URL
https://opencores.org/ocsvn/RISCMCU/RISCMCU/trunk
Subversion Repositories RISCMCU
[/] [RISCMCU/] [trunk/] [vhdl/] [v_controlunit.vhd] - Rev 28
Compare with Previous | Blame | View Log
---------------------------------------------------------------------------- ---- ---- ---- WISHBONE RISCMCU IP Core ---- ---- ---- ---- This file is part of the RISCMCU project ---- ---- http://www.opencores.org/projects/riscmcu/ ---- ---- ---- ---- Description ---- ---- Implementation of a RISC Microcontroller based on Atmel AVR ---- ---- AT90S1200 instruction set and features with Altera Flex10k20 FPGA. ---- ---- ---- ---- Author(s): ---- ---- - Yap Zi He, yapzihe@hotmail.com ---- ---- ---- ---------------------------------------------------------------------------- ---- ---- ---- Copyright (C) 2001 Authors and OPENCORES.ORG ---- ---- ---- ---- This source file may be used and distributed without ---- ---- restriction provided that this copyright statement is not ---- ---- removed from the file and that any derivative work contains ---- ---- the original copyright notice and the associated disclaimer. ---- ---- ---- ---- This source file is free software; you can redistribute it ---- ---- and/or modify it under the terms of the GNU Lesser General ---- ---- Public License as published by the Free Software Foundation; ---- ---- either version 2.1 of the License, or (at your option) any ---- ---- later version. ---- ---- ---- ---- This source is distributed in the hope that it will be ---- ---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- ---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- ---- PURPOSE. See the GNU Lesser General Public License for more ---- ---- details. ---- ---- ---- ---- You should have received a copy of the GNU Lesser General ---- ---- Public License along with this source; if not, download it ---- ---- from http://www.opencores.org/lgpl.shtml ---- ---- ---- ---------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity v_controlunit is port( ir : in std_logic_vector(15 downto 0); sr : in std_logic_vector(7 downto 0); clk, clrn : in std_logic; skip, extirq, timerirq : in std_logic; en : buffer std_logic; wr_reg : buffer std_logic; rd_ram, wr_ram, ld_mar, ld_mbr, inc_zp, dec_zp : out std_logic; sren : out std_logic_vector (6 downto 0); c2a,c2b : out std_logic; asel : out integer range 0 to 1; bsel : out integer range 0 to 3; bitsel : out integer range 0 to 7; set : out std_logic; add, subcp, logic, right, dir, pass_a : out std_logic; wcarry : out std_logic; logicsel : out integer range 0 to 3; rightsel : out integer range 0 to 2; dirsel : out integer range 0 to 1; addoffset : out std_logic; push, pull : out std_logic; cpse, skiptest : out std_logic; bclr,bset : out std_logic; bld : out std_logic; cbisbi : out std_logic; vec2, vec4 : buffer std_logic; dest : out integer range 0 to 15; srsel : out integer range 0 to 7; offset : out std_logic_vector(8 downto 0); clr_i, set_i, clr_intf, clr_tov0 : out std_logic; rd_sreg, wr_sreg : out std_logic; rd_gimsk, wr_gimsk, rd_timsk, wr_timsk, rd_tifr,wr_tifr : out std_logic; rd_mcucr,wr_mcucr, rd_tccr0, wr_tccr0, rd_tcnt0,wr_tcnt0 : out std_logic; rd_portb, wr_portb, rd_ddrb, wr_ddrb, rd_pinb : out std_logic; rd_portc, wr_portc, rd_ddrc, wr_ddrc, rd_pinc : out std_logic; rd_portd, wr_portd, rd_ddrd, wr_ddrd, rd_pind : out std_logic ); end v_controlunit; architecture controlunit of v_controlunit is type statetype is (exes, nop2s, nop1s, lds, sts, cbisbis, sbicss, sleeps); signal ibr : std_logic_vector(11 downto 0); signal state : statetype; signal one, neg, imm : std_logic; signal cpcm, sbcm, addm, cpsem, cpm, subm, adcm, andm, eorm, orm, movm, cpim, sbcim, subim, orim, andim, ldm, stm, comm, negm, swapm, incm, asrm, lsrm, rorm, decm, bsetm, bclrm, retm, retim, sleepm, cbisbim, sbicsm, inm, outm, rjmpm, rcallm, ldim, brbcsm, bldm, bstm, sbrcsm, ld_incm, ld_decm, st_incm, st_decm : std_logic; signal ioaddr : integer range 0 to 16#3f#; signal rd_io, wr_io, break, irq, get_io, wr_ram_fast, branchtest, branch, jmp : std_logic; component v_iodecoder port( ioaddr : in integer range 0 to 16#3f#; rd_io, wr_io : in std_logic; rd_sreg, wr_sreg : out std_logic; rd_gimsk, wr_gimsk, rd_timsk, wr_timsk, rd_tifr,wr_tifr : out std_logic; rd_mcucr,wr_mcucr, rd_tccr0, wr_tccr0, rd_tcnt0,wr_tcnt0 : out std_logic; rd_portb, wr_portb, rd_ddrb, wr_ddrb, rd_pinb : out std_logic; rd_portc, wr_portc, rd_ddrc, wr_ddrc, rd_pinc : out std_logic; rd_portd, wr_portd, rd_ddrd, wr_ddrd, rd_pind : out std_logic ); end component; begin -- Instruction Decoder -- Decode 51 instructions generate 46 'm signals -- Combine brbcs+brbs (brbcs) cbi+sbi (cbisbi) sbrc+sbrs (sbrcs) sbic+sbis (sbics) process(ir, wr_reg, get_io, ibr) begin cpcm <= '0'; sbcm <= '0'; addm <= '0'; cpsem <= '0'; cpm <= '0'; subm <= '0'; adcm <= '0'; andm <= '0'; eorm <= '0'; orm <= '0'; movm <= '0'; cpim <= '0'; sbcim <= '0'; subim <= '0'; orim <= '0'; andim <= '0'; ldm <= '0'; stm <= '0'; comm <= '0'; negm <= '0'; swapm <= '0'; incm <= '0'; asrm <= '0'; lsrm <= '0'; rorm <= '0'; decm <= '0'; bsetm <= '0'; bclrm <= '0'; retm <= '0'; retim <= '0'; sleepm <= '0'; cbisbim <= '0'; sbicsm <= '0'; inm <= '0'; outm <= '0'; rjmpm <= '0'; rcallm <= '0'; ldim <= '0'; brbcsm <= '0'; bldm <= '0'; bstm <= '0'; sbrcsm <= '0'; ld_incm <= '0'; ld_decm <= '0'; st_incm <= '0'; st_decm <= '0'; case ir(15 downto 12) is when "0000" => if ir(11 downto 10) = "01" then cpcm <= '1'; end if; if ir(11 downto 10) = "10" then sbcm <= '1'; end if; if ir(11 downto 10) = "11" then addm <= '1'; end if; when "0001" => if ir(11 downto 10) = "00" then cpsem<= '1'; end if; if ir(11 downto 10) = "01" then cpm <= '1'; end if; if ir(11 downto 10) = "10" then subm <= '1'; end if; if ir(11 downto 10) = "11" then adcm <= '1'; end if; when "0010" => if ir(11 downto 10) = "00" then andm <= '1'; end if; if ir(11 downto 10) = "01" then eorm <= '1'; end if; if ir(11 downto 10) = "10" then orm <= '1'; end if; if ir(11 downto 10) = "11" then movm <= '1'; end if; when "0011" => cpim <= '1'; when "0100" => sbcim <= '1'; when "0101" => subim <= '1'; when "0110" => orim <= '1'; when "0111" => andim <= '1'; when "1000" => if ir(11 downto 9) = "000" then ldm <= '1'; end if; if ir(11 downto 9) = "001" then stm <= '1'; end if; when "1001" => if ir(11 downto 9) = "000" then if ir(1 downto 0) = "01" then ld_incm <= '1'; end if; if ir(1 downto 0) = "10" then ld_decm <= '1'; end if; end if; if ir(11 downto 9) = "001" then if ir(1 downto 0) = "01" then st_incm <= '1'; end if; if ir(1 downto 0) = "10" then st_decm <= '1'; end if; end if; if ir(11 downto 9) = "010" then case ir(3 downto 0) is when "0000" => comm <= '1'; when "0001" => negm <= '1'; when "0010" => swapm <= '1'; when "0011" => incm <= '1'; when "0101" => asrm <= '1'; when "0110" => lsrm <= '1'; when "0111" => rorm <= '1'; when "1010" => decm <= '1'; when "1000" => if ir(8 downto 7) = "00" then bsetm <= '1'; end if; if ir(8 downto 7) = "01" then bclrm <= '1'; end if; if ir(8 downto 7) & ir(4) = "100" then retm <= '1'; end if; if ir(8 downto 7) & ir(4) = "101" then retim <= '1'; end if; if ir(8 downto 7) = "11" then sleepm <= '1'; end if; when others => end case; elsif ir(11 downto 10) = "10" then if ir(8) = '0' then cbisbim <= '1'; -- cbi, sbi else sbicsm <= '1'; end if; -- sbic, sbis end if; when "1011" => if ir(11) = '0' then inm <= '1'; else outm <= '1'; end if; when "1100" => rjmpm <= '1'; when "1101" => rcallm <= '1'; when "1110" => ldim <= '1'; when "1111" => if ir(11) = '0' then brbcsm <= '1'; end if; if ir(11 downto 9) = "100" then bldm <= '1'; end if; if ir(11 downto 9) = "101" then bstm <= '1'; end if; if ir(11 downto 10) = "11" then sbrcsm <= '1'; end if;-- sbrc, sbrs when others => end case; -- Generate Fetch Stage Signals : C2A and C2B (C2A active also when fetch I/O) if ((ibr(7 downto 4) = ir(7 downto 4)) and wr_reg = '1') or get_io = '1' then c2a <= '1'; else c2a <= '0'; end if; if (ibr(7 downto 4) = ir(3 downto 0)) and wr_reg = '1' then c2b <= '1'; else c2b <= '0'; end if; end process; -- Generate wcarry, logicsel, rightsel and dirsel -- Load IBR with IR when EN active process(clk,clrn) begin if clrn = '0' then ibr <= "000000000000"; wcarry <= '0'; logicsel <= 0; rightsel <= 0; dirsel <= 0; elsif clk'event and clk = '1' then if en = '1' then ibr <= ir(11 downto 0); end if; wcarry <= adcm or sbcm or sbcim or cpcm; if orm = '1' or orim = '1' then logicsel <= 1; elsif eorm = '1' then logicsel <= 2; elsif comm = '1' then logicsel <= 3; else logicsel <= 0; end if; if rorm = '1' then rightsel <= 1; elsif asrm = '1' then rightsel <= 2; else rightsel <= 0; end if; if swapm = '1' then dirsel <= 1; else dirsel <= 0; end if; end if; end process; -- Finite State Machine irq <= (timerirq or extirq) and sr(7); break <= branch or skip or irq; process(clk, clrn) begin if clrn = '0' then state <= exes; en <= '1'; get_io <= '0'; pass_a <= '0'; wr_reg <= '0'; sren <= "0000000"; rd_io <= '0'; wr_io <= '0'; rd_ram <= '0'; wr_ram_fast <= '0'; ld_mar <= '0'; ld_mbr <= '0'; inc_zp <= '0'; dec_zp <= '0'; add <= '0'; subcp <= '0'; logic <= '0'; right <= '0'; dir <= '0'; jmp <= '0'; push <= '0'; pull <= '0'; branchtest <= '0'; bclr <= '0'; bset <= '0'; bld <= '0'; cpse <= '0'; skiptest <= '0'; cbisbi <= '0'; vec2 <= '0'; vec4 <= '0'; set_i <= '0'; elsif clk'event and clk = '1' then en <= '1'; get_io <= '0'; pass_a <= '0'; wr_reg <= '0'; sren <= "0000000"; rd_io <= '0'; wr_io <= '0'; rd_ram <= '0'; wr_ram_fast <= '0'; ld_mar <= '0'; ld_mbr <= '0'; inc_zp <= '0'; dec_zp <= '0'; add <= '0'; subcp <= '0'; logic <= '0'; right <= '0'; dir <= '0'; jmp <= '0'; push <= '0'; pull <= '0'; branchtest <= '0'; bclr <= '0'; bset <= '0'; bld <= '0'; cpse <= '0'; skiptest <= '0'; cbisbi <= '0'; vec2 <= '0'; vec4 <= '0'; set_i <= '0'; case state is when exes => if break = '1' then if branch = '1' then state <= nop1s; elsif skip = '1' then elsif irq = '1' then state <= nop2s; push <= '1'; if extirq = '1' then vec2 <= '1'; else vec4 <= '1'; end if; end if; else if rjmpm = '1' or rcallm = '1' or retm = '1' or retim = '1' then state <= nop2s; elsif cbisbim = '1' then state <= cbisbis; elsif sbicsm = '1' then state <= sbicss; elsif ldm = '1' or ld_incm = '1' or ld_decm = '1' then state <= lds; elsif stm = '1' or st_incm = '1' or st_decm = '1' then state <= sts; elsif sleepm = '1' then state <= sleeps; end if; -- PC signals jmp <= rjmpm or rcallm; -- encoded push <= rcallm; pull <= retm or retim; -- PC and IR signals en <= not (cbisbim or sbicsm or stm or st_incm or st_decm or ldm or ld_incm or ld_decm); -- General Purpose Register File signals wr_reg <= addm or adcm or incm or subm or subim or sbcm or sbcim or decm or negm or andm or andim or orm or orim or eorm or comm or lsrm or rorm or asrm or ldim or movm or swapm or inm; inc_zp <= ld_incm or st_incm; dec_zp <= ld_decm or st_decm; -- ALU signals add <= addm or adcm or incm; subcp <= subm or subim or sbcm or sbcim or decm or negm or cpm or cpim or cpcm; logic <= andm or andim or orm or orim or eorm or comm; right <= lsrm or rorm or asrm; dir <= ldim or movm or swapm; bld <= bldm; pass_a <= outm or stm or st_incm or st_decm; cpse <= cpsem; skiptest <= sbrcsm; -- SR signals bclr <= bclrm; bset <= bsetm; set_i <= retim; sren(0) <= addm or adcm or subm or subim or sbcm or sbcim or cpm or cpcm or cpim or negm or comm or lsrm or rorm or asrm; for i in 1 to 4 loop sren(i) <= addm or adcm or incm or subm or subim or sbcm or sbcim or cpm or cpcm or cpim or decm or negm or andm or andim or orm or orim or eorm or comm or lsrm or rorm or asrm; end loop; sren(5) <= addm or adcm or subm or subim or sbcm or sbcim or cpm or cpcm or cpim or negm; sren(6) <= bstm; -- Data RAM signals ld_mar <= ldm or ld_incm or ld_decm or stm or st_incm or st_decm; ld_mbr <= stm or st_incm or st_decm; -- I/O decoder signals wr_io <= outm; rd_io <= inm or sbicsm or cbisbim; if inm = '1' or outm = '1' then ioaddr <= conv_integer(ir(10 downto 9) & ir(3 downto 0)); else ioaddr <= conv_integer('0' & ir(7 downto 3)); end if; -- Branch Evaluation Unit signal branchtest <= brbcsm; -- Fetch I/O, generate C2A get_io <= cbisbim or sbicsm; end if; when nop2s => state <= nop1s; when nop1s => state <= exes; when cbisbis => state <= exes; cbisbi <= '1'; wr_io <= '1'; when sbicss => state <= exes; skiptest <= '1'; when lds => state <= exes; wr_reg <= '1'; rd_ram <= '1'; when sts => state <= exes; wr_ram_fast <= '1'; when sleeps => en <= '0'; if irq = '1' then en <= '1'; state <= nop2s; push <= '1'; if extirq = '1' then vec2 <= '1'; else vec4 <= '1'; end if; end if; end case; end if; end process; -- Generate Delayed WR_RAM signal to avoid writing to wrong address process(state, wr_ram_fast) begin if state = exes then wr_ram <= wr_ram_fast; else wr_ram <= '0'; end if; end process; -- Branch Evaluation Unit process(branchtest, sr, ibr) begin if branchtest = '1' and (sr(conv_integer(ibr(2 downto 0))) = not ibr(10)) then branch <= '1'; else branch <= '0'; end if; end process; -- IO address decoder iodec : v_iodecoder port map (ioaddr, rd_io, wr_io, rd_sreg, wr_sreg, rd_gimsk, wr_gimsk, rd_timsk, wr_timsk, rd_tifr, wr_tifr, rd_mcucr, wr_mcucr, rd_tccr0, wr_tccr0, rd_tcnt0, wr_tcnt0, rd_portb, wr_portb, rd_ddrb, wr_ddrb, rd_pinb, rd_portc, wr_portc, rd_ddrc, wr_ddrc, rd_pinc, rd_portd, wr_portd, rd_ddrd, wr_ddrd, rd_pind); -- Intruction Buffer Register (IBR) to signals ------------------ dest <= conv_integer(ibr(7 downto 4)); srsel <= conv_integer(ibr(6 downto 4)); set <= ibr(9); bitsel <= conv_integer(ibr(2 downto 0)); offset <= ibr(8 downto 0) when jmp = '1' else ibr(9) & ibr(9) & ibr(9 downto 3); -- Generate Fetch Stage Signals : ASEL and SEL imm <= subim or sbcim or cpim or andim or orim or ldim; one <= incm or decm; neg <= negm; asel <= 1 when neg = '1' and get_io = '0' else 0; bsel <= 1 when neg = '1' else 2 when imm = '1' else 3 when one = '1' else 0; -- Decode Control Signal addoffset <= branch or jmp; -- PC clr_i <= vec2 or vec4; -- PC clr_intf <= vec2; -- External Interrupt clr_tov0 <= vec4; -- Timer end controlunit;