URL
https://opencores.org/ocsvn/aes_decrypt_fpga/aes_decrypt_fpga/trunk
Subversion Repositories aes_decrypt_fpga
[/] [aes_decrypt_fpga/] [trunk/] [rtl/] [verilog/] [KeyExpand128.sv] - Rev 2
Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////// ////
//// ////
//// AES Decryption Core for FPGA ////
//// ////
//// This file is part of the AES Decryption Core for FPGA project ////
//// http://www.opencores.org/cores/xxx/ ////
//// ////
//// Description ////
//// Implementation of AES Decryption Core for FPGA according to ////
//// core specification document. ////
//// ////
//// To Do: ////
//// - ////
//// ////
//// Author(s): ////
//// - scheng, schengopencores@opencores.org ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2009 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// //// ///
///////////////////////////////////////////////////////////////////
//// ////
//// 128-bit key expander ////
//// ////
//// The key expansion algorithm is described in section 5.2 of the ////
//// FIPS-197 spec. This file implements the case for 128-bit key ////
//// only. ////
//// ////
////////////////////////////////////////////////////////////////////////
module KeyExpand128(
// 128-bit key expander
input [0:127] kt,
input kt_vld, // Active high input informing key expander that a valid new key is present at kt.
output kt_rdy, // Active high output indicates key expander ready to accept new key
output [0:127] rkey,
output rkey_vld, // Active high output indicates valid roundkey available at rkey[0:127]
output rkey_last, // High for 1 clock cycle, indicates last roundkey available at rkey[0:127].
input clk,
input rst
);
// Registers holding the current roundkey
logic [0:31] w0;
logic [0:31] w1;
logic [0:31] w2;
logic [0:31] w3;
logic [0:3] keyexp_state; // Key expansion state machine.
logic [0:7] Rcon; // Round constant. See FIPS-197 section 5.3.
wire [0:31] subword_out;
wire [0:31] rotword_out;
wire [0:31] w0_feed;
wire [0:31] w1_feed;
wire [0:31] w2_feed;
wire [0:31] w3_feed;
wire keyexp_state_0; // '1' indicates key expansion state machine at state 0 (initial state)
wire keyexp_state_10; // '1' indicates key expansion state machine at state 10 (last state)
// Do not remove the "keep" and "max_fanout" attribute. They are there to force the synthesizer
// to infer independent logic for next_w0-3, instead of deriving next_w1 from next_w0, ...and
// so on. See the definitions of next_w* below. This is to avoid getting a chain of LUTs, which reduces Fmax.
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w0;
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w1;
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w2;
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w3;
assign w0_feed = (keyexp_state_0)? kt[0+:32] : w0;
assign w1_feed = (keyexp_state_0)? kt[32+:32] : w1;
assign w2_feed = (keyexp_state_0)? kt[64+:32] : w2;
assign w3_feed = (keyexp_state_0)? kt[96+:32] : w3;
RotWord RotWord_u(.din(w3_feed), .dout(rotword_out));
SubWord SubWord_u(.din(rotword_out), .dout(subword_out));
assign next_w0 = subword_out ^ {Rcon,24'h000000} ^ w0_feed;
assign next_w1 = subword_out ^ {Rcon,24'h000000} ^ w0_feed ^ w1_feed;
assign next_w2 = subword_out ^ {Rcon,24'h000000} ^ w0_feed ^ w1_feed ^ w2_feed;
assign next_w3 = subword_out ^ {Rcon,24'h000000} ^ w0_feed ^ w1_feed ^ w2_feed ^ w3_feed;
assign rkey = (keyexp_state_0)? kt : {w0,w1,w2,w3};
assign kt_rdy = keyexp_state_0; // Only accept new key in initial state.
assign rkey_vld = ~keyexp_state_0 | kt_vld;
assign rkey_last = keyexp_state_10;
assign keyexp_state_0 = (keyexp_state == 0);
assign keyexp_state_10 = (keyexp_state == 10);
// Key Expansion state machine
always_ff @(posedge clk)
begin
if (rst)
begin
keyexp_state <= 0; // Reset to initial state
Rcon <= 8'h01;
end
else
unique case (keyexp_state)
0 : // If valid key present, load key into roundkey register and proceed to next state
if (kt_vld)
begin
keyexp_state <= keyexp_state + 1;
{w0,w1,w2,w3} <= {next_w0, next_w1, next_w2, next_w3};
Rcon <= (Rcon[0])? (Rcon << 1) ^ 8'h1b : (Rcon << 1); // Advance to next Rcon value.
end
1,2,3,4,5,6,7,8,9 :
// Proceed to next state and update roundkey register
begin
keyexp_state <= keyexp_state + 1;
{w0,w1,w2,w3} <= {next_w0, next_w1, next_w2, next_w3};
Rcon <= (Rcon[0])? (Rcon << 1) ^ 8'h1b : (Rcon << 1); // Advance to next Rcon value.
end
10: // Wrap back to initial state and update roundkey register
begin
keyexp_state <= 0;
{w0,w1,w2,w3} <= {next_w0, next_w1, next_w2, next_w3};
Rcon <= 8'h01;
end
endcase
end
endmodule