URL
https://opencores.org/ocsvn/amber/amber/trunk
Subversion Repositories amber
[/] [amber/] [trunk/] [hw/] [vlog/] [amber25/] [a25_decode.v] - Rev 57
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////// // // // Decode stage of Amber 25 Core // // // // This file is part of the Amber project // // http://www.opencores.org/project,amber // // // // Description // // This module is the most complex part of the Amber core // // It decodes and sequences all instructions and handles all // // interrupts // // // // Author(s): // // - Conor Santifort, csantifort.amber@gmail.com // // // ////////////////////////////////////////////////////////////////// // // // Copyright (C) 2011 Authors and OPENCORES.ORG // // // // This source file may be used and distributed without // // restriction provided that this copyright statement is not // // removed from the file and that any derivative work contains // // the original copyright notice and the associated disclaimer. // // // // This source file is free software; you can redistribute it // // and/or modify it under the terms of the GNU Lesser General // // Public License as published by the Free Software Foundation; // // either version 2.1 of the License, or (at your option) any // // later version. // // // // This source is distributed in the hope that it will be // // useful, but WITHOUT ANY WARRANTY; without even the implied // // warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // // PURPOSE. See the GNU Lesser General Public License for more // // details. // // // // You should have received a copy of the GNU Lesser General // // Public License along with this source; if not, download it // // from http://www.opencores.org/lgpl.shtml // // // ////////////////////////////////////////////////////////////////// module a25_decode ( input i_clk, input [31:0] i_fetch_instruction, input i_core_stall, // stall all stages of the Amber core at the same time input i_irq, // interrupt request input i_firq, // Fast interrupt request input i_dabt, // data abort interrupt request input i_iabt, // instruction pre-fetch abort flag input i_adex, // Address Exception input [31:0] i_execute_iaddress, // Registered instruction address output by execute stage input [31:0] i_execute_daddress, // Registered instruction address output by execute stage input [7:0] i_abt_status, // Abort status input [31:0] i_execute_status_bits, // current status bits values in execute stage input i_multiply_done, // multiply unit is nearly done // -------------------------------------------------- // Control signals to execute stage // -------------------------------------------------- output reg [31:0] o_imm32 = 'd0, output reg [4:0] o_imm_shift_amount = 'd0, output reg o_shift_imm_zero = 'd0, output reg [3:0] o_condition = 4'he, // 4'he = al output reg o_decode_exclusive = 'd0, // exclusive access request ( swap instruction ) output reg o_decode_iaccess = 1'd1, // Indicates an instruction access output reg o_decode_daccess = 'd0, // Indicates a data access output reg [1:0] o_status_bits_mode = 2'b11, // SVC output reg o_status_bits_irq_mask = 1'd1, output reg o_status_bits_firq_mask = 1'd1, output reg [3:0] o_rm_sel = 'd0, output reg [3:0] o_rs_sel = 'd0, output reg [7:0] o_load_rd = 'd0, // [7] load flags with PC // [6] load status bits with PC // [5] Write into User Mode register // [4] zero-extend load // [3:0] destination register, Rd output reg [3:0] o_rn_sel = 'd0, output reg [1:0] o_barrel_shift_amount_sel = 'd0, output reg [1:0] o_barrel_shift_data_sel = 'd0, output reg [1:0] o_barrel_shift_function = 'd0, output reg [8:0] o_alu_function = 'd0, output reg [1:0] o_multiply_function = 'd0, output reg [2:0] o_interrupt_vector_sel = 'd0, output reg [3:0] o_iaddress_sel = 4'd2, output reg [3:0] o_daddress_sel = 4'd2, output reg [2:0] o_pc_sel = 3'd2, output reg [1:0] o_byte_enable_sel = 'd0, // byte, halfword or word write output reg [2:0] o_status_bits_sel = 'd0, output reg [2:0] o_reg_write_sel, output reg o_user_mode_regs_store_nxt, output reg o_firq_not_user_mode, output reg o_write_data_wen = 'd0, output reg o_base_address_wen = 'd0, // save ldm base address register // in case of data abort output reg o_pc_wen = 1'd1, output reg [14:0] o_reg_bank_wen = 'd0, output reg o_status_bits_flags_wen = 'd0, output reg o_status_bits_mode_wen = 'd0, output reg o_status_bits_irq_mask_wen = 'd0, output reg o_status_bits_firq_mask_wen = 'd0, // -------------------------------------------------- // Co-Processor interface // -------------------------------------------------- output reg [2:0] o_copro_opcode1 = 'd0, output reg [2:0] o_copro_opcode2 = 'd0, output reg [3:0] o_copro_crn = 'd0, output reg [3:0] o_copro_crm = 'd0, output reg [3:0] o_copro_num = 'd0, output reg [1:0] o_copro_operation = 'd0, // 0 = no operation, // 1 = Move to Amber Core Register from Coprocessor // 2 = Move to Coprocessor from Amber Core Register output reg o_copro_write_data_wen = 'd0, output o_iabt_trigger, output [31:0] o_iabt_address, output [7:0] o_iabt_status, output o_dabt_trigger, output [31:0] o_dabt_address, output [7:0] o_dabt_status, output o_conflict, output reg o_rn_use_read, output reg o_rm_use_read, output reg o_rs_use_read, output reg o_rd_use_read ); `include "a25_localparams.v" `include "a25_functions.v" localparam [4:0] RST_WAIT1 = 5'd0, RST_WAIT2 = 5'd1, INT_WAIT1 = 5'd2, INT_WAIT2 = 5'd3, EXECUTE = 5'd4, PRE_FETCH_EXEC = 5'd5, // Execute the Pre-Fetched Instruction MEM_WAIT1 = 5'd6, // conditionally decode current instruction, in case // previous instruction does not execute in S2 MEM_WAIT2 = 5'd7, PC_STALL1 = 5'd8, // Program Counter altered // conditionally decude current instruction, in case // previous instruction does not execute in S2 PC_STALL2 = 5'd9, MTRANS_EXEC1 = 5'd10, MTRANS_EXEC2 = 5'd11, MTRANS_ABORT = 5'd12, MULT_PROC1 = 5'd13, // first cycle, save pre fetch instruction MULT_PROC2 = 5'd14, // do multiplication MULT_STORE = 5'd15, // save RdLo MULT_ACCUMU = 5'd16, // Accumulate add lower 32 bits SWAP_WRITE = 5'd17, SWAP_WAIT1 = 5'd18, SWAP_WAIT2 = 5'd19, COPRO_WAIT = 5'd20; // ======================================================== // Internal signals // ======================================================== wire [31:0] instruction; wire [3:0] type; // regop, mem access etc. wire instruction_iabt; // abort flag, follows the instruction wire instruction_adex; // address exception flag, follows the instruction wire [31:0] instruction_address; // instruction virtual address, follows // the instruction wire [7:0] instruction_iabt_status; // abort status, follows the instruction wire [1:0] instruction_sel; wire [3:0] opcode; wire [7:0] imm8; wire [31:0] offset12; wire [31:0] offset24; wire [4:0] shift_imm; wire opcode_compare; wire mem_op; wire load_op; wire store_op; wire write_pc; wire current_write_pc; reg load_pc_nxt; reg load_pc_r = 'd0; wire immediate_shift_op; wire rds_use_rs; wire branch; wire mem_op_pre_indexed; wire mem_op_post_indexed; // Flop inputs wire [31:0] imm32_nxt; wire [4:0] imm_shift_amount_nxt; wire shift_imm_zero_nxt; wire [3:0] condition_nxt; reg decode_exclusive_nxt; reg decode_iaccess_nxt; reg decode_daccess_nxt; reg [1:0] barrel_shift_function_nxt; wire [8:0] alu_function_nxt; reg [1:0] multiply_function_nxt; reg [1:0] status_bits_mode_nxt; reg status_bits_irq_mask_nxt; reg status_bits_firq_mask_nxt; wire [3:0] rm_sel_nxt; wire [3:0] rs_sel_nxt; wire [3:0] rn_sel_nxt; reg [1:0] barrel_shift_amount_sel_nxt; reg [1:0] barrel_shift_data_sel_nxt; reg [3:0] iaddress_sel_nxt; reg [3:0] daddress_sel_nxt; reg [2:0] pc_sel_nxt; reg [1:0] byte_enable_sel_nxt; reg [2:0] status_bits_sel_nxt; reg [2:0] reg_write_sel_nxt; wire firq_not_user_mode_nxt; // ALU Function signals reg alu_swap_sel_nxt; reg alu_not_sel_nxt; reg [1:0] alu_cin_sel_nxt; reg alu_cout_sel_nxt; reg [3:0] alu_out_sel_nxt; reg write_data_wen_nxt; reg copro_write_data_wen_nxt; reg base_address_wen_nxt; reg pc_wen_nxt; reg [14:0] reg_bank_wen_nxt; reg status_bits_flags_wen_nxt; reg status_bits_mode_wen_nxt; reg status_bits_irq_mask_wen_nxt; reg status_bits_firq_mask_wen_nxt; reg saved_current_instruction_wen; // saved load instruction reg pre_fetch_instruction_wen; // pre-fetch instruction reg [4:0] control_state = RST_WAIT1; reg [4:0] control_state_nxt; wire dabt; reg dabt_reg = 'd0; reg dabt_reg_d1; reg iabt_reg = 'd0; reg adex_reg = 'd0; reg [31:0] fetch_address_r = 'd0; reg [7:0] abt_status_reg = 'd0; reg [31:0] fetch_instruction_r = 'd0; reg [3:0] fetch_instruction_type_r = 'd0; reg [31:0] saved_current_instruction = 'd0; reg [3:0] saved_current_instruction_type = 'd0; reg saved_current_instruction_iabt = 'd0; // access abort flag reg saved_current_instruction_adex = 'd0; // address exception reg [31:0] saved_current_instruction_address = 'd0; // virtual address of abort instruction reg [7:0] saved_current_instruction_iabt_status = 'd0; // status of abort instruction reg [31:0] pre_fetch_instruction = 'd0; reg [3:0] pre_fetch_instruction_type = 'd0; reg pre_fetch_instruction_iabt = 'd0; // access abort flag reg pre_fetch_instruction_adex = 'd0; // address exception reg [31:0] pre_fetch_instruction_address = 'd0; // virtual address of abort instruction reg [7:0] pre_fetch_instruction_iabt_status = 'd0; // status of abort instruction reg [31:0] hold_instruction = 'd0; reg [3:0] hold_instruction_type = 'd0; reg hold_instruction_iabt = 'd0; // access abort flag reg hold_instruction_adex = 'd0; // address exception reg [31:0] hold_instruction_address = 'd0; // virtual address of abort instruction reg [7:0] hold_instruction_iabt_status = 'd0; // status of abort instruction wire instruction_valid; wire instruction_execute; reg instruction_execute_r = 'd0; reg [3:0] mtrans_reg1; // the current register being accessed as part of stm/ldm reg [3:0] mtrans_reg2; // the next register being accessed as part of stm/ldm reg [31:0] mtrans_instruction_nxt; wire [15:0] mtrans_reg2_mask; wire [31:0] mtrans_base_reg_change; wire [4:0] mtrans_num_registers; wire use_saved_current_instruction; wire use_hold_instruction; wire use_pre_fetch_instruction; wire interrupt; wire [1:0] interrupt_mode; wire [2:0] next_interrupt; reg irq = 'd0; reg firq = 'd0; wire firq_request; wire irq_request; wire swi_request; wire und_request; wire dabt_request; reg [1:0] copro_operation_nxt; reg restore_base_address = 'd0; reg restore_base_address_nxt; wire regop_set_flags; wire [7:0] load_rd_nxt; wire load_rd_byte; wire ldm_user_mode; wire ldm_status_bits; wire ldm_flags; wire [6:0] load_rd_d1_nxt; reg [6:0] load_rd_d1 = 'd0; // MSB is the valid bit wire rn_valid; wire rm_valid; wire rs_valid; wire rd_valid; wire stm_valid; wire rn_conflict1; wire rn_conflict2; wire rm_conflict1; wire rm_conflict2; wire rs_conflict1; wire rs_conflict2; wire rd_conflict1; wire rd_conflict2; wire stm_conflict1a; wire stm_conflict1b; wire stm_conflict2a; wire stm_conflict2b; wire conflict1; // Register conflict1 with ldr operation wire conflict2; // Register conflict1 with ldr operation wire conflict; // Register conflict1 with ldr operation reg conflict_r = 'd0; reg rn_conflict1_r = 'd0; reg rm_conflict1_r = 'd0; reg rs_conflict1_r = 'd0; reg rd_conflict1_r = 'd0; // ======================================================== // Instruction Abort and Data Abort outputs // ======================================================== assign o_iabt_trigger = instruction_iabt && o_status_bits_mode == SVC && control_state == INT_WAIT1; assign o_iabt_address = instruction_address; assign o_iabt_status = instruction_iabt_status; assign o_dabt_trigger = dabt_reg && !dabt_reg_d1; assign o_dabt_address = fetch_address_r; assign o_dabt_status = abt_status_reg; // ======================================================== // Instruction Decode // ======================================================== // for instructions that take more than one cycle // the instruction is saved in the 'saved_mem_instruction' // register and then that register is used for the rest of // the execution of the instruction. // But if the instruction does not execute because of the // condition, then need to select the next instruction to // decode assign use_saved_current_instruction = instruction_execute && ( control_state == MEM_WAIT1 || control_state == MEM_WAIT2 || control_state == MTRANS_EXEC1 || control_state == MTRANS_EXEC2 || control_state == MTRANS_ABORT || control_state == MULT_PROC1 || control_state == MULT_PROC2 || control_state == MULT_ACCUMU || control_state == MULT_STORE || control_state == INT_WAIT1 || control_state == INT_WAIT2 || control_state == SWAP_WRITE || control_state == SWAP_WAIT1 || control_state == SWAP_WAIT2 || control_state == COPRO_WAIT ); assign use_hold_instruction = conflict_r; assign use_pre_fetch_instruction = control_state == PRE_FETCH_EXEC; assign instruction_sel = use_hold_instruction ? 2'd3 : // hold_instruction use_saved_current_instruction ? 2'd1 : // saved_current_instruction use_pre_fetch_instruction ? 2'd2 : // pre_fetch_instruction 2'd0 ; // fetch_instruction_r assign instruction = instruction_sel == 2'd0 ? fetch_instruction_r : instruction_sel == 2'd1 ? saved_current_instruction : instruction_sel == 2'd3 ? hold_instruction : pre_fetch_instruction ; assign type = instruction_sel == 2'd0 ? fetch_instruction_type_r : instruction_sel == 2'd1 ? saved_current_instruction_type : instruction_sel == 2'd3 ? hold_instruction_type : pre_fetch_instruction_type ; // abort flag assign instruction_iabt = instruction_sel == 2'd0 ? iabt_reg : instruction_sel == 2'd1 ? saved_current_instruction_iabt : instruction_sel == 2'd3 ? hold_instruction_iabt : pre_fetch_instruction_iabt ; assign instruction_address = instruction_sel == 2'd0 ? fetch_address_r : instruction_sel == 2'd1 ? saved_current_instruction_address : instruction_sel == 2'd3 ? hold_instruction_address : pre_fetch_instruction_address ; assign instruction_iabt_status = instruction_sel == 2'd0 ? abt_status_reg : instruction_sel == 2'd1 ? saved_current_instruction_iabt_status : instruction_sel == 2'd3 ? hold_instruction_iabt_status : pre_fetch_instruction_iabt_status ; // instruction address exception assign instruction_adex = instruction_sel == 2'd0 ? adex_reg : instruction_sel == 2'd1 ? saved_current_instruction_adex : instruction_sel == 2'd3 ? hold_instruction_adex : pre_fetch_instruction_adex ; // ======================================================== // Fixed fields within the instruction // ======================================================== assign opcode = instruction[24:21]; assign condition_nxt = instruction[31:28]; assign rm_sel_nxt = instruction[3:0]; assign rn_sel_nxt = branch ? 4'd15 : instruction[19:16]; // Use PC to calculate branch destination assign rs_sel_nxt = control_state == SWAP_WRITE ? instruction[3:0] : // Rm gets written out to memory type == MTRANS ? mtrans_reg1 : branch ? 4'd15 : // Update the PC rds_use_rs ? instruction[11:8] : instruction[15:12] ; // Load from memory into registers assign ldm_user_mode = type == MTRANS && {instruction[22:20],instruction[15]} == 4'b1010; assign ldm_flags = type == MTRANS && rs_sel_nxt == 4'd15 && instruction[20] && instruction[22]; assign ldm_status_bits = type == MTRANS && rs_sel_nxt == 4'd15 && instruction[20] && instruction[22] && i_execute_status_bits[1:0] != USR; assign load_rd_byte = (type == TRANS || type == SWAP) && instruction[22]; assign load_rd_nxt = {ldm_flags, ldm_status_bits, ldm_user_mode, load_rd_byte, rs_sel_nxt}; // MSB indicates valid dirty target register assign load_rd_d1_nxt = {o_decode_daccess && !o_write_data_wen, o_load_rd[3:0]}; assign shift_imm = instruction[11:7]; assign offset12 = { 20'h0, instruction[11:0]}; assign offset24 = {{6{instruction[23]}}, instruction[23:0], 2'd0 }; // sign extend assign imm8 = instruction[7:0]; assign immediate_shift_op = instruction[25]; assign rds_use_rs = (type == REGOP && !instruction[25] && instruction[4]) || (type == MULT && (control_state == MULT_PROC1 || control_state == MULT_PROC2 || instruction_valid && !interrupt )) ; assign branch = type == BRANCH; assign opcode_compare = opcode == CMP || opcode == CMN || opcode == TEQ || opcode == TST ; assign mem_op = type == TRANS; assign load_op = mem_op && instruction[20]; assign store_op = mem_op && !instruction[20]; assign write_pc = (pc_wen_nxt && pc_sel_nxt != 3'd0) || load_pc_r || load_pc_nxt; assign current_write_pc = (pc_wen_nxt && pc_sel_nxt != 3'd0) || load_pc_nxt; assign regop_set_flags = type == REGOP && instruction[20]; assign mem_op_pre_indexed = instruction[24] && instruction[21]; assign mem_op_post_indexed = !instruction[24]; assign imm32_nxt = // add 0 to Rm type == MULT ? { 32'd0 } : // 4 x number of registers type == MTRANS ? { mtrans_base_reg_change } : type == BRANCH ? { offset24 } : type == TRANS ? { offset12 } : instruction[11:8] == 4'h0 ? { 24'h0, imm8[7:0] } : instruction[11:8] == 4'h1 ? { imm8[1:0], 24'h0, imm8[7:2] } : instruction[11:8] == 4'h2 ? { imm8[3:0], 24'h0, imm8[7:4] } : instruction[11:8] == 4'h3 ? { imm8[5:0], 24'h0, imm8[7:6] } : instruction[11:8] == 4'h4 ? { imm8[7:0], 24'h0 } : instruction[11:8] == 4'h5 ? { 2'h0, imm8[7:0], 22'h0 } : instruction[11:8] == 4'h6 ? { 4'h0, imm8[7:0], 20'h0 } : instruction[11:8] == 4'h7 ? { 6'h0, imm8[7:0], 18'h0 } : instruction[11:8] == 4'h8 ? { 8'h0, imm8[7:0], 16'h0 } : instruction[11:8] == 4'h9 ? { 10'h0, imm8[7:0], 14'h0 } : instruction[11:8] == 4'ha ? { 12'h0, imm8[7:0], 12'h0 } : instruction[11:8] == 4'hb ? { 14'h0, imm8[7:0], 10'h0 } : instruction[11:8] == 4'hc ? { 16'h0, imm8[7:0], 8'h0 } : instruction[11:8] == 4'hd ? { 18'h0, imm8[7:0], 6'h0 } : instruction[11:8] == 4'he ? { 20'h0, imm8[7:0], 4'h0 } : { 22'h0, imm8[7:0], 2'h0 } ; assign imm_shift_amount_nxt = shift_imm ; // This signal is encoded in the decode stage because // it is on the critical path in the execute stage assign shift_imm_zero_nxt = imm_shift_amount_nxt == 5'd0 && // immediate amount = 0 barrel_shift_amount_sel_nxt == 2'd2; // shift immediate amount assign alu_function_nxt = { alu_swap_sel_nxt, alu_not_sel_nxt, alu_cin_sel_nxt, alu_cout_sel_nxt, alu_out_sel_nxt }; // ======================================================== // Register Conflict Detection // ======================================================== assign rn_valid = type == REGOP || type == MULT || type == SWAP || type == TRANS || type == MTRANS || type == CODTRANS; assign rm_valid = type == REGOP || type == MULT || type == SWAP || (type == TRANS && immediate_shift_op); assign rs_valid = rds_use_rs; assign rd_valid = (type == TRANS && store_op) || (type == REGOP || type == SWAP); assign stm_valid = type == MTRANS && !instruction[20]; // stm instruction assign rn_conflict1 = instruction_execute && rn_valid && ( load_rd_d1_nxt[4] && rn_sel_nxt == load_rd_d1_nxt[3:0] ); assign rn_conflict2 = instruction_execute_r && rn_valid && ( load_rd_d1 [4] && rn_sel_nxt == load_rd_d1 [3:0] ); assign rm_conflict1 = instruction_execute && rm_valid && ( load_rd_d1_nxt[4] && rm_sel_nxt == load_rd_d1_nxt[3:0] ); assign rm_conflict2 = instruction_execute_r && rm_valid && ( load_rd_d1 [4] && rm_sel_nxt == load_rd_d1 [3:0] ); assign rs_conflict1 = instruction_execute && rs_valid && ( load_rd_d1_nxt[4] && rs_sel_nxt == load_rd_d1_nxt[3:0] ); assign rs_conflict2 = instruction_execute_r && rs_valid && ( load_rd_d1 [4] && rs_sel_nxt == load_rd_d1 [3:0] ); assign rd_conflict1 = instruction_execute && rd_valid && ( load_rd_d1_nxt[4] && instruction[15:12] == load_rd_d1_nxt[3:0] ); assign rd_conflict2 = instruction_execute_r && rd_valid && ( load_rd_d1 [4] && instruction[15:12] == load_rd_d1 [3:0] ); assign stm_conflict1a = instruction_execute && stm_valid && ( load_rd_d1_nxt[4] && mtrans_reg1 == load_rd_d1_nxt[3:0] ); assign stm_conflict1b = instruction_execute && stm_valid && ( load_rd_d1_nxt[4] && mtrans_reg2 == load_rd_d1_nxt[3:0] ); assign stm_conflict2a = instruction_execute_r && stm_valid && ( load_rd_d1 [4] && mtrans_reg1 == load_rd_d1 [3:0] ); assign stm_conflict2b = instruction_execute_r && stm_valid && ( load_rd_d1 [4] && mtrans_reg2 == load_rd_d1 [3:0] ); assign conflict1 = instruction_valid && (rn_conflict1 || rm_conflict1 || rs_conflict1 || rd_conflict1 || stm_conflict1a || stm_conflict1b); assign conflict2 = instruction_valid && (stm_conflict2a || stm_conflict2b); assign conflict = conflict1 || conflict2; always @( posedge i_clk ) if ( !i_core_stall ) begin conflict_r <= conflict; instruction_execute_r <= instruction_execute; rn_conflict1_r <= rn_conflict1 && instruction_execute; rm_conflict1_r <= rm_conflict1 && instruction_execute; rs_conflict1_r <= rs_conflict1 && instruction_execute; rd_conflict1_r <= rd_conflict1 && instruction_execute; o_rn_use_read <= instruction_valid && ( rn_conflict1_r || rn_conflict2 ); o_rm_use_read <= instruction_valid && ( rm_conflict1_r || rm_conflict2 ); o_rs_use_read <= instruction_valid && ( rs_conflict1_r || rs_conflict2 ); o_rd_use_read <= instruction_valid && ( rd_conflict1_r || rd_conflict2 ); end assign o_conflict = conflict; // ======================================================== // MTRANS Operations // ======================================================== // Bit 15 = r15 // Bit 0 = r0 // In ldm and stm instructions r0 is loaded or stored first always @* casez ( instruction[15:0] ) 16'b???????????????1 : mtrans_reg1 = 4'h0 ; 16'b??????????????10 : mtrans_reg1 = 4'h1 ; 16'b?????????????100 : mtrans_reg1 = 4'h2 ; 16'b????????????1000 : mtrans_reg1 = 4'h3 ; 16'b???????????10000 : mtrans_reg1 = 4'h4 ; 16'b??????????100000 : mtrans_reg1 = 4'h5 ; 16'b?????????1000000 : mtrans_reg1 = 4'h6 ; 16'b????????10000000 : mtrans_reg1 = 4'h7 ; 16'b???????100000000 : mtrans_reg1 = 4'h8 ; 16'b??????1000000000 : mtrans_reg1 = 4'h9 ; 16'b?????10000000000 : mtrans_reg1 = 4'ha ; 16'b????100000000000 : mtrans_reg1 = 4'hb ; 16'b???1000000000000 : mtrans_reg1 = 4'hc ; 16'b??10000000000000 : mtrans_reg1 = 4'hd ; 16'b?100000000000000 : mtrans_reg1 = 4'he ; default : mtrans_reg1 = 4'hf ; endcase assign mtrans_reg2_mask = 1'd1<<mtrans_reg1; always @* casez ( instruction[15:0] & ~mtrans_reg2_mask ) 16'b???????????????1 : mtrans_reg2 = 4'h0 ; 16'b??????????????10 : mtrans_reg2 = 4'h1 ; 16'b?????????????100 : mtrans_reg2 = 4'h2 ; 16'b????????????1000 : mtrans_reg2 = 4'h3 ; 16'b???????????10000 : mtrans_reg2 = 4'h4 ; 16'b??????????100000 : mtrans_reg2 = 4'h5 ; 16'b?????????1000000 : mtrans_reg2 = 4'h6 ; 16'b????????10000000 : mtrans_reg2 = 4'h7 ; 16'b???????100000000 : mtrans_reg2 = 4'h8 ; 16'b??????1000000000 : mtrans_reg2 = 4'h9 ; 16'b?????10000000000 : mtrans_reg2 = 4'ha ; 16'b????100000000000 : mtrans_reg2 = 4'hb ; 16'b???1000000000000 : mtrans_reg2 = 4'hc ; 16'b??10000000000000 : mtrans_reg2 = 4'hd ; 16'b?100000000000000 : mtrans_reg2 = 4'he ; default : mtrans_reg2 = 4'hf ; endcase always @* casez (instruction[15:0]) 16'b???????????????1 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 1], 1'd0}; 16'b??????????????10 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 2], 2'd0}; 16'b?????????????100 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 3], 3'd0}; 16'b????????????1000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 4], 4'd0}; 16'b???????????10000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 5], 5'd0}; 16'b??????????100000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 6], 6'd0}; 16'b?????????1000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 7], 7'd0}; 16'b????????10000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 8], 8'd0}; 16'b???????100000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 9], 9'd0}; 16'b??????1000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:10], 10'd0}; 16'b?????10000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:11], 11'd0}; 16'b????100000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:12], 12'd0}; 16'b???1000000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:13], 13'd0}; 16'b??10000000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:14], 14'd0}; 16'b?100000000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15 ], 15'd0}; default : mtrans_instruction_nxt = {instruction[31:16], 16'd0}; endcase // number of registers to be stored assign mtrans_num_registers = {4'd0, instruction[15]} + {4'd0, instruction[14]} + {4'd0, instruction[13]} + {4'd0, instruction[12]} + {4'd0, instruction[11]} + {4'd0, instruction[10]} + {4'd0, instruction[ 9]} + {4'd0, instruction[ 8]} + {4'd0, instruction[ 7]} + {4'd0, instruction[ 6]} + {4'd0, instruction[ 5]} + {4'd0, instruction[ 4]} + {4'd0, instruction[ 3]} + {4'd0, instruction[ 2]} + {4'd0, instruction[ 1]} + {4'd0, instruction[ 0]} ; // 4 x number of registers to be stored assign mtrans_base_reg_change = {25'd0, mtrans_num_registers, 2'd0}; // ======================================================== // Interrupts // ======================================================== assign firq_request = firq && !i_execute_status_bits[26]; assign irq_request = irq && !i_execute_status_bits[27]; assign swi_request = type == SWI; assign dabt_request = dabt_reg; // copro15 and copro13 only supports reg trans opcodes // all other opcodes involving co-processors cause an // undefined instrution interrupt assign und_request = type == CODTRANS || type == COREGOP || ( type == CORTRANS && instruction[11:8] != 4'd15 ); // in order of priority !! // Highest // 1 Reset // 2 Data Abort (including data TLB miss) // 3 FIRQ // 4 IRQ // 5 Prefetch Abort (including prefetch TLB miss) // 6 Undefined instruction, SWI // Lowest assign next_interrupt = dabt_request ? 3'd1 : // Data Abort firq_request ? 3'd2 : // FIRQ irq_request ? 3'd3 : // IRQ instruction_adex ? 3'd4 : // Address Exception instruction_iabt ? 3'd5 : // PreFetch Abort, only triggered // if the instruction is used und_request ? 3'd6 : // Undefined Instruction swi_request ? 3'd7 : // SWI 3'd0 ; // none // SWI and undefined instructions do not cause an interrupt in the decode // stage. They only trigger interrupts if they arfe executed, so the // interrupt is triggered if the execute condition is met in the execute stage assign interrupt = next_interrupt != 3'd0 && next_interrupt != 3'd7 && // SWI next_interrupt != 3'd6 && // undefined interrupt !conflict ; // Wait for conflicts to resolve before // triggering int assign interrupt_mode = next_interrupt == 3'd2 ? FIRQ : next_interrupt == 3'd3 ? IRQ : next_interrupt == 3'd4 ? SVC : next_interrupt == 3'd5 ? SVC : next_interrupt == 3'd6 ? SVC : next_interrupt == 3'd7 ? SVC : next_interrupt == 3'd1 ? SVC : USR ; // ======================================================== // Generate control signals // ======================================================== always @* begin // default mode status_bits_mode_nxt = i_execute_status_bits[1:0]; // change to mode in execute stage get reflected // back to this stage automatically status_bits_irq_mask_nxt = o_status_bits_irq_mask; status_bits_firq_mask_nxt = o_status_bits_firq_mask; decode_exclusive_nxt = 1'd0; decode_daccess_nxt = 1'd0; decode_iaccess_nxt = 1'd1; copro_operation_nxt = 'd0; // Save an instruction to use later saved_current_instruction_wen = 1'd0; pre_fetch_instruction_wen = 1'd0; restore_base_address_nxt = restore_base_address; // default Mux Select values barrel_shift_amount_sel_nxt = 'd0; // don't shift the input barrel_shift_data_sel_nxt = 'd0; // immediate value barrel_shift_function_nxt = 'd0; multiply_function_nxt = 'd0; iaddress_sel_nxt = 'd0; daddress_sel_nxt = 'd0; pc_sel_nxt = 'd0; load_pc_nxt = 'd0; byte_enable_sel_nxt = 'd0; status_bits_sel_nxt = 'd0; reg_write_sel_nxt = 'd0; o_user_mode_regs_store_nxt = 'd0; // ALU Muxes alu_swap_sel_nxt = 'd0; alu_not_sel_nxt = 'd0; alu_cin_sel_nxt = 'd0; alu_cout_sel_nxt = 'd0; alu_out_sel_nxt = 'd0; // default Flop Write Enable values write_data_wen_nxt = 'd0; copro_write_data_wen_nxt = 'd0; base_address_wen_nxt = 'd0; pc_wen_nxt = 'd1; reg_bank_wen_nxt = 'd0; // Don't select any status_bits_flags_wen_nxt = 'd0; status_bits_mode_wen_nxt = 'd0; status_bits_irq_mask_wen_nxt = 'd0; status_bits_firq_mask_wen_nxt = 'd0; if ( instruction_valid && !interrupt && !conflict ) begin if ( type == REGOP ) begin if ( !opcode_compare ) begin // Check is the load destination is the PC if (instruction[15:12] == 4'd15) begin pc_sel_nxt = 3'd1; // alu_out iaddress_sel_nxt = 4'd1; // alu_out end else reg_bank_wen_nxt = decode (instruction[15:12]); end if ( !immediate_shift_op ) begin barrel_shift_function_nxt = instruction[6:5]; end if ( !immediate_shift_op ) barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register if ( !immediate_shift_op && instruction[4] ) barrel_shift_amount_sel_nxt = 2'd1; // Shift amount from Rs registter if ( !immediate_shift_op && !instruction[4] ) barrel_shift_amount_sel_nxt = 2'd2; // Shift immediate amount if ( opcode == ADD || opcode == CMN ) // CMN is just like an ADD begin alu_out_sel_nxt = 4'd1; // Add end if ( opcode == ADC ) // Add with Carry begin alu_out_sel_nxt = 4'd1; // Add alu_cin_sel_nxt = 2'd2; // carry in from status_bits end if ( opcode == SUB || opcode == CMP ) // Subtract begin alu_out_sel_nxt = 4'd1; // Add alu_cin_sel_nxt = 2'd1; // cin = 1 alu_not_sel_nxt = 1'd1; // invert B end // SBC (Subtract with Carry) subtracts the value of its // second operand and the value of NOT(Carry flag) from // the value of its first operand. // Rd = Rn - shifter_operand - NOT(C Flag) if ( opcode == SBC ) // Subtract with Carry begin alu_out_sel_nxt = 4'd1; // Add alu_cin_sel_nxt = 2'd2; // carry in from status_bits alu_not_sel_nxt = 1'd1; // invert B end if ( opcode == RSB ) // Reverse Subtract begin alu_out_sel_nxt = 4'd1; // Add alu_cin_sel_nxt = 2'd1; // cin = 1 alu_not_sel_nxt = 1'd1; // invert B alu_swap_sel_nxt = 1'd1; // swap A and B end if ( opcode == RSC ) // Reverse Subtract with carry begin alu_out_sel_nxt = 4'd1; // Add alu_cin_sel_nxt = 2'd2; // carry in from status_bits alu_not_sel_nxt = 1'd1; // invert B alu_swap_sel_nxt = 1'd1; // swap A and B end if ( opcode == AND || opcode == TST ) // Logical AND, Test (using AND operator) begin alu_out_sel_nxt = 4'd8; // AND alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry end if ( opcode == EOR || opcode == TEQ ) // Logical Exclusive OR, Test Equivalence (using EOR operator) begin alu_out_sel_nxt = 4'd6; // XOR alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry end if ( opcode == ORR ) begin alu_out_sel_nxt = 4'd7; // OR alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry end if ( opcode == BIC ) // Bit Clear (using AND & NOT operators) begin alu_out_sel_nxt = 4'd8; // AND alu_not_sel_nxt = 1'd1; // invert B alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry end if ( opcode == MOV ) // Move begin alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry end if ( opcode == MVN ) // Move NOT begin alu_not_sel_nxt = 1'd1; // invert B alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry end end // Load & Store instructions if ( mem_op ) begin if ( load_op && instruction[15:12] == 4'd15 ) // Write to PC begin saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later pc_wen_nxt = 1'd0; // hold current PC value rather than an instruction fetch load_pc_nxt = 1'd1; end decode_daccess_nxt = 1'd1; // indicate a valid data access alu_out_sel_nxt = 4'd1; // Add if ( !instruction[23] ) // U: Subtract offset begin alu_cin_sel_nxt = 2'd1; // cin = 1 alu_not_sel_nxt = 1'd1; // invert B end if ( store_op ) begin write_data_wen_nxt = 1'd1; if ( type == TRANS && instruction[22] ) byte_enable_sel_nxt = 2'd1; // Save byte end // need to update the register holding the address ? // This is Rn bits [19:16] if ( mem_op_pre_indexed || mem_op_post_indexed ) begin // Check is the load destination is the PC if ( rn_sel_nxt == 4'd15 ) pc_sel_nxt = 3'd1; else reg_bank_wen_nxt = decode ( rn_sel_nxt ); end // if post-indexed, then use Rn rather than ALU output, as address if ( mem_op_post_indexed ) daddress_sel_nxt = 4'd4; // Rn else daddress_sel_nxt = 4'd1; // alu out if ( instruction[25] && type == TRANS ) barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register if ( type == TRANS && instruction[25] && shift_imm != 5'd0 ) begin barrel_shift_function_nxt = instruction[6:5]; barrel_shift_amount_sel_nxt = 2'd2; // imm_shift_amount end end if ( type == BRANCH ) begin pc_sel_nxt = 3'd1; // alu_out iaddress_sel_nxt = 4'd1; // alu_out alu_out_sel_nxt = 4'd1; // Add if ( instruction[24] ) // Link begin reg_bank_wen_nxt = decode (4'd14); // Save PC to LR reg_write_sel_nxt = 3'd1; // pc - 32'd4 end end if ( type == MTRANS ) begin saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later decode_daccess_nxt = 1'd1; // valid data access alu_out_sel_nxt = 4'd1; // Add base_address_wen_nxt = 1'd1; // Save the value of the register used for the base address, // in case of a data abort, and need to restore the value if ( mtrans_num_registers > 4'd1 ) begin iaddress_sel_nxt = 4'd3; // pc (not pc + 4) pc_wen_nxt = 1'd0; // hold current PC value rather than an instruction fetch end // The spec says - // If the instruction would have overwritten the base with data // (that is, it has the base in the transfer list), the overwriting is prevented. // This is true even when the abort occurs after the base word gets loaded restore_base_address_nxt = instruction[20] && (instruction[15:0] & (1'd1 << instruction[19:16])); // Increment if ( instruction[23] ) begin if ( instruction[24] ) // increment before daddress_sel_nxt = 4'd7; // Rn + 4 else daddress_sel_nxt = 4'd4; // Rn end else // Decrement begin alu_cin_sel_nxt = 2'd1; // cin = 1 alu_not_sel_nxt = 1'd1; // invert B if ( !instruction[24] ) // decrement after daddress_sel_nxt = 4'd6; // alu out + 4 else daddress_sel_nxt = 4'd1; // alu out end // Load or store ? if ( !instruction[20] ) // Store write_data_wen_nxt = 1'd1; // stm: store the user mode registers, when in priviledged mode if ( {instruction[22:20]} == 3'b100 ) o_user_mode_regs_store_nxt = 1'd1; // update the base register ? if ( instruction[21] ) // the W bit reg_bank_wen_nxt = decode (rn_sel_nxt); // write to the pc ? if ( instruction[20] && mtrans_reg1 == 4'd15 ) // Write to PC begin saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later pc_wen_nxt = 1'd0; // hold current PC value rather than an instruction fetch load_pc_nxt = 1'd1; end end if ( type == MULT ) begin multiply_function_nxt[0] = 1'd1; // set enable // some bits can be changed just below saved_current_instruction_wen = 1'd1; // Save the Multiply instruction to // refer back to later pc_wen_nxt = 1'd0; // hold current PC value if ( instruction[21] ) multiply_function_nxt[1] = 1'd1; // accumulate end // swp - do read part first if ( type == SWAP ) begin saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later pc_wen_nxt = 1'd0; // hold current PC value decode_iaccess_nxt = 1'd0; // skip the instruction fetch decode_daccess_nxt = 1'd1; // data access barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register daddress_sel_nxt = 4'd4; // Rn decode_exclusive_nxt = 1'd1; // signal an exclusive access end // mcr & mrc - takes two cycles if ( type == CORTRANS && !und_request ) begin saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later pc_wen_nxt = 1'd0; // hold current PC value iaddress_sel_nxt = 4'd3; // pc (not pc + 4) if ( instruction[20] ) // MRC copro_operation_nxt = 2'd1; // Register transfer from Co-Processor else // MCR begin // Don't enable operation to Co-Processor until next period // So it gets the Rd value from the execution stage at the same time copro_operation_nxt = 2'd0; copro_write_data_wen_nxt = 1'd1; // Rd register value to co-processor end end if ( type == SWI || und_request ) begin // save address of next instruction to Supervisor Mode LR reg_write_sel_nxt = 3'd1; // pc -4 reg_bank_wen_nxt = decode (4'd14); // LR iaddress_sel_nxt = 4'd2; // interrupt_vector pc_sel_nxt = 3'd2; // interrupt_vector status_bits_mode_nxt = interrupt_mode; // e.g. Supervisor mode status_bits_mode_wen_nxt = 1'd1; // disable normal interrupts status_bits_irq_mask_nxt = 1'd1; status_bits_irq_mask_wen_nxt = 1'd1; end if ( regop_set_flags ) begin status_bits_flags_wen_nxt = 1'd1; // If <Rd> is r15, the ALU output is copied to the Status Bits. // Not allowed to use r15 for mul or lma instructions if ( instruction[15:12] == 4'd15 ) begin status_bits_sel_nxt = 3'd1; // alu out // Priviledged mode? Then also update the other status bits if ( i_execute_status_bits[1:0] != USR ) begin status_bits_mode_wen_nxt = 1'd1; status_bits_irq_mask_wen_nxt = 1'd1; status_bits_firq_mask_wen_nxt = 1'd1; end end end end // Handle asynchronous interrupts. // interrupts are processed only during execution states // multicycle instructions must complete before the interrupt starts // SWI, Address Exception and Undefined Instruction interrupts are only executed if the // instruction that causes the interrupt is conditionally executed so // its not handled here if ( instruction_valid && interrupt && next_interrupt != 3'd6 ) begin // Save the interrupt causing instruction to refer back to later // This also saves the instruction abort vma and status, in the case of an // instruction abort interrupt saved_current_instruction_wen = 1'd1; // save address of next instruction to Supervisor Mode LR // Address Exception ? if ( next_interrupt == 3'd4 ) reg_write_sel_nxt = 3'd7; // pc else reg_write_sel_nxt = 3'd1; // pc -4 reg_bank_wen_nxt = decode (4'd14); // LR iaddress_sel_nxt = 4'd2; // interrupt_vector pc_sel_nxt = 3'd2; // interrupt_vector status_bits_mode_nxt = interrupt_mode; // e.g. Supervisor mode status_bits_mode_wen_nxt = 1'd1; // disable normal interrupts status_bits_irq_mask_nxt = 1'd1; status_bits_irq_mask_wen_nxt = 1'd1; // disable fast interrupts if ( next_interrupt == 3'd2 ) // FIRQ begin status_bits_firq_mask_nxt = 1'd1; status_bits_firq_mask_wen_nxt = 1'd1; end end // previous instruction was ldr // if it is currently executing in the execute stage do the following if ( control_state == MEM_WAIT1 && !conflict ) begin // Save the next instruction to execute later // Do this even if the ldr instruction does not execute because of Condition pre_fetch_instruction_wen = 1'd1; if ( instruction_execute ) // conditional execution state begin iaddress_sel_nxt = 4'd3; // pc (not pc + 4) pc_wen_nxt = 1'd0; // hold current PC value load_pc_nxt = load_pc_r; end end // completion of ldr instruction if ( control_state == MEM_WAIT2 ) begin if ( !dabt ) // dont load data there is an abort on the data read begin pc_wen_nxt = 1'd0; // hold current PC value // Check if the load destination is the PC if (( type == TRANS && instruction[15:12] == 4'd15 ) || ( type == MTRANS && instruction[20] && mtrans_reg1 == 4'd15 )) begin pc_sel_nxt = 3'd3; // read_data_filtered iaddress_sel_nxt = 4'd3; // hold value after reading in from mem load_pc_nxt = load_pc_r; end end end // second cycle of multiple load or store if ( control_state == MTRANS_EXEC1 && !conflict ) begin // Save the next instruction to execute later pre_fetch_instruction_wen = 1'd1; if ( instruction_execute ) // conditional execution state begin daddress_sel_nxt = 4'd5; // o_address decode_daccess_nxt = 1'd1; // data access if ( mtrans_num_registers > 4'd2 ) decode_iaccess_nxt = 1'd0; // skip the instruction fetch if ( mtrans_num_registers != 4'd1 ) begin pc_wen_nxt = 1'd0; // hold current PC value iaddress_sel_nxt = 4'd3; // pc (not pc + 4) end if ( !instruction[20] ) // Store write_data_wen_nxt = 1'd1; // stm: store the user mode registers, when in priviledged mode if ( {instruction[22:20]} == 3'b100 ) o_user_mode_regs_store_nxt = 1'd1; // write to the pc ? if ( instruction[20] && mtrans_reg1 == 4'd15 ) // Write to PC begin saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later pc_wen_nxt = 1'd0; // hold current PC value rather than an instruction fetch load_pc_nxt = 1'd1; end end end // third cycle of multiple load or store if ( control_state == MTRANS_EXEC2 ) begin daddress_sel_nxt = 4'd5; // o_address decode_daccess_nxt = 1'd1; // data access if ( mtrans_num_registers > 4'd2 ) begin decode_iaccess_nxt = 1'd0; // skip the instruction fetch end if ( mtrans_num_registers > 4'd1 ) begin pc_wen_nxt = 1'd0; // hold current PC value iaddress_sel_nxt = 4'd3; // pc (not pc + 4) end // Store if ( !instruction[20] ) write_data_wen_nxt = 1'd1; // stm: store the user mode registers, when in priviledged mode if ( {instruction[22:20]} == 3'b100 ) o_user_mode_regs_store_nxt = 1'd1; // write to the pc ? if ( instruction[20] && mtrans_reg1 == 4'd15 ) // Write to PC begin saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later pc_wen_nxt = 1'd0; // hold current PC value rather than an instruction fetch load_pc_nxt = 1'd1; end end // state is for when a data abort interrupt is triggered during an ldm if ( control_state == MTRANS_ABORT ) begin // Restore the Base Address, if the base register is included in the // list of registers being loaded if (restore_base_address) // ldm with base address in register list begin reg_write_sel_nxt = 3'd6; // write base_register reg_bank_wen_nxt = decode ( instruction[19:16] ); // to Rn end end // Multiply or Multiply-Accumulate if ( control_state == MULT_PROC1 && instruction_execute && !conflict ) begin // Save the next instruction to execute later // Do this even if this instruction does not execute because of Condition pre_fetch_instruction_wen = 1'd1; pc_wen_nxt = 1'd0; // hold current PC value multiply_function_nxt = o_multiply_function; end // Multiply or Multiply-Accumulate // Do multiplication // Wait for done or accumulate signal if ( control_state == MULT_PROC2 ) begin // Save the next instruction to execute later // Do this even if this instruction does not execute because of Condition pc_wen_nxt = 1'd0; // hold current PC value iaddress_sel_nxt = 4'd3; // pc (not pc + 4) multiply_function_nxt = o_multiply_function; end // Save RdLo // always last cycle of all multiply or multiply accumulate operations if ( control_state == MULT_STORE ) begin reg_write_sel_nxt = 3'd2; // multiply_out multiply_function_nxt = o_multiply_function; if ( type == MULT ) // 32-bit reg_bank_wen_nxt = decode (instruction[19:16]); // Rd else // 64-bit / Long reg_bank_wen_nxt = decode (instruction[15:12]); // RdLo if ( instruction[20] ) // the 'S' bit begin status_bits_sel_nxt = 3'd4; // { multiply_flags, status_bits_flags[1:0] } status_bits_flags_wen_nxt = 1'd1; end end // Add lower 32 bits to multiplication product if ( control_state == MULT_ACCUMU ) begin multiply_function_nxt = o_multiply_function; pc_wen_nxt = 1'd0; // hold current PC value iaddress_sel_nxt = 4'd3; // pc (not pc + 4) end // swp - do write request in 2nd cycle if ( control_state == SWAP_WRITE && instruction_execute && !conflict ) begin barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register daddress_sel_nxt = 4'd4; // Rn write_data_wen_nxt = 1'd1; decode_iaccess_nxt = 1'd0; // skip the instruction fetch decode_daccess_nxt = 1'd1; // data access if ( instruction[22] ) byte_enable_sel_nxt = 2'd1; // Save byte if ( instruction_execute ) // conditional execution state pc_wen_nxt = 1'd0; // hold current PC value // Save the next instruction to execute later // Do this even if this instruction does not execute because of Condition pre_fetch_instruction_wen = 1'd1; load_pc_nxt = load_pc_r; end // swp - receive read response in 3rd cycle if ( control_state == SWAP_WAIT1 ) begin if ( instruction_execute ) // conditional execution state begin iaddress_sel_nxt = 4'd3; // pc (not pc + 4) pc_wen_nxt = 1'd0; // hold current PC value end if ( !dabt ) begin // Check is the load destination is the PC if ( instruction[15:12] == 4'd15 ) begin pc_sel_nxt = 3'd3; // read_data_filtered iaddress_sel_nxt = 4'd3; // hold value after reading in from mem load_pc_nxt = load_pc_r; end end end // 1 cycle delay for Co-Processor Register access if ( control_state == COPRO_WAIT && instruction_execute && !conflict ) begin pre_fetch_instruction_wen = 1'd1; if ( instruction[20] ) // mrc instruction begin // Check is the load destination is the PC if ( instruction[15:12] == 4'd15 ) begin // If r15 is specified for <Rd>, the condition code flags are // updated instead of a general-purpose register. status_bits_sel_nxt = 3'd3; // i_copro_data status_bits_flags_wen_nxt = 1'd1; // Can't change these in USR mode if ( i_execute_status_bits[1:0] != USR ) begin status_bits_mode_wen_nxt = 1'd1; status_bits_irq_mask_wen_nxt = 1'd1; status_bits_firq_mask_wen_nxt = 1'd1; end end else reg_bank_wen_nxt = decode (instruction[15:12]); reg_write_sel_nxt = 3'd5; // i_copro_data end else // mcr instruction begin copro_operation_nxt = 2'd2; // Register transfer to Co-Processor end end // Have just changed the status_bits mode but this // creates a 1 cycle gap with the old mode // coming back from execute into instruction_decode // So squash that old mode value during this // cycle of the interrupt transition if ( control_state == INT_WAIT1 ) status_bits_mode_nxt = o_status_bits_mode; // Supervisor mode end // Speed up the long path from u_decode/fetch_instruction_r to u_register_bank/r8_firq // This pre-encodes the firq_s3 signal thats used in u_register_bank // assign firq_not_user_mode_nxt = !user_mode_regs_load_nxt && status_bits_mode_nxt == FIRQ; assign firq_not_user_mode_nxt = status_bits_mode_nxt == FIRQ; // ======================================================== // Next State Logic // ======================================================== // this replicates the current value of the execute signal in the execute stage assign instruction_execute = conditional_execute ( o_condition, i_execute_status_bits[31:28] ); // First state of executing a new instruction // Its complex because of conditional execution of multi-cycle instructions assign instruction_valid = ((control_state == EXECUTE || control_state == PRE_FETCH_EXEC) || // when last instruction was multi-cycle instruction but did not execute // because condition was false then act like you're in the execute state (!instruction_execute && (control_state == PC_STALL1 || control_state == MEM_WAIT1 || control_state == COPRO_WAIT || control_state == SWAP_WRITE || control_state == MULT_PROC1 || control_state == MTRANS_EXEC1 ) )); always @* begin // default is to hold the current state control_state_nxt = control_state; // Note: The order is important here if ( control_state == RST_WAIT1 ) control_state_nxt = RST_WAIT2; if ( control_state == RST_WAIT2 ) control_state_nxt = EXECUTE; if ( control_state == INT_WAIT1 ) control_state_nxt = INT_WAIT2; if ( control_state == INT_WAIT2 ) control_state_nxt = EXECUTE; if ( control_state == COPRO_WAIT ) control_state_nxt = PRE_FETCH_EXEC; if ( control_state == PC_STALL1 ) control_state_nxt = PC_STALL2; if ( control_state == PC_STALL2 ) control_state_nxt = EXECUTE; if ( control_state == SWAP_WRITE ) control_state_nxt = SWAP_WAIT1; if ( control_state == SWAP_WAIT1 ) control_state_nxt = SWAP_WAIT2; if ( control_state == MULT_STORE ) control_state_nxt = PRE_FETCH_EXEC; if ( control_state == MTRANS_ABORT ) control_state_nxt = PRE_FETCH_EXEC; if ( control_state == MEM_WAIT1 ) control_state_nxt = MEM_WAIT2; if ( control_state == MEM_WAIT2 || control_state == SWAP_WAIT2 ) begin if ( write_pc ) // writing to the PC!! control_state_nxt = PC_STALL1; else control_state_nxt = PRE_FETCH_EXEC; end if ( control_state == MTRANS_EXEC1 ) begin if ( mtrans_instruction_nxt[15:0] != 16'd0 ) control_state_nxt = MTRANS_EXEC2; else // if the register list holds a single register begin if ( dabt ) // data abort control_state_nxt = MTRANS_ABORT; else if ( write_pc ) // writing to the PC!! control_state_nxt = MEM_WAIT1; else control_state_nxt = PRE_FETCH_EXEC; end end // Stay in State MTRANS_EXEC2 until the full list of registers to // load or store has been processed if ( control_state == MTRANS_EXEC2 && mtrans_num_registers == 5'd1 ) begin if ( dabt ) // data abort control_state_nxt = MTRANS_ABORT; else if ( write_pc ) // writing to the PC!! control_state_nxt = MEM_WAIT1; else control_state_nxt = PRE_FETCH_EXEC; end if ( control_state == MULT_PROC1 ) begin if (!instruction_execute) control_state_nxt = PRE_FETCH_EXEC; else control_state_nxt = MULT_PROC2; end if ( control_state == MULT_PROC2 ) begin if ( i_multiply_done ) if ( o_multiply_function[1] ) // Accumulate ? control_state_nxt = MULT_ACCUMU; else control_state_nxt = MULT_STORE; end if ( control_state == MULT_ACCUMU ) begin control_state_nxt = MULT_STORE; end // This should come at the end, so that conditional execution works // correctly if ( instruction_valid ) begin // default is to stay in execute state, or to move into this // state from a conditional execute state control_state_nxt = EXECUTE; if ( current_write_pc ) control_state_nxt = PC_STALL1; if ( load_op && instruction[15:12] == 4'd15 ) // load new PC value control_state_nxt = MEM_WAIT1; // ldm rx, {pc} if ( type == MTRANS && instruction[20] && mtrans_reg1 == 4'd15 ) // Write to PC control_state_nxt = MEM_WAIT1; if ( type == MTRANS && !conflict && mtrans_num_registers != 5'd0 && mtrans_num_registers != 5'd1 ) control_state_nxt = MTRANS_EXEC1; if ( type == MULT && !conflict ) control_state_nxt = MULT_PROC1; if ( type == SWAP && !conflict ) control_state_nxt = SWAP_WRITE; if ( type == CORTRANS && !und_request && !conflict ) control_state_nxt = COPRO_WAIT; // interrupt overrides everything else so its last if ( interrupt && !conflict ) control_state_nxt = INT_WAIT1; end end // ======================================================== // Register Update // ======================================================== always @ ( posedge i_clk ) if ( !i_core_stall ) begin if (!conflict) begin fetch_instruction_r <= i_fetch_instruction; fetch_instruction_type_r <= instruction_type(i_fetch_instruction); fetch_address_r <= i_execute_iaddress; iabt_reg <= i_iabt; adex_reg <= i_adex; abt_status_reg <= i_abt_status; end o_status_bits_mode <= status_bits_mode_nxt; o_status_bits_irq_mask <= status_bits_irq_mask_nxt; o_status_bits_firq_mask <= status_bits_firq_mask_nxt; o_imm32 <= imm32_nxt; o_imm_shift_amount <= imm_shift_amount_nxt; o_shift_imm_zero <= shift_imm_zero_nxt; // when have an interrupt, execute the interrupt operation // unconditionally in the execute stage // ensures that status_bits register gets updated correctly // Likewise when in middle of multi-cycle instructions // execute them unconditionally o_condition <= instruction_valid && !interrupt ? condition_nxt : AL; o_decode_exclusive <= decode_exclusive_nxt; o_decode_iaccess <= decode_iaccess_nxt; o_decode_daccess <= decode_daccess_nxt; o_rm_sel <= rm_sel_nxt; o_rs_sel <= rs_sel_nxt; o_load_rd <= load_rd_nxt; load_rd_d1 <= load_rd_d1_nxt; load_pc_r <= load_pc_nxt; o_rn_sel <= rn_sel_nxt; o_barrel_shift_amount_sel <= barrel_shift_amount_sel_nxt; o_barrel_shift_data_sel <= barrel_shift_data_sel_nxt; o_barrel_shift_function <= barrel_shift_function_nxt; o_alu_function <= alu_function_nxt; o_multiply_function <= multiply_function_nxt; o_interrupt_vector_sel <= next_interrupt; o_iaddress_sel <= iaddress_sel_nxt; o_daddress_sel <= daddress_sel_nxt; o_pc_sel <= pc_sel_nxt; o_byte_enable_sel <= byte_enable_sel_nxt; o_status_bits_sel <= status_bits_sel_nxt; o_reg_write_sel <= reg_write_sel_nxt; o_firq_not_user_mode <= firq_not_user_mode_nxt; o_write_data_wen <= write_data_wen_nxt; o_base_address_wen <= base_address_wen_nxt; o_pc_wen <= pc_wen_nxt; o_reg_bank_wen <= reg_bank_wen_nxt; o_status_bits_flags_wen <= status_bits_flags_wen_nxt; o_status_bits_mode_wen <= status_bits_mode_wen_nxt; o_status_bits_irq_mask_wen <= status_bits_irq_mask_wen_nxt; o_status_bits_firq_mask_wen <= status_bits_firq_mask_wen_nxt; o_copro_opcode1 <= instruction[23:21]; o_copro_opcode2 <= instruction[7:5]; o_copro_crn <= instruction[19:16]; o_copro_crm <= instruction[3:0]; o_copro_num <= instruction[11:8]; o_copro_operation <= copro_operation_nxt; o_copro_write_data_wen <= copro_write_data_wen_nxt; restore_base_address <= restore_base_address_nxt; control_state <= control_state_nxt; end always @ ( posedge i_clk ) if ( !i_core_stall ) begin // sometimes this is a pre-fetch instruction // e.g. two ldr instructions in a row. The second ldr will be saved // to the pre-fetch instruction register // then when its decoded, a copy is saved to the saved_current_instruction // register if ( type == MTRANS ) begin saved_current_instruction <= mtrans_instruction_nxt; saved_current_instruction_type <= type; saved_current_instruction_iabt <= instruction_iabt; saved_current_instruction_adex <= instruction_adex; saved_current_instruction_address <= instruction_address; saved_current_instruction_iabt_status <= instruction_iabt_status; end else if ( saved_current_instruction_wen ) begin saved_current_instruction <= instruction; saved_current_instruction_type <= type; saved_current_instruction_iabt <= instruction_iabt; saved_current_instruction_adex <= instruction_adex; saved_current_instruction_address <= instruction_address; saved_current_instruction_iabt_status <= instruction_iabt_status; end if ( pre_fetch_instruction_wen ) begin pre_fetch_instruction <= fetch_instruction_r; pre_fetch_instruction_type <= fetch_instruction_type_r; pre_fetch_instruction_iabt <= iabt_reg; pre_fetch_instruction_adex <= adex_reg; pre_fetch_instruction_address <= fetch_address_r; pre_fetch_instruction_iabt_status <= abt_status_reg; end // TODO possible to use saved_current_instruction instead and save some regs? hold_instruction <= instruction; hold_instruction_type <= type; hold_instruction_iabt <= instruction_iabt; hold_instruction_adex <= instruction_adex; hold_instruction_address <= instruction_address; hold_instruction_iabt_status <= instruction_iabt_status; end always @ ( posedge i_clk ) if ( !i_core_stall ) begin irq <= i_irq; firq <= i_firq; if ( control_state == INT_WAIT1 && o_status_bits_mode == SVC ) begin dabt_reg <= 1'd0; end else begin dabt_reg <= dabt_reg || i_dabt; end dabt_reg_d1 <= dabt_reg; end assign dabt = dabt_reg || i_dabt; // ======================================================== // Decompiler for debugging core - not synthesizable // ======================================================== //synopsys translate_off `include "debug_functions.v" a25_decompile u_decompile ( .i_clk ( i_clk ), .i_core_stall ( i_core_stall ), .i_instruction ( instruction ), .i_instruction_valid ( instruction_valid &&!conflict ), .i_instruction_execute ( instruction_execute ), .i_instruction_address ( instruction_address ), .i_interrupt ( {3{interrupt}} & next_interrupt ), .i_interrupt_state ( control_state == INT_WAIT2 ), .i_instruction_undefined ( und_request ), .i_pc_sel ( o_pc_sel ), .i_pc_wen ( o_pc_wen ) ); wire [(15*8)-1:0] xCONTROL_STATE; wire [(15*8)-1:0] xMODE; wire [( 8*8)-1:0] xTYPE; assign xCONTROL_STATE = control_state == RST_WAIT1 ? "RST_WAIT1" : control_state == RST_WAIT2 ? "RST_WAIT2" : control_state == INT_WAIT1 ? "INT_WAIT1" : control_state == INT_WAIT2 ? "INT_WAIT2" : control_state == EXECUTE ? "EXECUTE" : control_state == PRE_FETCH_EXEC ? "PRE_FETCH_EXEC" : control_state == MEM_WAIT1 ? "MEM_WAIT1" : control_state == MEM_WAIT2 ? "MEM_WAIT2" : control_state == PC_STALL1 ? "PC_STALL1" : control_state == PC_STALL2 ? "PC_STALL2" : control_state == MTRANS_EXEC1 ? "MTRANS_EXEC1" : control_state == MTRANS_EXEC2 ? "MTRANS_EXEC2" : control_state == MTRANS_ABORT ? "MTRANS_ABORT" : control_state == MULT_PROC1 ? "MULT_PROC1" : control_state == MULT_PROC2 ? "MULT_PROC2" : control_state == MULT_STORE ? "MULT_STORE" : control_state == MULT_ACCUMU ? "MULT_ACCUMU" : control_state == SWAP_WRITE ? "SWAP_WRITE" : control_state == SWAP_WAIT1 ? "SWAP_WAIT1" : control_state == SWAP_WAIT2 ? "SWAP_WAIT2" : control_state == COPRO_WAIT ? "COPRO_WAIT" : "UNKNOWN " ; assign xMODE = mode_name ( o_status_bits_mode ); assign xTYPE = type == REGOP ? "REGOP" : type == MULT ? "MULT" : type == SWAP ? "SWAP" : type == TRANS ? "TRANS" : type == MTRANS ? "MTRANS" : type == BRANCH ? "BRANCH" : type == CODTRANS ? "CODTRANS" : type == COREGOP ? "COREGOP" : type == CORTRANS ? "CORTRANS" : type == SWI ? "SWI" : "UNKNOWN" ; always @( posedge i_clk ) if (control_state == EXECUTE && ((instruction[0] === 1'bx) || (instruction[31] === 1'bx))) begin `TB_ERROR_MESSAGE $display("Instruction with x's =%08h", instruction); end //synopsys translate_on endmodule
Go to most recent revision | Compare with Previous | Blame | View Log