_result; // POPC 4'b1110: o_c <= w_rol_result; // ROL default: o_c <= i_b; // MOV, LDI endcase end else if (r_busy) o_c <= r_mpy_result; reg r_busy; initial r_busy = 1'b0; always @(posedge i_clk) r_busy <= (~i_rst)&&(i_ce)&&(i_valid) &&(i_op[3:1] == 3'h5); assign o_busy = r_busy; assign o_illegal = 1'b0; end endgenerate assign z = (o_c == 32'h0000); assign n = (o_c[31]); assign v = (set_ovfl)&&(pre_sign != o_c[31]); assign o_f = { v, n, c, z }; initial o_valid = 1'b0; always @(posedge i_clk) if (i_rst) o_valid <= 1'b0; else o_valid <= (i_ce)&&(i_valid)&&(i_op[3:1] != 3'h5) ||(o_busy); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log