URL
https://opencores.org/ocsvn/aemb/aemb/trunk
Subversion Repositories aemb
[/] [aemb/] [trunk/] [sw/] [cc/] [literate.hh] - Rev 112
Go to most recent revision | Compare with Previous | Blame | View Log
/* $Id: literate.hh,v 1.1 2008-04-11 15:31:47 sybreon Exp $
**
** AEMB Function Verification C++ Testbench
** Copyright (C) 2004-2008 Shawn Tan <shawn.tan@aeste.net>
**
** This file is part of AEMB.
**
** AEMB is free software: you can redistribute it and/or modify it
** under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** AEMB is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
** or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
** License for more details.
**
** You should have received a copy of the GNU General Public License
** along with AEMB. If not, see <http://www.gnu.org/licenses/>.
*/
/**
AEMB Software Verification
@file literate.hh
Algorithms listed here are extracted from literateprograms.org and
modified for AEMB testing.
*/
#include <cstdlib>
#ifndef LITERATE_HH
#define LITERATE_HH
/*
FIBONACCI TEST
http://en.literateprograms.org/Fibonacci_numbers_(C)
This tests for the following:
- Recursion & Iteration
- 32/16/8-bit data handling
*/
unsigned int fibSlow(unsigned int n)
{
return n < 2 ? n : fibSlow(n-1) + fibSlow(n-2);
}
unsigned int fibFast(unsigned int n)
{
unsigned int a[3];
unsigned int *p=a;
unsigned int i;
for(i=0; i<=n; ++i) {
if(i<2) *p=i;
else {
if(p==a) *p=*(a+1)+*(a+2);
else if(p==a+1) *p=*a+*(a+2);
else *p=*a+*(a+1);
}
if(++p>a+2) p=a;
}
return p==a?*(p+2):*(p-1);
}
int fibonacciTest(int max) {
unsigned int n;
unsigned int fast, slow;
// 32-bit LUT
unsigned int fib_lut32[] = {
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
};
// 16-bit LUT
unsigned short fib_lut16[] = {
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
};
// 8-bit LUT
unsigned char fib_lut8[] = {
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
};
for (n=0;n<max;n++) {
slow = fibSlow(n);
fast = fibFast(n);
if ((slow != fast) ||
(fast != fib_lut32[n]) ||
(fast != fib_lut16[n]) ||
(fast != fib_lut8[n])) {
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/*
EUCLIDEAN TEST
http://en.literateprograms.org/Euclidean_algorithm_(C)
This tests for the following:
- Modulo arithmetic
- Goto
*/
int euclidGCD(int a, int b) {
if (b > a) goto b_larger;
while (1) {
a = a % b;
if (a == 0) return b;
b_larger:
b = b % a;
if (b == 0) return a;
}
}
int euclideanTest(int max)
{
int n;
int euclid;
// Random Numbers
int euclid_a[] = {
1804289383, 1681692777, 1957747793, 719885386, 596516649,
1025202362, 783368690, 2044897763, 1365180540, 304089172,
35005211, 294702567, 336465782, 278722862
};
int euclid_b[] = {
846930886, 1714636915, 424238335, 1649760492, 1189641421,
1350490027, 1102520059, 1967513926, 1540383426, 1303455736,
521595368, 1726956429, 861021530, 233665123
};
// GCD
int euclid_lut[] = {
1, 1, 1, 2, 1, 1, 1, 1, 6, 4, 1, 3, 2, 1
};
for (n=0;n<max;n++) {
euclid = euclidGCD(euclid_a[n],euclid_b[n]);
if (euclid != euclid_lut[n]) {
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/**
NEWTON-RHAPSON
http://en.literateprograms.org/Newton-Raphson's_method_for_root_finding_(C)
This tests for the following:
- Multiplication & Division
- Floating point arithmetic
- Integer to Float conversion
*/
float newtonSqrt(float n)
{
float x = 0.0;
float xn = 0.0;
int iters = 0;
int i;
for (i = 0; i <= (int)n; ++i)
{
float val = i*i-n;
if (val == 0.0)
return i;
if (val > 0.0)
{
xn = (i+(i-1))/2.0;
break;
}
}
while (!(iters++ >= 100
|| x == xn))
{
x = xn;
xn = x - (x * x - n) / (2 * x);
}
return xn;
}
int newtonTest (int max) {
int n;
float newt;
// 32-bit LUT
float newt_lut[] = {
0.000000000000000000000000,
1.000000000000000000000000,
1.414213538169860839843750,
1.732050776481628417968750,
2.000000000000000000000000,
2.236068010330200195312500,
2.449489831924438476562500,
2.645751237869262695312500,
2.828427076339721679687500,
3.000000000000000000000000,
3.162277698516845703125000,
3.316624879837036132812500,
3.464101552963256835937500,
3.605551242828369140625000,
3.741657495498657226562500
};
for (n=0;n<max;n++) {
newt = newtonSqrt(n);
if (newt != newt_lut[n]) {
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
#endif
/*
$log$
*/
Go to most recent revision | Compare with Previous | Blame | View Log