URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [idecode.v] - Rev 130
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////////// // // Filename: idecode.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This RTL file specifies how instructions are to be decoded // into their underlying meanings. This is specifically a version // designed to support a "Next Generation", or "Version 2" instruction // set as (currently) activated by the OPT_NEW_INSTRUCTION_SET option // in cpudefs.v. // // I expect to (eventually) retire the old instruction set, at which point // this will become the default instruction set decoder. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // /////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////////// // // // `define CPU_CC_REG 4'he `define CPU_PC_REG 4'hf // `include "cpudefs.v" // // // module idecode(i_clk, i_rst, i_ce, i_stalled, i_instruction, i_gie, i_pc, i_pf_valid, i_illegal, o_phase, o_illegal, o_pc, o_gie, o_dcdR, o_dcdA, o_dcdB, o_I, o_zI, o_cond, o_wF, o_op, o_ALU, o_M, o_DV, o_FP, o_break, o_lock, o_wR, o_rA, o_rB, o_early_branch, o_branch_pc, o_ljmp, o_pipe ); parameter ADDRESS_WIDTH=24, IMPLEMENT_MPY=1, EARLY_BRANCHING=1, IMPLEMENT_DIVIDE=1, IMPLEMENT_FPU=0, AW = ADDRESS_WIDTH; input i_clk, i_rst, i_ce, i_stalled; input [31:0] i_instruction; input i_gie; input [(AW-1):0] i_pc; input i_pf_valid, i_illegal; output wire o_phase; output reg o_illegal; output reg [(AW-1):0] o_pc; output reg o_gie; output reg [6:0] o_dcdR, o_dcdA, o_dcdB; output wire [31:0] o_I; output reg o_zI; output reg [3:0] o_cond; output reg o_wF; output reg [3:0] o_op; output reg o_ALU, o_M, o_DV, o_FP, o_break; output wire o_lock; output reg o_wR, o_rA, o_rB; output wire o_early_branch; output wire [(AW-1):0] o_branch_pc; output wire o_ljmp; output reg o_pipe; wire dcdA_stall, dcdB_stall, dcdF_stall; wire o_dcd_early_branch; wire [(AW-1):0] o_dcd_branch_pc; reg o_dcdI, o_dcdIz; `ifdef OPT_PIPELINED reg r_lock; `endif wire [4:0] w_op; wire w_ldi, w_mov, w_cmptst, w_ldilo, w_ALU, w_brev; wire [4:0] w_dcdR, w_dcdB, w_dcdA; wire w_dcdR_pc, w_dcdR_cc; wire w_dcdA_pc, w_dcdA_cc; wire w_dcdB_pc, w_dcdB_cc; wire [3:0] w_cond; wire w_wF, w_dcdM, w_dcdDV, w_dcdFP; wire w_wR, w_rA, w_rB, w_wR_n; wire w_ljmp; wire [31:0] iword; `ifdef OPT_VLIW reg [16:0] r_nxt_half; assign iword = (o_phase) // set second half as a NOOP ... but really // shouldn't matter ? { r_nxt_half[16:7], 1'b0, r_nxt_half[6:0], 5'b11000, 3'h7, 6'h00 } : i_instruction; `else assign iword = { 1'b0, i_instruction[30:0] }; `endif generate if (EARLY_BRANCHING != 0) assign w_ljmp = (iword == 32'h7c87c000); else assign w_ljmp = 1'b0; endgenerate assign w_op= iword[26:22]; assign w_mov = (w_op == 5'h0f); assign w_ldi = (w_op[4:1] == 4'hb); assign w_brev = (w_op == 5'hc); assign w_cmptst = (w_op[4:1] == 4'h8); assign w_ldilo = (w_op[4:0] == 5'h9); assign w_ALU = (~w_op[4]); // 4 LUTs assign w_dcdR = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[18]:i_gie, iword[30:27] }; // 4 LUTs assign w_dcdB = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[13]:i_gie, iword[17:14] }; // 0 LUTs assign w_dcdA = w_dcdR; // 2 LUTs, 1 delay each assign w_dcdR_pc = (w_dcdR == {i_gie, `CPU_PC_REG}); assign w_dcdR_cc = (w_dcdR == {i_gie, `CPU_CC_REG}); // 0 LUTs assign w_dcdA_pc = w_dcdR_pc; assign w_dcdA_cc = w_dcdR_cc; // 2 LUTs, 1 delays each assign w_dcdB_pc = (w_dcdB[3:0] == `CPU_PC_REG); assign w_dcdB_cc = (w_dcdB[3:0] == `CPU_CC_REG); // Under what condition will we execute this // instruction? Only the load immediate instruction // is completely unconditional. // // 3+4 LUTs assign w_cond = (w_ldi) ? 4'h8 : (iword[31])?{(iword[20:19]==2'b00), 1'b0,iword[20:19]} : { (iword[21:19]==3'h0), iword[21:19] }; // 1 LUT assign w_dcdM = (w_op[4:1] == 4'h9); // 1 LUT assign w_dcdDV = (w_op[4:1] == 4'ha); // 1 LUT assign w_dcdFP = (w_op[4:3] == 2'b11)&&(w_dcdR[3:1] != 3'h7); // 4 LUT's--since it depends upon FP/NOOP condition (vs 1 before) // Everything reads A but ... NOOP/BREAK/LOCK, LDI, LOD, MOV assign w_rA = (w_dcdFP) // Divide's read A ||(w_dcdDV) // ALU read's A, unless it's a MOV to A // This includes LDIHI/LDILO ||((~w_op[4])&&(w_op[3:0]!=4'hf)) // STO's read A ||((w_dcdM)&&(w_op[0])) // Test/compares ||(w_op[4:1]== 4'h8); // 1 LUTs -- do we read a register for operand B? Specifically, do // we need to stall if the register is not (yet) ready? assign w_rB = (w_mov)||((iword[18])&&(~w_ldi)); // 1 LUT: All but STO, NOOP/BREAK/LOCK, and CMP/TST write back to w_dcdR assign w_wR_n = ((w_dcdM)&&(w_op[0])) ||((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)) ||(w_cmptst); assign w_wR = ~w_wR_n; // // 1-output bit (5 Opcode bits, 4 out-reg bits, 3 condition bits) // // This'd be 4 LUTs, save that we have the carve out for NOOPs // and writes to the PC/CC register(s). assign w_wF = (w_cmptst) ||((w_cond[3])&&((w_dcdFP)||(w_dcdDV) ||((w_ALU)&&(~w_mov)&&(~w_ldilo)&&(~w_brev) &&(iword[30:28] != 3'h7)))); // Bottom 13 bits: no LUT's // w_dcd[12: 0] -- no LUTs // w_dcd[ 13] -- 2 LUTs // w_dcd[17:14] -- (5+i0+i1) = 3 LUTs, 1 delay // w_dcd[22:18] : 5 LUTs, 1 delay (assuming high bit is o/w determined) reg [22:0] r_I; wire [22:0] w_I, w_fullI; wire w_Iz; assign w_fullI = (w_ldi) ? { iword[22:0] } // LDI :((w_mov) ?{ {(23-13){iword[12]}}, iword[12:0] } // Move :((~iword[18]) ? { {(23-18){iword[17]}}, iword[17:0] } : { {(23-14){iword[13]}}, iword[13:0] } )); `ifdef OPT_VLIW wire [5:0] w_halfI; assign w_halfI = (w_ldi) ? iword[5:0] :((iword[5]) ? 6'h00 : {iword[4],iword[4:0]}); assign w_I = (iword[31])? {{(23-6){w_halfI[5]}}, w_halfI }:w_fullI; `else assign w_I = w_fullI; `endif assign w_Iz = (w_I == 0); `ifdef OPT_VLIW // // The o_phase parameter is special. It needs to let the software // following know that it cannot break/interrupt on an o_phase asserted // instruction, lest the break take place between the first and second // half of a VLIW instruction. To do this, o_phase must be asserted // when the first instruction half is valid, but not asserted on either // a 32-bit instruction or the second half of a 2x16-bit instruction. reg r_phase; initial r_phase = 1'b0; always @(posedge i_clk) if (i_rst) // When no instruction is in the pipe, phase is zero r_phase <= 1'b0; else if (i_ce) r_phase <= (o_phase)? 1'b0:(i_instruction[31]); // Phase is '1' on the first instruction of a two-part set // But, due to the delay in processing, it's '1' when our output is // valid for that first part, but that'll be the same time we // are processing the second part ... so it may look to us like a '1' // on the second half of processing. assign o_phase = r_phase; `else assign o_phase = 1'b0; `endif initial o_illegal = 1'b0; always @(posedge i_clk) if (i_rst) o_illegal <= 1'b0; else if (i_ce) begin `ifdef OPT_VLIW o_illegal <= (i_illegal); `else o_illegal <= ((i_illegal) || (i_instruction[31])); `endif if ((IMPLEMENT_MPY!=1)&&(w_op[4:1]==4'h5)) o_illegal <= 1'b1; if ((IMPLEMENT_DIVIDE==0)&&(w_dcdDV)) o_illegal <= 1'b1; else if ((IMPLEMENT_DIVIDE!=0)&&(w_dcdDV)&&(w_dcdR[3:1]==3'h7)) o_illegal <= 1'b1; if ((IMPLEMENT_FPU!=0)&&(w_dcdFP)&&(w_dcdR[3:1]==3'h7)) o_illegal <= 1'b1; else if ((IMPLEMENT_FPU==0)&&(w_dcdFP)) o_illegal <= 1'b1; if ((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7) &&( (w_op[2:0] != 3'h1) // BREAK `ifdef OPT_PIPELINED &&(w_op[2:0] != 3'h2) // LOCK `endif &&(w_op[2:0] != 3'h0))) // NOOP o_illegal <= 1'b1; end always @(posedge i_clk) if (i_ce) begin `ifdef OPT_VLIW if (~o_phase) begin o_gie<= i_gie; // i.e. dcd_pc+1 o_pc <= i_pc+{{(AW-1){1'b0}},1'b1}; end `else o_gie<= i_gie; o_pc <= i_pc+{{(AW-1){1'b0}},1'b1}; `endif // Under what condition will we execute this // instruction? Only the load immediate instruction // is completely unconditional. o_cond <= w_cond; // Don't change the flags on conditional instructions, // UNLESS: the conditional instruction was a CMP // or TST instruction. o_wF <= w_wF; // Record what operation/op-code (4-bits) we are doing // Note that LDI magically becomes a MOV // instruction here. That way it's a pass through // the ALU. Likewise, the two compare instructions // CMP and TST becomes SUB and AND here as well. // We keep only the bottom four bits, since we've // already done the rest of the decode necessary to // settle between the other instructions. For example, // o_FP plus these four bits uniquely defines the FP // instruction, o_DV plus the bottom of these defines // the divide, etc. o_op <= (w_ldi)? 4'hf:w_op[3:0]; // Default values o_dcdR <= { w_dcdR_cc, w_dcdR_pc, w_dcdR}; o_dcdA <= { w_dcdA_cc, w_dcdA_pc, w_dcdA}; o_dcdB <= { w_dcdB_cc, w_dcdB_pc, w_dcdB}; o_wR <= w_wR; o_rA <= w_rA; o_rB <= w_rB; r_I <= w_I; o_zI <= w_Iz; o_ALU <= (w_ALU)||(w_ldi)||(w_cmptst); // 1 LUT o_M <= w_dcdM; o_DV <= w_dcdDV; o_FP <= w_dcdFP; o_break <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b001); `ifdef OPT_PIPELINED r_lock <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b010); `endif `ifdef OPT_VLIW r_nxt_half <= { iword[31], iword[13:5], ((iword[21])? iword[20:19] : 2'h0), iword[4:0] }; `endif end `ifdef OPT_PIPELINED assign o_lock = r_lock; `else assign o_lock = 1'b0; `endif generate if (EARLY_BRANCHING!=0) begin reg r_early_branch, r_ljmp; reg [(AW-1):0] r_branch_pc; initial r_ljmp = 1'b0; always @(posedge i_clk) if (i_rst) r_ljmp <= 1'b0; else if ((i_ce)&&(i_pf_valid)) r_ljmp <= (w_ljmp); assign o_ljmp = r_ljmp; always @(posedge i_clk) if (i_rst) r_early_branch <= 1'b0; else if ((i_ce)&&(i_pf_valid)) begin if (r_ljmp) // LOD (PC),PC r_early_branch <= 1'b1; else if ((~iword[31])&&(iword[30:27]==`CPU_PC_REG)&&(w_cond[3])) begin if (w_op[4:1] == 4'hb) // LDI to PC // LDI x,PC r_early_branch <= 1'b1; else if ((w_op[4:0]==5'h02)&&(~iword[18])) // Add x,PC r_early_branch <= 1'b1; else begin r_early_branch <= 1'b0; end end else r_early_branch <= 1'b0; end else if (i_ce) r_early_branch <= 1'b0; always @(posedge i_clk) if (i_ce) begin if (r_ljmp) r_branch_pc <= iword[(AW-1):0]; else if (w_op[4:1] == 4'hb) // LDI r_branch_pc <= {{(AW-23){iword[22]}},iword[22:0]}; else // Add x,PC r_branch_pc <= i_pc + {{(AW-17){iword[17]}},iword[16:0]} + {{(AW-1){1'b0}},1'b1}; end assign o_early_branch = r_early_branch; assign o_branch_pc = r_branch_pc; end else begin assign o_early_branch = 1'b0; assign o_branch_pc = {(AW){1'b0}}; assign o_ljmp = 1'b0; end endgenerate // To be a pipeable operation there must be ... // 1. Two valid adjacent instructions // 2. Both must be memory operations, of the same time (both lods // or both stos) // 3. Both must use the same register base address // 4. Both must be to the same address, or the address incremented // by one // Note that we're not using iword here ... there's a lot of logic // taking place, and it's only valid if the new word is not compressed. // reg r_valid; always @(posedge i_clk) if (i_ce) o_pipe <= (r_valid)&&(i_pf_valid)&&(~i_instruction[31]) &&(w_dcdM)&&(o_M)&&(o_op[0] ==i_instruction[22]) &&(i_instruction[17:14] == o_dcdB[3:0]) &&(i_instruction[17:14] != o_dcdA[3:0]) &&(i_gie == o_gie) &&((i_instruction[21:19]==o_cond[2:0]) ||(o_cond[2:0] == 3'h0)) &&((i_instruction[13:0]==r_I[13:0]) ||({1'b0, i_instruction[13:0]}==(r_I[13:0]+14'h1))); always @(posedge i_clk) if (i_rst) r_valid <= 1'b0; else if ((i_ce)&&(o_ljmp)) r_valid <= 1'b0; else if ((i_ce)&&(i_pf_valid)) r_valid <= 1'b1; else if (~i_stalled) r_valid <= 1'b0; assign o_I = { {(32-22){r_I[22]}}, r_I[21:0] }; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log