URL
https://opencores.org/ocsvn/aes_decrypt_fpga/aes_decrypt_fpga/trunk
Subversion Repositories aes_decrypt_fpga
[/] [aes_decrypt_fpga/] [trunk/] [rtl/] [verilog/] [KeyExpand256.sv] - Rev 2
Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////// ////
//// ////
//// AES Decryption Core for FPGA ////
//// ////
//// This file is part of the AES Decryption Core for FPGA project ////
//// http://www.opencores.org/cores/xxx/ ////
//// ////
//// Description ////
//// Implementation of AES Decryption Core for FPGA according to ////
//// core specification document. ////
//// ////
//// To Do: ////
//// - ////
//// ////
//// Author(s): ////
//// - scheng, schengopencores@opencores.org ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2009 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// //// ///
///////////////////////////////////////////////////////////////////
//// ////
//// 256-bit key expander ////
//// ////
//// The key expansion algorithm is described in section 5.2 of the ////
//// FIPS-197 spec. This file implements the case for 256-bit key ////
//// only. ////
//// ////
////////////////////////////////////////////////////////////////////////
module KeyExpand256(
// 256-bit key expander
input [0:255] kt,
input kt_vld, // Active high input informing key expander that a valid new key is present at kt.
output kt_rdy, // Active high output indicates key expander ready to accept new key
output [0:127] rkey, // Note : rkey is always 128 bit regardless the crypto key length
output rkey_vld, // Active high output indicates valid roundkey available at rkey[0:127]
output rkey_last, // High for 1 clock cycle, indicates last roundkey available at rkey[0:127].
input clk,
input rst
);
// Registers holding the calculated roundkeys
logic [0:31] w0;
logic [0:31] w1;
logic [0:31] w2;
logic [0:31] w3;
logic [0:31] w4;
logic [0:31] w5;
logic [0:31] w6;
logic [0:31] w7;
logic [0:3] keyexp_state; // Key expansion state machine
logic [0:7] Rcon; // Round constant. See FIPS-197 section 5.3.
logic [0:7] Rcon_1; // Shadow Rcon. For use to compute next Rcon value in key expansion state machine.
wire [0:31] subword_out;
wire [0:31] subword_in;
wire [0:31] rotword_out;
wire [0:31] rotword_in;
wire keyexp_state_0; // '1' indicates key expansion state machine at state 0 (initial state)
wire keyexp_state_14; // '1' indicates key expansion state machine at state 14 (last state)
// Do not remove the "keep" and "max_fanout" attribute. They are there to force the synthesizer
// to infer independent logic for next_w*, instead of deriving next_w1 from next_w0, ...and
// so on. See the definitions of next_w* below. This is to avoid getting a chain of LUTs, which reduces Fmax.
wire [0:31] next_w0;
wire [0:31] next_w1;
wire [0:31] next_w2;
wire [0:31] next_w3;
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w4;
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w5;
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w6;
(* keep = "true", max_fanout = 1 *) wire [0:31] next_w7;
assign rotword_in = (keyexp_state_0)? kt[224:255] : w7;
RotWord RotWord_u(.din(rotword_in), .dout(rotword_out));
// keyexp_state[3] = 1 corresponds to states 1,3,5,7,...(odd states), which in turn corresponds to
// the condition ((Nk > 6) && (i mod Nk == 4)) in the key expansion algorithm. See section 5.2 fig.
// 11 of FIPS-197.
assign subword_in = (keyexp_state[3])? rotword_in : rotword_out;
SubWord SubWord_u(.din(subword_in), .dout(subword_out));
assign next_w0 = (keyexp_state_0)? kt[128+:32] : w4;
assign next_w1 = (keyexp_state_0)? kt[160+:32] : w5;
assign next_w2 = (keyexp_state_0)? kt[192+:32] : w6;
assign next_w3 = (keyexp_state_0)? kt[224+:32] : w7;
assign next_w4 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w0);
assign next_w5 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w0 ^ w1);
assign next_w6 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32] ^ kt[64+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w0 ^ w1 ^ w2);
assign next_w7 = (keyexp_state_0)? (subword_out ^ {Rcon,24'h000000} ^ kt[0+:32] ^ kt[32+:32] ^ kt[64+:32] ^ kt[96+:32]) : (subword_out ^ {Rcon,24'h000000} ^ w0 ^ w1 ^ w2 ^ w3);
assign rkey = (keyexp_state_0)? kt[0:127] : {w0,w1,w2,w3};
assign kt_rdy = keyexp_state_0; // Only accept new key in initial state.
assign rkey_vld = ~keyexp_state_0 | kt_vld;
assign rkey_last = keyexp_state_14;
assign keyexp_state_0 = (keyexp_state == 0);
assign keyexp_state_14 = (keyexp_state == 14);
// Key Expansion state machine
always_ff @(posedge clk)
begin
if (rst)
begin
keyexp_state <= 0; // Reset to initial state
Rcon <= 8'h01;
Rcon_1 <= 8'h01;
end
else
unique case (keyexp_state)
0 : // If valid key present, load key into roundkey register and proceed to next state
if (kt_vld)
begin
keyexp_state <= keyexp_state + 1;
{w0,w1,w2,w3,w4,w5,w6,w7} <= {next_w0, next_w1, next_w2, next_w3, next_w4, next_w5, next_w6, next_w7};
Rcon_1 <= Rcon;
Rcon <= 0;
end
2,4,6,8,10,12 :
// Proceed to next state and update roundkey register
begin
keyexp_state <= keyexp_state + 1;
{w0,w1,w2,w3,w4,w5,w6,w7} <= {next_w0, next_w1, next_w2, next_w3, next_w4, next_w5, next_w6, next_w7};
Rcon_1 <= Rcon;
Rcon <= 0;
end
1,3,5,7,9,11,13 :
// Proceed to next state and update to roundkey register, also
// advance Rcon to next value.
begin
keyexp_state <= keyexp_state + 1;
{w0,w1,w2,w3,w4,w5,w6,w7} <= {next_w0, next_w1, next_w2, next_w3, next_w4, next_w5, next_w6, next_w7};
Rcon <= (Rcon_1[0])? (Rcon_1 << 1) ^ 8'h1b : (Rcon_1 << 1);
end
14: // Wrap back to initial state
begin
keyexp_state <= 0;
Rcon <= 8'h01;
end
endcase
end
endmodule