URL
https://opencores.org/ocsvn/altor32/altor32/trunk
Subversion Repositories altor32
[/] [altor32/] [trunk/] [gcc-x64/] [or1knd-elf/] [or1knd-elf/] [include/] [c++/] [4.8.0/] [bits/] [hashtable_policy.h] - Rev 35
Compare with Previous | Blame | View Log
// Internal policy header for unordered_set and unordered_map -*- C++ -*- // Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file bits/hashtable_policy.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. * @headername{unordered_map,unordered_set} */ #ifndef _HASHTABLE_POLICY_H #define _HASHTABLE_POLICY_H 1 namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> class _Hashtable; _GLIBCXX_END_NAMESPACE_VERSION namespace __detail { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** * @defgroup hashtable-detail Base and Implementation Classes * @ingroup unordered_associative_containers * @{ */ template<typename _Key, typename _Value, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _Traits> struct _Hashtable_base; // Helper function: return distance(first, last) for forward // iterators, or 0 for input iterators. template<class _Iterator> inline typename std::iterator_traits<_Iterator>::difference_type __distance_fw(_Iterator __first, _Iterator __last, std::input_iterator_tag) { return 0; } template<class _Iterator> inline typename std::iterator_traits<_Iterator>::difference_type __distance_fw(_Iterator __first, _Iterator __last, std::forward_iterator_tag) { return std::distance(__first, __last); } template<class _Iterator> inline typename std::iterator_traits<_Iterator>::difference_type __distance_fw(_Iterator __first, _Iterator __last) { typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag; return __distance_fw(__first, __last, _Tag()); } // Helper type used to detect whether the hash functor is noexcept. template <typename _Key, typename _Hash> struct __is_noexcept_hash : std::integral_constant<bool, noexcept(declval<const _Hash&>()(declval<const _Key&>()))> { }; struct _Identity { template<typename _Tp> _Tp&& operator()(_Tp&& __x) const { return std::forward<_Tp>(__x); } }; struct _Select1st { template<typename _Tp> auto operator()(_Tp&& __x) const -> decltype(std::get<0>(std::forward<_Tp>(__x))) { return std::get<0>(std::forward<_Tp>(__x)); } }; // Auxiliary types used for all instantiations of _Hashtable nodes // and iterators. /** * struct _Hashtable_traits * * Important traits for hash tables. * * @tparam _Cache_hash_code Boolean value. True if the value of * the hash function is stored along with the value. This is a * time-space tradeoff. Storing it may improve lookup speed by * reducing the number of times we need to call the _Equal * function. * * @tparam _Constant_iterators Boolean value. True if iterator and * const_iterator are both constant iterator types. This is true * for unordered_set and unordered_multiset, false for * unordered_map and unordered_multimap. * * @tparam _Unique_keys Boolean value. True if the return value * of _Hashtable::count(k) is always at most one, false if it may * be an arbitrary number. This is true for unordered_set and * unordered_map, false for unordered_multiset and * unordered_multimap. */ template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> struct _Hashtable_traits { template<bool _Cond> using __bool_constant = integral_constant<bool, _Cond>; using __hash_cached = __bool_constant<_Cache_hash_code>; using __constant_iterators = __bool_constant<_Constant_iterators>; using __unique_keys = __bool_constant<_Unique_keys>; }; /** * struct _Hash_node_base * * Nodes, used to wrap elements stored in the hash table. A policy * template parameter of class template _Hashtable controls whether * nodes also store a hash code. In some cases (e.g. strings) this * may be a performance win. */ struct _Hash_node_base { _Hash_node_base* _M_nxt; _Hash_node_base() : _M_nxt() { } _Hash_node_base(_Hash_node_base* __next) : _M_nxt(__next) { } }; /** * Primary template struct _Hash_node. */ template<typename _Value, bool _Cache_hash_code> struct _Hash_node; /** * Specialization for nodes with caches, struct _Hash_node. * * Base class is __detail::_Hash_node_base. */ template<typename _Value> struct _Hash_node<_Value, true> : _Hash_node_base { _Value _M_v; std::size_t _M_hash_code; template<typename... _Args> _Hash_node(_Args&&... __args) : _M_v(std::forward<_Args>(__args)...), _M_hash_code() { } _Hash_node* _M_next() const { return static_cast<_Hash_node*>(_M_nxt); } }; /** * Specialization for nodes without caches, struct _Hash_node. * * Base class is __detail::_Hash_node_base. */ template<typename _Value> struct _Hash_node<_Value, false> : _Hash_node_base { _Value _M_v; template<typename... _Args> _Hash_node(_Args&&... __args) : _M_v(std::forward<_Args>(__args)...) { } _Hash_node* _M_next() const { return static_cast<_Hash_node*>(_M_nxt); } }; /// Base class for node iterators. template<typename _Value, bool _Cache_hash_code> struct _Node_iterator_base { typedef _Hash_node<_Value, _Cache_hash_code> __node_type; __node_type* _M_cur; _Node_iterator_base(__node_type* __p) : _M_cur(__p) { } void _M_incr() { _M_cur = _M_cur->_M_next(); } }; template<typename _Value, bool _Cache_hash_code> inline bool operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, const _Node_iterator_base<_Value, _Cache_hash_code >& __y) { return __x._M_cur == __y._M_cur; } template<typename _Value, bool _Cache_hash_code> inline bool operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, const _Node_iterator_base<_Value, _Cache_hash_code>& __y) { return __x._M_cur != __y._M_cur; } /// Node iterators, used to iterate through all the hashtable. template<typename _Value, bool __constant_iterators, bool __cache> struct _Node_iterator : public _Node_iterator_base<_Value, __cache> { private: using __base_type = _Node_iterator_base<_Value, __cache>; using __node_type = typename __base_type::__node_type; public: typedef _Value value_type; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; using pointer = typename std::conditional<__constant_iterators, const _Value*, _Value*>::type; using reference = typename std::conditional<__constant_iterators, const _Value&, _Value&>::type; _Node_iterator() : __base_type(0) { } explicit _Node_iterator(__node_type* __p) : __base_type(__p) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Node_iterator& operator++() { this->_M_incr(); return *this; } _Node_iterator operator++(int) { _Node_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; /// Node const_iterators, used to iterate through all the hashtable. template<typename _Value, bool __constant_iterators, bool __cache> struct _Node_const_iterator : public _Node_iterator_base<_Value, __cache> { private: using __base_type = _Node_iterator_base<_Value, __cache>; using __node_type = typename __base_type::__node_type; public: typedef _Value value_type; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; typedef const _Value* pointer; typedef const _Value& reference; _Node_const_iterator() : __base_type(0) { } explicit _Node_const_iterator(__node_type* __p) : __base_type(__p) { } _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, __cache>& __x) : __base_type(__x._M_cur) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Node_const_iterator& operator++() { this->_M_incr(); return *this; } _Node_const_iterator operator++(int) { _Node_const_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; // Many of class template _Hashtable's template parameters are policy // classes. These are defaults for the policies. /// Default range hashing function: use division to fold a large number /// into the range [0, N). struct _Mod_range_hashing { typedef std::size_t first_argument_type; typedef std::size_t second_argument_type; typedef std::size_t result_type; result_type operator()(first_argument_type __num, second_argument_type __den) const { return __num % __den; } }; /// Default ranged hash function H. In principle it should be a /// function object composed from objects of type H1 and H2 such that /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of /// h1 and h2. So instead we'll just use a tag to tell class template /// hashtable to do that composition. struct _Default_ranged_hash { }; /// Default value for rehash policy. Bucket size is (usually) the /// smallest prime that keeps the load factor small enough. struct _Prime_rehash_policy { _Prime_rehash_policy(float __z = 1.0) : _M_max_load_factor(__z), _M_next_resize(0) { } float max_load_factor() const noexcept { return _M_max_load_factor; } // Return a bucket size no smaller than n. std::size_t _M_next_bkt(std::size_t __n) const; // Return a bucket count appropriate for n elements std::size_t _M_bkt_for_elements(std::size_t __n) const; // __n_bkt is current bucket count, __n_elt is current element count, // and __n_ins is number of elements to be inserted. Do we need to // increase bucket count? If so, return make_pair(true, n), where n // is the new bucket count. If not, return make_pair(false, 0). std::pair<bool, std::size_t> _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, std::size_t __n_ins) const; typedef std::size_t _State; _State _M_state() const { return _M_next_resize; } void _M_reset(_State __state) { _M_next_resize = __state; } enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 }; static const std::size_t _S_growth_factor = 2; float _M_max_load_factor; mutable std::size_t _M_next_resize; }; extern const unsigned long __prime_list[]; // XXX This is a hack. There's no good reason for any of // _Prime_rehash_policy's member functions to be inline. // Return a prime no smaller than n. inline std::size_t _Prime_rehash_policy:: _M_next_bkt(std::size_t __n) const { // Optimize lookups involving the first elements of __prime_list. // (useful to speed-up, eg, constructors) static const unsigned char __fast_bkt[12] = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11 }; if (__n <= 11) { _M_next_resize = __builtin_ceil(__fast_bkt[__n] * (long double)_M_max_load_factor); return __fast_bkt[__n]; } const unsigned long* __next_bkt = std::lower_bound(__prime_list + 5, __prime_list + _S_n_primes, __n); _M_next_resize = __builtin_ceil(*__next_bkt * (long double)_M_max_load_factor); return *__next_bkt; } // Return the smallest integer p such that alpha p >= n, where alpha // is the load factor. inline std::size_t _Prime_rehash_policy:: _M_bkt_for_elements(std::size_t __n) const { return __builtin_ceil(__n / (long double)_M_max_load_factor); } // Finds the smallest prime p such that alpha p > __n_elt + __n_ins. // If p > __n_bkt, return make_pair(true, p); otherwise return // make_pair(false, 0). In principle this isn't very different from // _M_bkt_for_elements. // The only tricky part is that we're caching the element count at // which we need to rehash, so we don't have to do a floating-point // multiply for every insertion. inline std::pair<bool, std::size_t> _Prime_rehash_policy:: _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, std::size_t __n_ins) const { if (__n_elt + __n_ins >= _M_next_resize) { long double __min_bkts = (__n_elt + __n_ins) / (long double)_M_max_load_factor; if (__min_bkts >= __n_bkt) return std::make_pair(true, _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1, __n_bkt * _S_growth_factor))); else { _M_next_resize = __builtin_floor(__n_bkt * (long double)_M_max_load_factor); return std::make_pair(false, 0); } } else return std::make_pair(false, 0); } // Base classes for std::_Hashtable. We define these base classes // because in some cases we want to do different things depending on // the value of a policy class. In some cases the policy class // affects which member functions and nested typedefs are defined; // we handle that by specializing base class templates. Several of // the base class templates need to access other members of class // template _Hashtable, so we use a variant of the "Curiously // Recurring Template Pattern" (CRTP) technique. /** * Primary class template _Map_base. * * If the hashtable has a value type of the form pair<T1, T2> and a * key extraction policy (_ExtractKey) that returns the first part * of the pair, the hashtable gets a mapped_type typedef. If it * satisfies those criteria and also has unique keys, then it also * gets an operator[]. */ template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits, bool _Unique_keys = _Traits::__unique_keys::value> struct _Map_base { }; /// Partial specialization, __unique_keys set to false. template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, false> { using mapped_type = typename std::tuple_element<1, _Pair>::type; }; /// Partial specialization, __unique_keys set to true. template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true> { private: using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair, _Select1st, _Equal, _H1, _H2, _Hash, _Traits>; using __hashtable = _Hashtable<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; using __hash_code = typename __hashtable_base::__hash_code; using __node_type = typename __hashtable_base::__node_type; public: using key_type = typename __hashtable_base::key_type; using iterator = typename __hashtable_base::iterator; using mapped_type = typename std::tuple_element<1, _Pair>::type; mapped_type& operator[](const key_type& __k); mapped_type& operator[](key_type&& __k); // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 761. unordered_map needs an at() member function. mapped_type& at(const key_type& __k); const mapped_type& at(const key_type& __k) const; }; template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true> ::mapped_type& _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: operator[](const key_type& __k) { __hashtable* __h = static_cast<__hashtable*>(this); __hash_code __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); __node_type* __p = __h->_M_find_node(__n, __k, __code); if (!__p) { __p = __h->_M_allocate_node(std::piecewise_construct, std::tuple<const key_type&>(__k), std::tuple<>()); return __h->_M_insert_unique_node(__n, __code, __p)->second; } return (__p->_M_v).second; } template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true> ::mapped_type& _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: operator[](key_type&& __k) { __hashtable* __h = static_cast<__hashtable*>(this); __hash_code __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); __node_type* __p = __h->_M_find_node(__n, __k, __code); if (!__p) { __p = __h->_M_allocate_node(std::piecewise_construct, std::forward_as_tuple(std::move(__k)), std::tuple<>()); return __h->_M_insert_unique_node(__n, __code, __p)->second; } return (__p->_M_v).second; } template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true> ::mapped_type& _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: at(const key_type& __k) { __hashtable* __h = static_cast<__hashtable*>(this); __hash_code __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); __node_type* __p = __h->_M_find_node(__n, __k, __code); if (!__p) __throw_out_of_range(__N("_Map_base::at")); return (__p->_M_v).second; } template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> const typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::mapped_type& _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: at(const key_type& __k) const { const __hashtable* __h = static_cast<const __hashtable*>(this); __hash_code __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); __node_type* __p = __h->_M_find_node(__n, __k, __code); if (!__p) __throw_out_of_range(__N("_Map_base::at")); return (__p->_M_v).second; } /** * Primary class template _Insert_base. * * insert member functions appropriate to all _Hashtables. */ template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Insert_base { using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2, _Hash, _Traits>; using value_type = typename __hashtable_base::value_type; using iterator = typename __hashtable_base::iterator; using const_iterator = typename __hashtable_base::const_iterator; using size_type = typename __hashtable_base::size_type; using __unique_keys = typename __hashtable_base::__unique_keys; using __ireturn_type = typename __hashtable_base::__ireturn_type; using __iconv_type = typename __hashtable_base::__iconv_type; __hashtable& _M_conjure_hashtable() { return *(static_cast<__hashtable*>(this)); } __ireturn_type insert(const value_type& __v) { __hashtable& __h = _M_conjure_hashtable(); return __h._M_insert(__v, __unique_keys()); } iterator insert(const_iterator, const value_type& __v) { return __iconv_type()(insert(__v)); } void insert(initializer_list<value_type> __l) { this->insert(__l.begin(), __l.end()); } template<typename _InputIterator> void insert(_InputIterator __first, _InputIterator __last); }; template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> template<typename _InputIterator> void _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: insert(_InputIterator __first, _InputIterator __last) { using __rehash_type = typename __hashtable::__rehash_type; using __rehash_state = typename __hashtable::__rehash_state; using pair_type = std::pair<bool, std::size_t>; size_type __n_elt = __detail::__distance_fw(__first, __last); __hashtable& __h = _M_conjure_hashtable(); __rehash_type& __rehash = __h._M_rehash_policy; const __rehash_state& __saved_state = __rehash._M_state(); pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, __h._M_element_count, __n_elt); if (__do_rehash.first) __h._M_rehash(__do_rehash.second, __saved_state); for (; __first != __last; ++__first) this->insert(*__first); } /** * Primary class template _Insert. * * Select insert member functions appropriate to _Hashtable policy choices. */ template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits, bool _Constant_iterators = _Traits::__constant_iterators::value, bool _Unique_keys = _Traits::__unique_keys::value> struct _Insert; /// Specialization. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true, true> : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits> { using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; using value_type = typename __base_type::value_type; using iterator = typename __base_type::iterator; using const_iterator = typename __base_type::const_iterator; using __unique_keys = typename __base_type::__unique_keys; using __hashtable = typename __base_type::__hashtable; using __base_type::insert; std::pair<iterator, bool> insert(value_type&& __v) { __hashtable& __h = this->_M_conjure_hashtable(); return __h._M_insert(std::move(__v), __unique_keys()); } iterator insert(const_iterator, value_type&& __v) { return insert(std::move(__v)).first; } }; /// Specialization. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true, false> : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits> { using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; using value_type = typename __base_type::value_type; using iterator = typename __base_type::iterator; using const_iterator = typename __base_type::const_iterator; using __unique_keys = typename __base_type::__unique_keys; using __hashtable = typename __base_type::__hashtable; using __base_type::insert; iterator insert(value_type&& __v) { __hashtable& __h = this->_M_conjure_hashtable(); return __h._M_insert(std::move(__v), __unique_keys()); } iterator insert(const_iterator, value_type&& __v) { return insert(std::move(__v)); } }; /// Specialization. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits, bool _Unique_keys> struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, false, _Unique_keys> : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits> { using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; using value_type = typename __base_type::value_type; using iterator = typename __base_type::iterator; using const_iterator = typename __base_type::const_iterator; using __unique_keys = typename __base_type::__unique_keys; using __hashtable = typename __base_type::__hashtable; using __ireturn_type = typename __base_type::__ireturn_type; using __iconv_type = typename __base_type::__iconv_type; using __base_type::insert; template<typename _Pair> using __is_cons = std::is_constructible<value_type, _Pair&&>; template<typename _Pair> using _IFcons = std::enable_if<__is_cons<_Pair>::value>; template<typename _Pair> using _IFconsp = typename _IFcons<_Pair>::type; template<typename _Pair, typename = _IFconsp<_Pair>> __ireturn_type insert(_Pair&& __v) { __hashtable& __h = this->_M_conjure_hashtable(); return __h._M_insert(std::forward<_Pair>(__v), __unique_keys()); } template<typename _Pair, typename = _IFconsp<_Pair>> iterator insert(const_iterator, _Pair&& __v) { return __iconv_type()(insert(std::forward<_Pair>(__v))); } }; /** * Primary class template _Rehash_base. * * Give hashtable the max_load_factor functions and reserve iff the * rehash policy is _Prime_rehash_policy. */ template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Rehash_base; /// Specialization. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _Traits> struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _Prime_rehash_policy, _Traits> { using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _Prime_rehash_policy, _Traits>; float max_load_factor() const noexcept { const __hashtable* __this = static_cast<const __hashtable*>(this); return __this->__rehash_policy().max_load_factor(); } void max_load_factor(float __z) { __hashtable* __this = static_cast<__hashtable*>(this); __this->__rehash_policy(_Prime_rehash_policy(__z)); } void reserve(std::size_t __n) { __hashtable* __this = static_cast<__hashtable*>(this); __this->rehash(__builtin_ceil(__n / max_load_factor())); } }; /** * Primary class template _Hashtable_ebo_helper. * * Helper class using EBO when it is not forbidden, type is not * final, and when it worth it, type is empty. */ template<int _Nm, typename _Tp, bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> struct _Hashtable_ebo_helper; /// Specialization using EBO. template<int _Nm, typename _Tp> struct _Hashtable_ebo_helper<_Nm, _Tp, true> : private _Tp { _Hashtable_ebo_helper() = default; _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp) { } static const _Tp& _S_cget(const _Hashtable_ebo_helper& __eboh) { return static_cast<const _Tp&>(__eboh); } static _Tp& _S_get(_Hashtable_ebo_helper& __eboh) { return static_cast<_Tp&>(__eboh); } }; /// Specialization not using EBO. template<int _Nm, typename _Tp> struct _Hashtable_ebo_helper<_Nm, _Tp, false> { _Hashtable_ebo_helper() = default; _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp) { } static const _Tp& _S_cget(const _Hashtable_ebo_helper& __eboh) { return __eboh._M_tp; } static _Tp& _S_get(_Hashtable_ebo_helper& __eboh) { return __eboh._M_tp; } private: _Tp _M_tp; }; /** * Primary class template _Hash_code_base. * * Encapsulates two policy issues that aren't quite orthogonal. * (1) the difference between using a ranged hash function and using * the combination of a hash function and a range-hashing function. * In the former case we don't have such things as hash codes, so * we have a dummy type as placeholder. * (2) Whether or not we cache hash codes. Caching hash codes is * meaningless if we have a ranged hash function. * * We also put the key extraction objects here, for convenience. * Each specialization derives from one or more of the template * parameters to benefit from Ebo. This is important as this type * is inherited in some cases by the _Local_iterator_base type used * to implement local_iterator and const_local_iterator. As with * any iterator type we prefer to make it as small as possible. * * Primary template is unused except as a hook for specializations. */ template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash, bool __cache_hash_code> struct _Hash_code_base; /// Specialization: ranged hash function, no caching hash codes. H1 /// and H2 are provided but ignored. We define a dummy hash code type. template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash> struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> : private _Hashtable_ebo_helper<0, _ExtractKey>, private _Hashtable_ebo_helper<1, _Hash> { private: typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; typedef _Hashtable_ebo_helper<1, _Hash> _EboHash; protected: typedef void* __hash_code; typedef _Hash_node<_Value, false> __node_type; // We need the default constructor for the local iterators. _Hash_code_base() = default; _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&, const _Hash& __h) : _EboExtractKey(__ex), _EboHash(__h) { } __hash_code _M_hash_code(const _Key& __key) const { return 0; } std::size_t _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const { return _M_ranged_hash()(__k, __n); } std::size_t _M_bucket_index(const __node_type* __p, std::size_t __n) const { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); } void _M_store_code(__node_type*, __hash_code) const { } void _M_copy_code(__node_type*, const __node_type*) const { } void _M_swap(_Hash_code_base& __x) { std::swap(_M_extract(), __x._M_extract()); std::swap(_M_ranged_hash(), __x._M_ranged_hash()); } protected: const _ExtractKey& _M_extract() const { return _EboExtractKey::_S_cget(*this); } _ExtractKey& _M_extract() { return _EboExtractKey::_S_get(*this); } const _Hash& _M_ranged_hash() const { return _EboHash::_S_cget(*this); } _Hash& _M_ranged_hash() { return _EboHash::_S_get(*this); } }; // No specialization for ranged hash function while caching hash codes. // That combination is meaningless, and trying to do it is an error. /// Specialization: ranged hash function, cache hash codes. This /// combination is meaningless, so we provide only a declaration /// and no definition. template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash> struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>; /// Specialization: hash function and range-hashing function, no /// caching of hash codes. /// Provides typedef and accessor required by TR1. template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2> struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Default_ranged_hash, false> : private _Hashtable_ebo_helper<0, _ExtractKey>, private _Hashtable_ebo_helper<1, _H1>, private _Hashtable_ebo_helper<2, _H2> { private: typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; typedef _Hashtable_ebo_helper<1, _H1> _EboH1; typedef _Hashtable_ebo_helper<2, _H2> _EboH2; public: typedef _H1 hasher; hasher hash_function() const { return _M_h1(); } typedef std::size_t __hash_code; typedef _Hash_node<_Value, false> __node_type; protected: // We need the default constructor for the local iterators. _Hash_code_base() = default; _Hash_code_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, const _Default_ranged_hash&) : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { } __hash_code _M_hash_code(const _Key& __k) const { return _M_h1()(__k); } std::size_t _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const { return _M_h2()(__c, __n); } std::size_t _M_bucket_index(const __node_type* __p, std::size_t __n) const { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); } void _M_store_code(__node_type*, __hash_code) const { } void _M_copy_code(__node_type*, const __node_type*) const { } void _M_swap(_Hash_code_base& __x) { std::swap(_M_extract(), __x._M_extract()); std::swap(_M_h1(), __x._M_h1()); std::swap(_M_h2(), __x._M_h2()); } const _ExtractKey& _M_extract() const { return _EboExtractKey::_S_cget(*this); } _ExtractKey& _M_extract() { return _EboExtractKey::_S_get(*this); } const _H1& _M_h1() const { return _EboH1::_S_cget(*this); } _H1& _M_h1() { return _EboH1::_S_get(*this); } const _H2& _M_h2() const { return _EboH2::_S_cget(*this); } _H2& _M_h2() { return _EboH2::_S_get(*this); } }; /// Specialization: hash function and range-hashing function, /// caching hash codes. H is provided but ignored. Provides /// typedef and accessor required by TR1. template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2> struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Default_ranged_hash, true> : private _Hashtable_ebo_helper<0, _ExtractKey>, private _Hashtable_ebo_helper<1, _H1>, private _Hashtable_ebo_helper<2, _H2> { private: typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; typedef _Hashtable_ebo_helper<1, _H1> _EboH1; typedef _Hashtable_ebo_helper<2, _H2> _EboH2; public: typedef _H1 hasher; hasher hash_function() const { return _M_h1(); } typedef std::size_t __hash_code; typedef _Hash_node<_Value, true> __node_type; protected: _Hash_code_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, const _Default_ranged_hash&) : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { } __hash_code _M_hash_code(const _Key& __k) const { return _M_h1()(__k); } std::size_t _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const { return _M_h2()(__c, __n); } std::size_t _M_bucket_index(const __node_type* __p, std::size_t __n) const { return _M_h2()(__p->_M_hash_code, __n); } void _M_store_code(__node_type* __n, __hash_code __c) const { __n->_M_hash_code = __c; } void _M_copy_code(__node_type* __to, const __node_type* __from) const { __to->_M_hash_code = __from->_M_hash_code; } void _M_swap(_Hash_code_base& __x) { std::swap(_M_extract(), __x._M_extract()); std::swap(_M_h1(), __x._M_h1()); std::swap(_M_h2(), __x._M_h2()); } const _ExtractKey& _M_extract() const { return _EboExtractKey::_S_cget(*this); } _ExtractKey& _M_extract() { return _EboExtractKey::_S_get(*this); } const _H1& _M_h1() const { return _EboH1::_S_cget(*this); } _H1& _M_h1() { return _EboH1::_S_get(*this); } const _H2& _M_h2() const { return _EboH2::_S_cget(*this); } _H2& _M_h2() { return _EboH2::_S_get(*this); } }; /** * Primary class template _Equal_helper. * */ template <typename _Key, typename _Value, typename _ExtractKey, typename _Equal, typename _HashCodeType, bool __cache_hash_code> struct _Equal_helper; /// Specialization. template<typename _Key, typename _Value, typename _ExtractKey, typename _Equal, typename _HashCodeType> struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true> { static bool _S_equals(const _Equal& __eq, const _ExtractKey& __extract, const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n) { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v)); } }; /// Specialization. template<typename _Key, typename _Value, typename _ExtractKey, typename _Equal, typename _HashCodeType> struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false> { static bool _S_equals(const _Equal& __eq, const _ExtractKey& __extract, const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n) { return __eq(__k, __extract(__n->_M_v)); } }; /** * Primary class template _Local_iterator_base. * * Base class for local iterators, used to iterate within a bucket * but not between buckets. */ template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash, bool __cache_hash_code> struct _Local_iterator_base; /// Specialization. template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash> struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true> : private _H2 { _Local_iterator_base() = default; _Local_iterator_base(_Hash_node<_Value, true>* __p, std::size_t __bkt, std::size_t __bkt_count) : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } void _M_incr() { _M_cur = _M_cur->_M_next(); if (_M_cur) { std::size_t __bkt = _M_h2()(_M_cur->_M_hash_code, _M_bucket_count); if (__bkt != _M_bucket) _M_cur = nullptr; } } const _H2& _M_h2() const { return *this; } _Hash_node<_Value, true>* _M_cur; std::size_t _M_bucket; std::size_t _M_bucket_count; }; /// Specialization. template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash> struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> : private _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> { _Local_iterator_base() = default; _Local_iterator_base(_Hash_node<_Value, false>* __p, std::size_t __bkt, std::size_t __bkt_count) : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } void _M_incr() { _M_cur = _M_cur->_M_next(); if (_M_cur) { std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count); if (__bkt != _M_bucket) _M_cur = nullptr; } } _Hash_node<_Value, false>* _M_cur; std::size_t _M_bucket; std::size_t _M_bucket_count; }; template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash, bool __cache> inline bool operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __x, const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __y) { return __x._M_cur == __y._M_cur; } template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash, bool __cache> inline bool operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __x, const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __y) { return __x._M_cur != __y._M_cur; } /// local iterators template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash, bool __constant_iterators, bool __cache> struct _Local_iterator : public _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache> { typedef _Value value_type; typedef typename std::conditional<__constant_iterators, const _Value*, _Value*>::type pointer; typedef typename std::conditional<__constant_iterators, const _Value&, _Value&>::type reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; _Local_iterator() = default; explicit _Local_iterator(_Hash_node<_Value, __cache>* __p, std::size_t __bkt, std::size_t __bkt_count) : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>(__p, __bkt, __bkt_count) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Local_iterator& operator++() { this->_M_incr(); return *this; } _Local_iterator operator++(int) { _Local_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; /// local const_iterators template<typename _Key, typename _Value, typename _ExtractKey, typename _H1, typename _H2, typename _Hash, bool __constant_iterators, bool __cache> struct _Local_const_iterator : public _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache> { typedef _Value value_type; typedef const _Value* pointer; typedef const _Value& reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; _Local_const_iterator() = default; explicit _Local_const_iterator(_Hash_node<_Value, __cache>* __p, std::size_t __bkt, std::size_t __bkt_count) : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>(__p, __bkt, __bkt_count) { } _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __constant_iterators, __cache>& __x) : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>(__x._M_cur, __x._M_bucket, __x._M_bucket_count) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Local_const_iterator& operator++() { this->_M_incr(); return *this; } _Local_const_iterator operator++(int) { _Local_const_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; /** * Primary class template _Hashtable_base. * * Helper class adding management of _Equal functor to * _Hash_code_base type. * * Base class templates are: * - __detail::_Hash_code_base * - __detail::_Hashtable_ebo_helper */ template<typename _Key, typename _Value, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _Traits> struct _Hashtable_base : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, _Traits::__hash_cached::value>, private _Hashtable_ebo_helper<0, _Equal> { public: typedef _Key key_type; typedef _Value value_type; typedef _Equal key_equal; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; using __traits_type = _Traits; using __hash_cached = typename __traits_type::__hash_cached; using __constant_iterators = typename __traits_type::__constant_iterators; using __unique_keys = typename __traits_type::__unique_keys; using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __hash_cached::value>; using __hash_code = typename __hash_code_base::__hash_code; using __node_type = typename __hash_code_base::__node_type; using iterator = __detail::_Node_iterator<value_type, __constant_iterators::value, __hash_cached::value>; using const_iterator = __detail::_Node_const_iterator<value_type, __constant_iterators::value, __hash_cached::value>; using local_iterator = __detail::_Local_iterator<key_type, value_type, _ExtractKey, _H1, _H2, _Hash, __constant_iterators::value, __hash_cached::value>; using const_local_iterator = __detail::_Local_const_iterator<key_type, value_type, _ExtractKey, _H1, _H2, _Hash, __constant_iterators::value, __hash_cached::value>; using __ireturn_type = typename std::conditional<__unique_keys::value, std::pair<iterator, bool>, iterator>::type; using __iconv_type = typename std::conditional<__unique_keys::value, _Select1st, _Identity >::type; private: using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal, __hash_code, __hash_cached::value>; protected: using __node_base = __detail::_Hash_node_base; using __bucket_type = __node_base*; _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, const _Hash& __hash, const _Equal& __eq) : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq) { } bool _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const { return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(), __k, __c, __n); } void _M_swap(_Hashtable_base& __x) { __hash_code_base::_M_swap(__x); std::swap(_M_eq(), __x._M_eq()); } const _Equal& _M_eq() const { return _EqualEBO::_S_cget(*this); } _Equal& _M_eq() { return _EqualEBO::_S_get(*this); } }; /** * struct _Equality_base. * * Common types and functions for class _Equality. */ struct _Equality_base { protected: template<typename _Uiterator> static bool _S_is_permutation(_Uiterator, _Uiterator, _Uiterator); }; // See std::is_permutation in N3068. template<typename _Uiterator> bool _Equality_base:: _S_is_permutation(_Uiterator __first1, _Uiterator __last1, _Uiterator __first2) { for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) break; if (__first1 == __last1) return true; _Uiterator __last2 = __first2; std::advance(__last2, std::distance(__first1, __last1)); for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1) { _Uiterator __tmp = __first1; while (__tmp != __it1 && !bool(*__tmp == *__it1)) ++__tmp; // We've seen this one before. if (__tmp != __it1) continue; std::ptrdiff_t __n2 = 0; for (__tmp = __first2; __tmp != __last2; ++__tmp) if (*__tmp == *__it1) ++__n2; if (!__n2) return false; std::ptrdiff_t __n1 = 0; for (__tmp = __it1; __tmp != __last1; ++__tmp) if (*__tmp == *__it1) ++__n1; if (__n1 != __n2) return false; } return true; } /** * Primary class template _Equality. * * This is for implementing equality comparison for unordered * containers, per N3068, by John Lakos and Pablo Halpern. * Algorithmically, we follow closely the reference implementations * therein. */ template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits, bool _Unique_keys = _Traits::__unique_keys::value> struct _Equality; /// Specialization. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true> { using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; bool _M_equal(const __hashtable&) const; }; template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> bool _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: _M_equal(const __hashtable& __other) const { const __hashtable* __this = static_cast<const __hashtable*>(this); if (__this->size() != __other.size()) return false; for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) { const auto __ity = __other.find(_ExtractKey()(*__itx)); if (__ity == __other.end() || !bool(*__ity == *__itx)) return false; } return true; } /// Specialization. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, false> : public _Equality_base { using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; bool _M_equal(const __hashtable&) const; }; template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> bool _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits, false>:: _M_equal(const __hashtable& __other) const { const __hashtable* __this = static_cast<const __hashtable*>(this); if (__this->size() != __other.size()) return false; for (auto __itx = __this->begin(); __itx != __this->end();) { const auto __xrange = __this->equal_range(_ExtractKey()(*__itx)); const auto __yrange = __other.equal_range(_ExtractKey()(*__itx)); if (std::distance(__xrange.first, __xrange.second) != std::distance(__yrange.first, __yrange.second)) return false; if (!_S_is_permutation(__xrange.first, __xrange.second, __yrange.first)) return false; __itx = __xrange.second; } return true; } /** * This type is to combine a _Hash_node_base instance with an allocator * instance through inheritance to benefit from EBO when possible. */ template<typename _NodeAlloc> struct _Before_begin : public _NodeAlloc { _Hash_node_base _M_node; _Before_begin(const _Before_begin&) = default; _Before_begin(_Before_begin&&) = default; template<typename _Alloc> _Before_begin(_Alloc&& __a) : _NodeAlloc(std::forward<_Alloc>(__a)) { } }; //@} hashtable-detail _GLIBCXX_END_NAMESPACE_VERSION } // namespace __detail } // namespace std #endif // _HASHTABLE_POLICY_H