URL
https://opencores.org/ocsvn/8b10b_encdec/8b10b_encdec/trunk
Subversion Repositories 8b10b_encdec
[/] [8b10b_encdec/] [web_uploads/] [8b10_enc.vhd] - Rev 5
Compare with Previous | Blame | View Log
------------------------------------------------------------------------------- -- -- Title : 8b/10b Encoder -- Design : 8-bit to 10-bit Encoder -- Project : 8000 - 8b10b_encdec -- Author : Ken Boyette -- Company : Critia Computer, Inc. -- ------------------------------------------------------------------------------- -- -- File : 8b10b_enc.vhd -- Version : 1.0 -- Generated : 09.15.2006 -- By : Itf2Vhdl ver. 1.20 -- ------------------------------------------------------------------------------- -- -- Description : -- This module provides 8-bit to 10-bit encoding. -- It accepts 8-bit parallel data input and generates 10-bit encoded data -- output in accordance with the 8b/10b standard. This coding method was -- described in the 1983 IBM publication "A DC-Balanced, Partitioned-Block, -- 8B/10B Transmission Code" by A.X. Widmer and P.A. Franaszek and was granted -- a U.S. Patent #4,486,739 in 1984 which has now expired. -- -- The parallel 8-bit Binary input represent 256 possible values, called -- characters. -- The bits are identified as: -- HI, GI, FI, EI, DI, CI, BI, AI (Most Significant to Least) -- The output is a 10-bit encoded character whose bits are identified as: -- AO, BO, CO, DO, EO, IO, FO, GO, HO, AJO (Least Significant to Most) -- An additional 12 output characters, K, are defined for command and -- synchronization use. -- KI, is used to indicate that the input is for a special character. -- All inputs and outputs are synchronous with an externally supplied -- byte rate clock BYTECLK. -- The encoded output is valid one clock after the input. -- There is a reset input, RESET, to reset the logic. The next rising -- BYTECLK after RESET is deasserted latches valid input data. -- -- Note: This VHDL structure closely follows the discrete logic defined -- in the original article and the subsequent patent. -- The Figures referenced are those in the patent. ------------------------------------------------------------------------------- -- This program is licensed under the GPL. ------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.all; entity enc_8b10b is port( RESET : in std_logic ; -- Global asynchronous reset (active high) SBYTECLK : in std_logic ; -- Master synchronous send byte clock KI : in std_logic ; -- Control (K) input(active high) AI, BI, CI, DI, EI, FI, GI, HI : in std_logic ; -- Unencoded input data JO, HO, GO, FO, IO, EO, DO, CO, BO, AO : out std_logic -- Encoded out ); end enc_8b10b; architecture behavioral of enc_8b10b is -- Signals to tie things together signal XLRESET, LRESET : std_logic ; -- Local synchronized RESET signal L40, L04, L13, L31, L22 : std_logic ; -- Figure 3 Signals signal F4, G4, H4, K4, S, FNEG : std_logic ; -- Figure 4 Signals signal PD1S6, ND1S6, PD0S6, ND0S6 : std_logic ; -- Figure 5 Signals signal ND1S4, ND0S4, PD1S4, PD0S4 : std_logic ; -- ...Figure 5 signal COMPLS4, COMPLS6, NDL6 : std_logic ; -- Figure 6 Signals signal PDL6, LPDL6, PDL4, LPDL4 : std_logic ; -- Figure 6 signal NAO, NBO, NCO, NDO, NEO, NIO : std_logic ; -- Figure 7 Signals signal NFO, NGO, NHO, NJO, SINT : std_logic ; -- Figure 8 begin -- PROCESS: SYNCRST; Synchronize and delay RESET one clock for startup SYNCRST: process (RESET, XLRESET, SBYTECLK) begin if SBYTECLK'event and SBYTECLK = '1' then XLRESET <= RESET ; elsif SBYTECLK'event and SBYTECLK = '0' then LRESET <= XLRESET ; end if ; end process SYNCRST ; -- -- 5b Input Function (Reference: Figure 3) -- -- Four 1's L40 <= AI and BI and CI and DI ; -- 1,1,1,1 -- Four 0's L04 <= not AI and not BI and not CI and not DI ; -- 0,0,0,0 -- One 1 and three 0's L13 <= (not AI and not BI and not CI and DI) -- 0,0,0,1 or (not AI and not BI and CI and not DI) -- 0,0,1,0 or (not AI and BI and not CI and not DI) -- 0,1,0,0 or (AI and not BI and not CI and not DI) ; -- 1,0,0,0 -- Three 1's and one 0 L31 <= (AI and BI and CI and not DI) -- 1,1,1,0 or (AI and BI and not CI and DI) -- 1,1,0,1 or (AI and not BI and CI and DI) -- 1,0,1,1 or (not AI and BI and CI and DI) ; -- 0,1,1,1 -- Two 1's and two 0's L22 <= (not AI and not BI and CI and DI) -- 0,0,1,1 or (not AI and BI and CI and not DI) -- 0,1,1,0 or (AI and BI and not CI and not DI) -- 1,1,0,0 or (AI and not BI and not CI and DI) -- 1,0,0,1 or (not AI and BI and not CI and DI) -- 0,1,0,1 or (AI and not BI and CI and not DI) ; -- 1,0,1,0 -- -- 3b Input Function (Reference: Figure 4) -- -- PROCESS: FN3B; Latch 3b and K inputs FN3B: process (SBYTECLK, FI, GI, HI, KI) begin -- Falling edge of clock latches F,G,H,K inputs if SBYTECLK'event and SBYTECLK = '0' then F4 <= FI ; G4 <= GI ; H4 <= HI ; K4 <= KI ; end if; end process FN3B; -- PROCESS: FNS; Create and latch "S" function FNS: process (LRESET, SBYTECLK, PDL6, L31, DI, EI, NDL6, L13) begin if LRESET = '1' then S <= '0' ; elsif SBYTECLK'event and SBYTECLK = '1' then S <= (PDL6 and L31 and DI and not EI) or (NDL6 and L13 and EI and not DI) ; end if; end process FNS ; -- Intermediate term for "F4 is Not Equal to G4" FNEG <= F4 xor G4 ; -- -- Disparity Control - Figure 5 -- PD1S6 <= (not L22 and not L31 and not EI) or (L13 and DI and EI) ; ND1S6 <= (L31 and not DI and not EI) or (EI and not L22 and not L13) or K4 ; PD0S6 <= (not L22 and not L13 and EI) or K4 ; ND0S6 <= (not L22 and not L31 and not EI) or (L13 and DI and EI) ; ND1S4 <= (F4 and G4); ND0S4 <= (not F4 and not G4); PD1S4 <= (not F4 and not G4) or (FNEG and K4) ; PD0S4 <= (F4 and G4 and H4) ; -- -- Disparity Control - Figure 6 -- PDL6 <= (PD0S6 and not COMPLS6) or (COMPLS6 and ND0S6) or (not ND0S6 and not PD0S6 and LPDL4) ; NDL6 <= not PDL6 ; PDL4 <= (LPDL6 and not PD0S4 and not ND0S4) or (ND0S4 and COMPLS4) or (not COMPLS4 and PD0S4) ; -- PROCESS: CMPLS4; Disparity determines complimenting S4 CMPLS4: process (LRESET, SBYTECLK, PDL6) begin if LRESET = '1' then LPDL6 <= '0' ; elsif SBYTECLK'event and SBYTECLK = '1' then -- Rising edge LPDL6 <= PDL6 ; -- .. latches S4 end if; end process CMPLS4 ; COMPLS4 <= (PD1S4 and not LPDL6) xor (ND1S4 and LPDL6) ; -- PROCESS: CMPLS6; Disparity determines complimenting S6 CMPLS6: process (LRESET, SBYTECLK, PDL4) begin if LRESET = '1' then LPDL4 <= '0' ; elsif SBYTECLK'event and SBYTECLK = '0' then -- Falling edge LPDL4 <= PDL4 ; -- .. latches S6 end if; end process CMPLS6; COMPLS6 <= (ND1S6 and LPDL4) xor (PD1S6 and not LPDL4) ; -- -- 5b/6b Encoder - Figure 7 -- -- Logic for non-complimented (Normal) A,B,C,D,E,I outputs NAO <= AI ; NBO <= L04 or (BI and not L40) ; NCO <= CI or L04 or (L13 and DI and EI) ; NDO <= (DI and not L40) ; NEO <= (EI and not (L13 and DI and EI)) or (L13 and not EI) ; NIO <= (L22 and not EI) or (L04 and EI) or (L13 and not DI and EI) or (L40 and EI) or (L22 and KI) ; -- PROCESS: ENC5B6B; Generate and latch LS 6 encoded bits ENC5B6B: process (LRESET, SBYTECLK, COMPLS6, NAO, NBO, NCO, NDO, NEO, NIO) begin if LRESET = '1' then AO <= '0' ; BO <= '0' ; CO <= '0' ; DO <= '0' ; EO <= '0' ; IO <= '0' ; elsif SBYTECLK'event and SBYTECLK = '1' then AO <= COMPLS6 XOR NAO ; -- Least significant bit 0 BO <= COMPLS6 XOR NBO ; CO <= COMPLS6 XOR NCO ; DO <= COMPLS6 XOR NDO ; EO <= COMPLS6 XOR NEO ; IO <= COMPLS6 XOR NIO ; -- Most significant bit 6 end if; end process ENC5B6B; -- -- 3b/4b Encoder - Figure 8 -- -- Logic for the non-complimented F,G,H,J outputs SINT <= (S and F4 and G4 and H4) or (K4 and F4 and G4 and H4) ; NFO <= (F4 and not SINT) ; NGO <= G4 or (not F4 and not G4 and not H4) ; NHO <= H4 ; NJO <= SINT or (FNEG and not H4) ; -- PROCESS: ENC3B4B; Generate and latch MS 4 encoded bits ENC3B4B: process (LRESET, SBYTECLK, COMPLS4, NFO, NGO, NHO, NJO) begin if LRESET = '1' then FO <= '0' ; GO <= '0' ; HO <= '0' ; JO <= '0' ; elsif SBYTECLK'event and SBYTECLK ='0' then FO <= COMPLS4 XOR NFO ; -- Least significant bit 7 GO <= COMPLS4 XOR NGO ; HO <= COMPLS4 XOR NHO ; JO <= COMPLS4 XOR NJO ; -- Most significant bit 10 end if; end process ENC3B4B ; end behavioral;