URL
https://opencores.org/ocsvn/amber/amber/trunk
Subversion Repositories amber
[/] [amber/] [trunk/] [hw/] [vlog/] [amber25/] [a25_dcache.v] - Rev 64
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////// // // // L1 Data Cache for Amber 25 Core // // // // This file is part of the Amber project // // http://www.opencores.org/project,amber // // // // Description // // Synthesizable L1 Data Cache // // Cache is 2, 3, 4 or 8 way, 256 line and 16 bytes per line. // // The cache policy is write-through and // // read allocate. For swap instructions (SWP and SWPB) the // // location is evicted from the cache and read from main // // memory. // // // // Author(s): // // - Conor Santifort, csantifort.amber@gmail.com // // // ////////////////////////////////////////////////////////////////// // // // Copyright (C) 2011 Authors and OPENCORES.ORG // // // // This source file may be used and distributed without // // restriction provided that this copyright statement is not // // removed from the file and that any derivative work contains // // the original copyright notice and the associated disclaimer. // // // // This source file is free software; you can redistribute it // // and/or modify it under the terms of the GNU Lesser General // // Public License as published by the Free Software Foundation; // // either version 2.1 of the License, or (at your option) any // // later version. // // // // This source is distributed in the hope that it will be // // useful, but WITHOUT ANY WARRANTY; without even the implied // // warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // // PURPOSE. See the GNU Lesser General Public License for more // // details. // // // // You should have received a copy of the GNU Lesser General // // Public License along with this source; if not, download it // // from http://www.opencores.org/lgpl.shtml // // // ////////////////////////////////////////////////////////////////// `include "global_defines.v" `include "a25_config_defines.v" module a25_dcache #( // --------------------------------------------------------- // Cache Configuration // Limited to Linux 4k page sizes -> 256 lines parameter CACHE_LINES = 256, // This cannot be changed without some major surgeory on // this module parameter CACHE_WORDS_PER_LINE = 4, // Changing this parameter is the recommended // way to change the overall cache size; 2, 4 and 8 ways are supported. // 2 ways -> 8KB cache // 4 ways -> 16KB cache // 8 ways -> 32KB cache parameter WAYS = `A25_DCACHE_WAYS , // derived configuration parameters parameter CACHE_ADDR_WIDTH = log2 ( CACHE_LINES ), // = 8 parameter WORD_SEL_WIDTH = log2 ( CACHE_WORDS_PER_LINE ), // = 2 parameter TAG_ADDR_WIDTH = 32 - CACHE_ADDR_WIDTH - WORD_SEL_WIDTH - 2, // = 20 parameter TAG_WIDTH = TAG_ADDR_WIDTH + 1, // = 21, including Valid flag parameter CACHE_LINE_WIDTH = CACHE_WORDS_PER_LINE * 32, // = 128 parameter TAG_ADDR32_LSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2, // = 12 parameter CACHE_ADDR32_MSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2 - 1, // = 11 parameter CACHE_ADDR32_LSB = WORD_SEL_WIDTH + 2 , // = 4 parameter WORD_SEL_MSB = WORD_SEL_WIDTH + 2 - 1, // = 3 parameter WORD_SEL_LSB = 2 // = 2 // --------------------------------------------------------- ) ( input i_clk, // Read / Write requests from core input i_request, input i_exclusive, // exclusive access, part of swap instruction input [31:0] i_write_data, input i_write_enable, // write request from execute stage input [31:0] i_address, // registered address from execute input [31:0] i_address_nxt, // un-registered version of address from execute stage input [3:0] i_byte_enable, input i_cache_enable, // from co-processor 15 configuration register input i_cache_flush, // from co-processor 15 register output [31:0] o_read_data, input i_fetch_stall, input i_exec_stall, output o_stall, // WB Read Request output o_wb_cached_req, // Read Request input [127:0] i_wb_cached_rdata, // wb bus input i_wb_cached_ready // wb_stb && !wb_ack ); `include "a25_localparams.v" `include "a25_functions.v" // One-hot encoded localparam C_INIT = 0, C_CORE = 1, C_FILL = 2, C_INVA = 3, C_STATES = 4; localparam [3:0] CS_INIT = 4'd0, CS_IDLE = 4'd1, CS_FILL = 4'd2, CS_FILL_COMPLETE = 4'd3, CS_TURN_AROUND = 4'd4, CS_WRITE_HIT = 4'd5, CS_WRITE_HIT_WAIT_WB = 4'd6, CS_WRITE_MISS_WAIT_WB = 4'd7, CS_EX_DELETE = 4'd8; reg [3:0] c_state = CS_IDLE; reg [C_STATES-1:0] source_sel = 1'd1 << C_CORE; reg [CACHE_ADDR_WIDTH:0] init_count = 'd0; wire [TAG_WIDTH-1:0] tag_rdata_way [WAYS-1:0]; wire [CACHE_LINE_WIDTH-1:0] data_rdata_way[WAYS-1:0]; wire [WAYS-1:0] data_wenable_way; wire [WAYS-1:0] data_hit_way; reg [WAYS-1:0] data_hit_way_r = 'd0; wire [WAYS-1:0] tag_wenable_way; reg [WAYS-1:0] select_way = 'd0; wire [WAYS-1:0] next_way; reg [WAYS-1:0] valid_bits_r = 'd0; reg [3:0] random_num = 4'hf; wire [CACHE_ADDR_WIDTH-1:0] tag_address; wire [TAG_WIDTH-1:0] tag_wdata; wire tag_wenable; wire [CACHE_LINE_WIDTH-1:0] read_miss_wdata; wire [CACHE_LINE_WIDTH-1:0] write_hit_wdata; reg [CACHE_LINE_WIDTH-1:0] data_wdata_r = 'd0; wire [CACHE_LINE_WIDTH-1:0] consecutive_write_wdata; wire [CACHE_LINE_WIDTH-1:0] data_wdata; wire [CACHE_ADDR_WIDTH-1:0] data_address; wire [31:0] write_data_word; wire idle_hit; wire read_miss; wire write_miss; wire write_hit; wire consecutive_write; wire fill_state; reg [31:0] miss_address = 'd0; wire [CACHE_LINE_WIDTH-1:0] hit_rdata; wire read_stall; wire write_stall; wire cache_busy_stall; wire core_stall; wire write_state; wire request_pulse; wire request_hold; reg request_r = 'd0; wire [CACHE_ADDR_WIDTH-1:0] address; reg [CACHE_LINE_WIDTH-1:0] wb_rdata_burst = 'd0; wire exclusive_access; wire ex_read_hit; reg ex_read_hit_r = 'd0; reg [WAYS-1:0] ex_read_hit_way = 'd0; reg [CACHE_ADDR_WIDTH-1:0] ex_read_address; wire ex_read_hit_clear; wire ex_read_cache_busy; reg [31:0] wb_address = 'd0; wire rbuf_hit = 'd0; wire wb_hit; wire [127:0] read_data128; genvar i; // ====================================== // Address to use for cache access // ====================================== // If currently stalled then the address for the next // cycle will be the same as it is in the current cycle // assign core_stall = i_fetch_stall || i_exec_stall || o_stall; assign address = core_stall ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : i_address_nxt[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] ; // ====================================== // Outputs // ====================================== assign read_data128 = wb_hit ? i_wb_cached_rdata : hit_rdata; assign o_read_data = i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd0 ? read_data128 [31:0] : i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd1 ? read_data128 [63:32] : i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd2 ? read_data128 [95:64] : read_data128 [127:96] ; // Don't allow the cache to stall the wb i/f for an exclusive access // The cache needs a couple of cycles to flush a potential copy of the exclusive // address, but the wb can do the access in parallel. So there is no // stall in the state CS_EX_DELETE, even though the cache is out of action. // This works fine as long as the wb is stalling the core assign o_stall = request_hold && ( read_stall || write_stall || cache_busy_stall || ex_read_cache_busy ); assign o_wb_cached_req = ( (read_miss || write_miss || write_hit) && c_state == CS_IDLE ) || consecutive_write; // ====================================== // Cache State Machine // ====================================== // Little State Machine to Flush Tag RAMS always @ ( posedge i_clk ) if ( i_cache_flush ) begin c_state <= CS_INIT; source_sel <= 1'd1 << C_INIT; init_count <= 'd0; `ifdef A25_CACHE_DEBUG `TB_DEBUG_MESSAGE $display("Cache Flush"); `endif end else case ( c_state ) CS_INIT : if ( init_count < CACHE_LINES [CACHE_ADDR_WIDTH:0] ) begin init_count <= init_count + 1'd1; source_sel <= 1'd1 << C_INIT; end else begin source_sel <= 1'd1 << C_CORE; c_state <= CS_TURN_AROUND; end CS_IDLE : begin source_sel <= 1'd1 << C_CORE; if ( ex_read_hit || ex_read_hit_r ) begin select_way <= data_hit_way | ex_read_hit_way; c_state <= CS_EX_DELETE; source_sel <= 1'd1 << C_INVA; end else if ( read_miss ) c_state <= CS_FILL; else if ( write_hit ) begin if ( i_wb_cached_ready ) c_state <= CS_WRITE_HIT; else c_state <= CS_WRITE_HIT_WAIT_WB; end else if ( write_miss && !i_wb_cached_ready ) c_state <= CS_WRITE_MISS_WAIT_WB; end CS_FILL : // third read of burst of 4 // wb read request asserted, wait for ack if ( i_wb_cached_ready ) begin c_state <= CS_FILL_COMPLETE; source_sel <= 1'd1 << C_FILL; // Pick a way to write the cache update into // Either pick one of the invalid caches, or if all are valid, then pick // one randomly select_way <= next_way; random_num <= {random_num[2], random_num[1], random_num[0], random_num[3]^random_num[2]}; end // Write the read fetch data in this cycle CS_FILL_COMPLETE : begin // Back to normal cache operations, but // use physical address for first read as // address moved before the stall was asserted for the read_miss // However don't use it if its a non-cached address! source_sel <= 1'd1 << C_CORE; c_state <= CS_TURN_AROUND; end // Ignore the tag read data in this cycle // Wait 1 cycle to pre-read the cache and return to normal operation CS_TURN_AROUND : begin c_state <= CS_IDLE; end // Flush the entry matching an exclusive access CS_EX_DELETE: begin `ifdef A25_CACHE_DEBUG `TB_DEBUG_MESSAGE $display("Cache deleted Locked entry"); `endif c_state <= CS_TURN_AROUND; source_sel <= 1'd1 << C_CORE; end CS_WRITE_HIT: if ( !consecutive_write ) c_state <= CS_IDLE; CS_WRITE_HIT_WAIT_WB: // wait for an ack on the wb bus to complete the write if ( i_wb_cached_ready ) c_state <= CS_IDLE; CS_WRITE_MISS_WAIT_WB: // wait for an ack on the wb bus to complete the write if ( i_wb_cached_ready ) c_state <= CS_IDLE; endcase // ====================================== // Capture WB Block Read - burst of 4 words // ====================================== always @ ( posedge i_clk ) if ( i_wb_cached_ready ) wb_rdata_burst <= i_wb_cached_rdata; // ====================================== // Miss Address // ====================================== always @ ( posedge i_clk ) if ( o_wb_cached_req || write_hit ) miss_address <= i_address; always @ ( posedge i_clk ) if ( write_hit ) begin data_hit_way_r <= data_hit_way; end always @ ( posedge i_clk ) if ( write_hit || consecutive_write ) begin data_wdata_r <= data_wdata; end assign consecutive_write = miss_address[31:4] == i_address[31:4] && i_write_enable && c_state == CS_WRITE_HIT && request_pulse; always @(posedge i_clk) if ( o_wb_cached_req ) wb_address <= i_address; else if ( i_wb_cached_ready && fill_state ) wb_address <= {wb_address[31:4], wb_address[3:2] + 1'd1, 2'd0}; assign fill_state = c_state == CS_FILL ; assign wb_hit = i_address == wb_address && i_wb_cached_ready && fill_state; // ====================================== // Hold Requests // ====================================== always @(posedge i_clk) request_r <= (request_pulse || request_r) && o_stall; assign request_hold = request_pulse || request_r; // ====================================== // Remember Read-Modify-Write Hit // ====================================== assign ex_read_hit_clear = c_state == CS_EX_DELETE; always @ ( posedge i_clk ) if ( ex_read_hit_clear ) begin ex_read_hit_r <= 1'd0; ex_read_hit_way <= 'd0; end else if ( ex_read_hit ) begin `ifdef A25_CACHE_DEBUG `TB_DEBUG_MESSAGE $display ("Exclusive access cache hit address 0x%08h", i_address); `endif ex_read_hit_r <= 1'd1; ex_read_hit_way <= data_hit_way; end else if ( c_state == CS_FILL_COMPLETE && ex_read_hit_r ) ex_read_hit_way <= select_way; always @ (posedge i_clk) if ( ex_read_hit ) ex_read_address <= i_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB]; assign tag_address = source_sel[C_FILL] ? miss_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : source_sel[C_INVA] ? ex_read_address : source_sel[C_INIT] ? init_count[CACHE_ADDR_WIDTH-1:0] : source_sel[C_CORE] ? address : {CACHE_ADDR_WIDTH{1'd0}} ; assign data_address = consecutive_write ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : write_hit ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : source_sel[C_FILL] ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : source_sel[C_CORE] ? address : {CACHE_ADDR_WIDTH{1'd0}} ; assign tag_wdata = source_sel[C_FILL] ? {1'd1, miss_address[31:TAG_ADDR32_LSB]} : {TAG_WIDTH{1'd0}} ; // Data comes in off the WB bus in wrap4 with the missed data word first assign data_wdata = write_hit && c_state == CS_IDLE ? write_hit_wdata : consecutive_write ? consecutive_write_wdata : read_miss_wdata ; assign read_miss_wdata = wb_rdata_burst; assign write_hit_wdata = i_address[3:2] == 2'd0 ? {hit_rdata[127:32], write_data_word } : i_address[3:2] == 2'd1 ? {hit_rdata[127:64], write_data_word, hit_rdata[31:0] } : i_address[3:2] == 2'd2 ? {hit_rdata[127:96], write_data_word, hit_rdata[63:0] } : { write_data_word, hit_rdata[95:0] } ; wire [31:0] con_read_data_word; wire [31:0] con_write_data_word; assign consecutive_write_wdata = i_address[3:2] == 2'd0 ? {data_wdata_r[127:32], con_write_data_word } : i_address[3:2] == 2'd1 ? {data_wdata_r[127:64], con_write_data_word, data_wdata_r[31:0] } : i_address[3:2] == 2'd2 ? {data_wdata_r[127:96], con_write_data_word, data_wdata_r[63:0] } : { con_write_data_word, data_wdata_r[95:0] } ; assign con_read_data_word = i_address[3:2] == 2'd0 ? data_wdata_r[ 31: 0] : i_address[3:2] == 2'd1 ? data_wdata_r[ 63: 32] : i_address[3:2] == 2'd2 ? data_wdata_r[ 95: 64] : data_wdata_r[127: 96] ; assign con_write_data_word = i_byte_enable == 4'b0001 ? { con_read_data_word[31: 8], i_write_data[ 7: 0] } : i_byte_enable == 4'b0010 ? { con_read_data_word[31:16], i_write_data[15: 8], con_read_data_word[ 7:0]} : i_byte_enable == 4'b0100 ? { con_read_data_word[31:24], i_write_data[23:16], con_read_data_word[15:0]} : i_byte_enable == 4'b1000 ? { i_write_data[31:24], con_read_data_word[23:0]} : i_byte_enable == 4'b0011 ? { con_read_data_word[31:16], i_write_data[15: 0] } : i_byte_enable == 4'b1100 ? { i_write_data[31:16], con_read_data_word[15:0]} : i_write_data ; // Use Byte Enables assign write_data_word = i_byte_enable == 4'b0001 ? { o_read_data[31: 8], i_write_data[ 7: 0] } : i_byte_enable == 4'b0010 ? { o_read_data[31:16], i_write_data[15: 8], o_read_data[ 7:0]} : i_byte_enable == 4'b0100 ? { o_read_data[31:24], i_write_data[23:16], o_read_data[15:0]} : i_byte_enable == 4'b1000 ? { i_write_data[31:24], o_read_data[23:0]} : i_byte_enable == 4'b0011 ? { o_read_data[31:16], i_write_data[15: 0] } : i_byte_enable == 4'b1100 ? { i_write_data[31:16], o_read_data[15:0]} : i_write_data ; assign tag_wenable = source_sel[C_INVA] ? 1'd1 : source_sel[C_FILL] ? 1'd1 : source_sel[C_INIT] ? 1'd1 : source_sel[C_CORE] ? 1'd0 : 1'd0 ; assign request_pulse = i_request && i_cache_enable; assign exclusive_access = i_exclusive && i_cache_enable; assign idle_hit = |data_hit_way; assign write_hit = request_hold && i_write_enable && idle_hit; assign write_miss = request_hold && i_write_enable && !idle_hit && !consecutive_write; assign read_miss = request_hold && !idle_hit && !i_write_enable; // Exclusive read idle_hit assign ex_read_hit = exclusive_access && !i_write_enable && idle_hit; // Added to fix rare swap bug which occurs when the cache starts // a fill just as the swap instruction starts to execute. The cache // fails to check for a read idle_hit on the swap read cycle. // This signal stalls the core in that case until after the // fill has completed. assign ex_read_cache_busy = exclusive_access && !i_write_enable && c_state != CS_IDLE; // Need to stall for a write miss to wait for the current wb // read miss access to complete. Also for a write idle_hit, need // to stall for 1 cycle while the data cache is being written to assign write_state = c_state == CS_IDLE || c_state == CS_WRITE_HIT || c_state == CS_WRITE_HIT_WAIT_WB || c_state == CS_WRITE_MISS_WAIT_WB; assign write_stall = (write_miss && !(i_wb_cached_ready && write_state)) || (write_hit && !i_wb_cached_ready); assign read_stall = request_hold && !idle_hit && !rbuf_hit && !wb_hit && !i_write_enable; assign cache_busy_stall = c_state == CS_FILL_COMPLETE || c_state == CS_TURN_AROUND || c_state == CS_INIT || (fill_state && !rbuf_hit && !wb_hit) || (c_state == CS_WRITE_HIT && !consecutive_write); // ====================================== // Instantiate RAMS // ====================================== generate for ( i=0; i<WAYS;i=i+1 ) begin : rams // Tag RAMs `ifdef XILINX_SPARTAN6_FPGA xs6_sram_256x21_line_en `endif `ifdef XILINX_VIRTEX6_FPGA xv6_sram_256x21_line_en `endif `ifndef XILINX_FPGA generic_sram_line_en `endif #( .DATA_WIDTH ( TAG_WIDTH ), .INITIALIZE_TO_ZERO ( 1 ), .ADDRESS_WIDTH ( CACHE_ADDR_WIDTH )) u_tag ( .i_clk ( i_clk ), .i_write_data ( tag_wdata ), .i_write_enable ( tag_wenable_way[i] ), .i_address ( tag_address ), .o_read_data ( tag_rdata_way[i] ) ); // Data RAMs `ifdef XILINX_SPARTAN6_FPGA xs6_sram_256x128_byte_en `endif `ifdef XILINX_VIRTEX6_FPGA xv6_sram_256x128_byte_en `endif `ifndef XILINX_FPGA generic_sram_byte_en `endif #( .DATA_WIDTH ( CACHE_LINE_WIDTH) , .ADDRESS_WIDTH ( CACHE_ADDR_WIDTH) ) u_data ( .i_clk ( i_clk ), .i_write_data ( data_wdata ), .i_write_enable ( data_wenable_way[i] ), .i_address ( data_address ), .i_byte_enable ( {CACHE_LINE_WIDTH/8{1'd1}} ), .o_read_data ( data_rdata_way[i] ) ); // Per tag-ram write-enable assign tag_wenable_way[i] = tag_wenable && ( select_way[i] || source_sel[C_INIT] ); // Per data-ram write-enable assign data_wenable_way[i] = (source_sel[C_FILL] && select_way[i]) || (write_hit && data_hit_way[i] && c_state == CS_IDLE) || (consecutive_write && data_hit_way_r[i]); // Per data-ram idle_hit flag assign data_hit_way[i] = tag_rdata_way[i][TAG_WIDTH-1] && tag_rdata_way[i][TAG_ADDR_WIDTH-1:0] == i_address[31:TAG_ADDR32_LSB] && c_state == CS_IDLE; end endgenerate // ====================================== // Register Valid Bits // ====================================== generate if ( WAYS == 2 ) begin : valid_bits_2ways always @ ( posedge i_clk ) if ( c_state == CS_IDLE ) valid_bits_r <= {tag_rdata_way[1][TAG_WIDTH-1], tag_rdata_way[0][TAG_WIDTH-1]}; end else if ( WAYS == 3 ) begin : valid_bits_3ways always @ ( posedge i_clk ) if ( c_state == CS_IDLE ) valid_bits_r <= {tag_rdata_way[2][TAG_WIDTH-1], tag_rdata_way[1][TAG_WIDTH-1], tag_rdata_way[0][TAG_WIDTH-1]}; end else if ( WAYS == 4 ) begin : valid_bits_4ways always @ ( posedge i_clk ) if ( c_state == CS_IDLE ) valid_bits_r <= {tag_rdata_way[3][TAG_WIDTH-1], tag_rdata_way[2][TAG_WIDTH-1], tag_rdata_way[1][TAG_WIDTH-1], tag_rdata_way[0][TAG_WIDTH-1]}; end else begin : valid_bits_8ways always @ ( posedge i_clk ) if ( c_state == CS_IDLE ) valid_bits_r <= {tag_rdata_way[7][TAG_WIDTH-1], tag_rdata_way[6][TAG_WIDTH-1], tag_rdata_way[5][TAG_WIDTH-1], tag_rdata_way[4][TAG_WIDTH-1], tag_rdata_way[3][TAG_WIDTH-1], tag_rdata_way[2][TAG_WIDTH-1], tag_rdata_way[1][TAG_WIDTH-1], tag_rdata_way[0][TAG_WIDTH-1]}; end endgenerate // ====================================== // Select read idle_hit data // ====================================== generate if ( WAYS == 2 ) begin : read_data_2ways assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : data_hit_way[1] ? data_rdata_way[1] : {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug end else if ( WAYS == 3 ) begin : read_data_3ways assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : data_hit_way[1] ? data_rdata_way[1] : data_hit_way[2] ? data_rdata_way[2] : {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug end else if ( WAYS == 4 ) begin : read_data_4ways assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : data_hit_way[1] ? data_rdata_way[1] : data_hit_way[2] ? data_rdata_way[2] : data_hit_way[3] ? data_rdata_way[3] : {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug end else begin : read_data_8ways assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : data_hit_way[1] ? data_rdata_way[1] : data_hit_way[2] ? data_rdata_way[2] : data_hit_way[3] ? data_rdata_way[3] : data_hit_way[4] ? data_rdata_way[4] : data_hit_way[5] ? data_rdata_way[5] : data_hit_way[6] ? data_rdata_way[6] : data_hit_way[7] ? data_rdata_way[7] : {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug end endgenerate // ====================================== // Function to select the way to use // for fills // ====================================== generate if ( WAYS == 2 ) begin : pick_way_2ways assign next_way = pick_way ( valid_bits_r, random_num ); function [WAYS-1:0] pick_way; input [WAYS-1:0] valid_bits; input [3:0] random_num; begin if ( valid_bits[0] == 1'd0 ) // way 0 not occupied so use it pick_way = 2'b01; else if ( valid_bits[1] == 1'd0 ) // way 1 not occupied so use it pick_way = 2'b10; else begin // All ways occupied so pick one randomly case (random_num[3:1]) 3'd0, 3'd3, 3'd5, 3'd6: pick_way = 2'b10; default: pick_way = 2'b01; endcase end end endfunction end else if ( WAYS == 3 ) begin : pick_way_3ways assign next_way = pick_way ( valid_bits_r, random_num ); function [WAYS-1:0] pick_way; input [WAYS-1:0] valid_bits; input [3:0] random_num; begin if ( valid_bits[0] == 1'd0 ) // way 0 not occupied so use it pick_way = 3'b001; else if ( valid_bits[1] == 1'd0 ) // way 1 not occupied so use it pick_way = 3'b010; else if ( valid_bits[2] == 1'd0 ) // way 2 not occupied so use it pick_way = 3'b100; else begin // All ways occupied so pick one randomly case (random_num[3:1]) 3'd0, 3'd1, 3'd2: pick_way = 3'b010; 3'd2, 3'd3, 3'd4: pick_way = 3'b100; default: pick_way = 3'b001; endcase end end endfunction end else if ( WAYS == 4 ) begin : pick_way_4ways assign next_way = pick_way ( valid_bits_r, random_num ); function [WAYS-1:0] pick_way; input [WAYS-1:0] valid_bits; input [3:0] random_num; begin if ( valid_bits[0] == 1'd0 ) // way 0 not occupied so use it pick_way = 4'b0001; else if ( valid_bits[1] == 1'd0 ) // way 1 not occupied so use it pick_way = 4'b0010; else if ( valid_bits[2] == 1'd0 ) // way 2 not occupied so use it pick_way = 4'b0100; else if ( valid_bits[3] == 1'd0 ) // way 3 not occupied so use it pick_way = 4'b1000; else begin // All ways occupied so pick one randomly case (random_num[3:1]) 3'd0, 3'd1: pick_way = 4'b0100; 3'd2, 3'd3: pick_way = 4'b1000; 3'd4, 3'd5: pick_way = 4'b0001; default: pick_way = 4'b0010; endcase end end endfunction end else begin : pick_way_8ways assign next_way = pick_way ( valid_bits_r, random_num ); function [WAYS-1:0] pick_way; input [WAYS-1:0] valid_bits; input [3:0] random_num; begin if ( valid_bits[0] == 1'd0 ) // way 0 not occupied so use it pick_way = 8'b00000001; else if ( valid_bits[1] == 1'd0 ) // way 1 not occupied so use it pick_way = 8'b00000010; else if ( valid_bits[2] == 1'd0 ) // way 2 not occupied so use it pick_way = 8'b00000100; else if ( valid_bits[3] == 1'd0 ) // way 3 not occupied so use it pick_way = 8'b00001000; else if ( valid_bits[4] == 1'd0 ) // way 3 not occupied so use it pick_way = 8'b00010000; else if ( valid_bits[5] == 1'd0 ) // way 3 not occupied so use it pick_way = 8'b00100000; else if ( valid_bits[6] == 1'd0 ) // way 3 not occupied so use it pick_way = 8'b01000000; else if ( valid_bits[7] == 1'd0 ) // way 3 not occupied so use it pick_way = 8'b10000000; else begin // All ways occupied so pick one randomly case (random_num[3:1]) 3'd0: pick_way = 8'b00010000; 3'd1: pick_way = 8'b00100000; 3'd2: pick_way = 8'b01000000; 3'd3: pick_way = 8'b10000000; 3'd4: pick_way = 8'b00000001; 3'd5: pick_way = 8'b00000010; 3'd6: pick_way = 8'b00000100; default: pick_way = 8'b00001000; endcase end end endfunction end endgenerate // ======================================================== // Debug WB bus - not synthesizable // ======================================================== //synopsys translate_off wire [(6*8)-1:0] xSOURCE_SEL; wire [(22*8)-1:0] xC_STATE; assign xSOURCE_SEL = source_sel[C_CORE] ? "C_CORE" : source_sel[C_INIT] ? "C_INIT" : source_sel[C_FILL] ? "C_FILL" : source_sel[C_INVA] ? "C_INVA" : "UNKNON" ; assign xC_STATE = c_state == CS_INIT ? "INIT" : c_state == CS_IDLE ? "IDLE" : c_state == CS_FILL ? "FILL" : c_state == CS_FILL_COMPLETE ? "FILL_COMPLETE" : c_state == CS_EX_DELETE ? "EX_DELETE" : c_state == CS_TURN_AROUND ? "TURN_AROUND" : c_state == CS_WRITE_HIT ? "WRITE_HIT" : c_state == CS_WRITE_HIT_WAIT_WB ? "WRITE_HIT_WAIT_WB" : c_state == CS_WRITE_MISS_WAIT_WB ? "WRITE_MISS_WAIT_WB" : "UNKNOWN" ; generate if ( WAYS == 2 ) begin : check_hit_2ways always @( posedge i_clk ) if ( (data_hit_way[0] + data_hit_way[1] ) > 4'd1 ) begin `TB_ERROR_MESSAGE $display("Hit in more than one cache ways!"); end end else if ( WAYS == 3 ) begin : check_hit_3ways always @( posedge i_clk ) if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] ) > 4'd1 ) begin `TB_ERROR_MESSAGE $display("Hit in more than one cache ways!"); end end else if ( WAYS == 4 ) begin : check_hit_4ways always @( posedge i_clk ) if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] + data_hit_way[3] ) > 4'd1 ) begin `TB_ERROR_MESSAGE $display("Hit in more than one cache ways!"); end end else if ( WAYS == 8 ) begin : check_hit_8ways always @( posedge i_clk ) if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] + data_hit_way[3] + data_hit_way[4] + data_hit_way[5] + data_hit_way[6] + data_hit_way[7] ) > 4'd1 ) begin `TB_ERROR_MESSAGE $display("Hit in more than one cache ways!"); end end else begin : check_hit_nways initial begin `TB_ERROR_MESSAGE $display("Unsupported number of ways %0d", WAYS); $display("Set A25_DCACHE_WAYS in a25_config_defines.v to either 2,3,4 or 8"); end end endgenerate //synopsys translate_on endmodule
Go to most recent revision | Compare with Previous | Blame | View Log