URL
https://opencores.org/ocsvn/amber/amber/trunk
Subversion Repositories amber
[/] [amber/] [trunk/] [hw/] [vlog/] [ethmac/] [eth_registers.v] - Rev 20
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// eth_registers.v //// //// //// //// This file is part of the Ethernet IP core project //// //// http://www.opencores.org/projects/ethmac/ //// //// //// //// Author(s): //// //// - Igor Mohor (igorM@opencores.org) //// //// //// //// All additional information is avaliable in the Readme.txt //// //// file. //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2001, 2002 Authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // Revision 1.28 2004/04/26 15:26:23 igorm // - Bug connected to the TX_BD_NUM_Wr signal fixed (bug came in with the // previous update of the core. // - TxBDAddress is set to 0 after the TX is enabled in the MODER register. // - RxBDAddress is set to r_TxBDNum<<1 after the RX is enabled in the MODER // register. (thanks to Mathias and Torbjorn) // - Multicast reception was fixed. Thanks to Ulrich Gries // // Revision 1.27 2004/04/26 11:42:17 igorm // TX_BD_NUM_Wr error fixed. Error was entered with the last check-in. // // Revision 1.26 2003/11/12 18:24:59 tadejm // WISHBONE slave changed and tested from only 32-bit accesss to byte access. // // Revision 1.25 2003/04/18 16:26:25 mohor // RxBDAddress was updated also when value to r_TxBDNum was written with // greater value than allowed. // // Revision 1.24 2002/11/22 01:57:06 mohor // Rx Flow control fixed. CF flag added to the RX buffer descriptor. RxAbort // synchronized. // // Revision 1.23 2002/11/19 18:13:49 mohor // r_MiiMRst is not used for resetting the MIIM module. wb_rst used instead. // // Revision 1.22 2002/11/14 18:37:20 mohor // r_Rst signal does not reset any module any more and is removed from the design. // // Revision 1.21 2002/09/10 10:35:23 mohor // Ethernet debug registers removed. // // Revision 1.20 2002/09/04 18:40:25 mohor // ETH_TXCTRL and ETH_RXCTRL registers added. Interrupts related to // the control frames connected. // // Revision 1.19 2002/08/19 16:01:40 mohor // Only values smaller or equal to 0x80 can be written to TX_BD_NUM register. // r_TxEn and r_RxEn depend on the limit values of the TX_BD_NUMOut. // // Revision 1.18 2002/08/16 22:28:23 mohor // Syntax error fixed. // // Revision 1.17 2002/08/16 22:23:03 mohor // Syntax error fixed. // // Revision 1.16 2002/08/16 22:14:22 mohor // Synchronous reset added to all registers. Defines used for width. r_MiiMRst // changed from bit position 10 to 9. // // Revision 1.15 2002/08/14 18:26:37 mohor // LinkFailRegister is reflecting the status of the PHY's link fail status bit. // // Revision 1.14 2002/04/22 14:03:44 mohor // Interrupts are visible in the ETH_INT_SOURCE regardless if they are enabled // or not. // // Revision 1.13 2002/02/26 16:18:09 mohor // Reset values are passed to registers through parameters // // Revision 1.12 2002/02/17 13:23:42 mohor // Define missmatch fixed. // // Revision 1.11 2002/02/16 14:03:44 mohor // Registered trimmed. Unused registers removed. // // Revision 1.10 2002/02/15 11:08:25 mohor // File format fixed a bit. // // Revision 1.9 2002/02/14 20:19:41 billditt // Modified for Address Checking, // addition of eth_addrcheck.v // // Revision 1.8 2002/02/12 17:01:19 mohor // HASH0 and HASH1 registers added. // Revision 1.7 2002/01/23 10:28:16 mohor // Link in the header changed. // // Revision 1.6 2001/12/05 15:00:16 mohor // RX_BD_NUM changed to TX_BD_NUM (holds number of TX descriptors // instead of the number of RX descriptors). // // Revision 1.5 2001/12/05 10:22:19 mohor // ETH_RX_BD_ADR register deleted. ETH_RX_BD_NUM is used instead. // // Revision 1.4 2001/10/19 08:43:51 mohor // eth_timescale.v changed to timescale.v This is done because of the // simulation of the few cores in a one joined project. // // Revision 1.3 2001/10/18 12:07:11 mohor // Status signals changed, Adress decoding changed, interrupt controller // added. // // Revision 1.2 2001/09/24 15:02:56 mohor // Defines changed (All precede with ETH_). Small changes because some // tools generate warnings when two operands are together. Synchronization // between two clocks domains in eth_wishbonedma.v is changed (due to ASIC // demands). // // Revision 1.1 2001/08/06 14:44:29 mohor // A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex). // Include files fixed to contain no path. // File names and module names changed ta have a eth_ prologue in the name. // File eth_timescale.v is used to define timescale // All pin names on the top module are changed to contain _I, _O or _OE at the end. // Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O // and Mdo_OE. The bidirectional signal must be created on the top level. This // is done due to the ASIC tools. // // Revision 1.2 2001/08/02 09:25:31 mohor // Unconnected signals are now connected. // // Revision 1.1 2001/07/30 21:23:42 mohor // Directory structure changed. Files checked and joind together. // // // // // // `include "eth_defines.v" `include "timescale.v" module eth_registers( DataIn, Address, Rw, Cs, Clk, Reset, DataOut, r_RecSmall, r_Pad, r_HugEn, r_CrcEn, r_DlyCrcEn, r_FullD, r_ExDfrEn, r_NoBckof, r_LoopBck, r_IFG, r_Pro, r_Iam, r_Bro, r_NoPre, r_TxEn, r_RxEn, TxB_IRQ, TxE_IRQ, RxB_IRQ, RxE_IRQ, Busy_IRQ, r_IPGT, r_IPGR1, r_IPGR2, r_MinFL, r_MaxFL, r_MaxRet, r_CollValid, r_TxFlow, r_RxFlow, r_PassAll, r_MiiNoPre, r_ClkDiv, r_WCtrlData, r_RStat, r_ScanStat, r_RGAD, r_FIAD, r_CtrlData, NValid_stat, Busy_stat, LinkFail, r_MAC, WCtrlDataStart, RStatStart, UpdateMIIRX_DATAReg, Prsd, r_TxBDNum, int_o, r_HASH0, r_HASH1, r_TxPauseTV, r_TxPauseRq, RstTxPauseRq, TxCtrlEndFrm, StartTxDone, TxClk, RxClk, SetPauseTimer ); parameter Tp = 1; input [31:0] DataIn; input [7:0] Address; input Rw; input [3:0] Cs; input Clk; input Reset; input WCtrlDataStart; input RStatStart; input UpdateMIIRX_DATAReg; input [15:0] Prsd; output [31:0] DataOut; reg [31:0] DataOut; output r_RecSmall; output r_Pad; output r_HugEn; output r_CrcEn; output r_DlyCrcEn; output r_FullD; output r_ExDfrEn; output r_NoBckof; output r_LoopBck; output r_IFG; output r_Pro; output r_Iam; output r_Bro; output r_NoPre; output r_TxEn; output r_RxEn; output [31:0] r_HASH0; output [31:0] r_HASH1; input TxB_IRQ; input TxE_IRQ; input RxB_IRQ; input RxE_IRQ; input Busy_IRQ; output [6:0] r_IPGT; output [6:0] r_IPGR1; output [6:0] r_IPGR2; output [15:0] r_MinFL; output [15:0] r_MaxFL; output [3:0] r_MaxRet; output [5:0] r_CollValid; output r_TxFlow; output r_RxFlow; output r_PassAll; output r_MiiNoPre; output [7:0] r_ClkDiv; output r_WCtrlData; output r_RStat; output r_ScanStat; output [4:0] r_RGAD; output [4:0] r_FIAD; output [15:0]r_CtrlData; input NValid_stat; input Busy_stat; input LinkFail; output [47:0]r_MAC; output [7:0] r_TxBDNum; output int_o; output [15:0]r_TxPauseTV; output r_TxPauseRq; input RstTxPauseRq; input TxCtrlEndFrm; input StartTxDone; input TxClk; input RxClk; input SetPauseTimer; reg irq_txb; reg irq_txe; reg irq_rxb; reg irq_rxe; reg irq_busy; reg irq_txc; reg irq_rxc; reg SetTxCIrq_txclk; reg SetTxCIrq_sync1, SetTxCIrq_sync2, SetTxCIrq_sync3; reg SetTxCIrq; reg ResetTxCIrq_sync1, ResetTxCIrq_sync2; reg SetRxCIrq_rxclk; reg SetRxCIrq_sync1, SetRxCIrq_sync2, SetRxCIrq_sync3; reg SetRxCIrq; reg ResetRxCIrq_sync1; reg ResetRxCIrq_sync2; reg ResetRxCIrq_sync3; wire [3:0] Write = Cs & {4{Rw}}; wire Read = (|Cs) & ~Rw; wire MODER_Sel = (Address == `ETH_MODER_ADR ); wire INT_SOURCE_Sel = (Address == `ETH_INT_SOURCE_ADR ); wire INT_MASK_Sel = (Address == `ETH_INT_MASK_ADR ); wire IPGT_Sel = (Address == `ETH_IPGT_ADR ); wire IPGR1_Sel = (Address == `ETH_IPGR1_ADR ); wire IPGR2_Sel = (Address == `ETH_IPGR2_ADR ); wire PACKETLEN_Sel = (Address == `ETH_PACKETLEN_ADR ); wire COLLCONF_Sel = (Address == `ETH_COLLCONF_ADR ); wire CTRLMODER_Sel = (Address == `ETH_CTRLMODER_ADR ); wire MIIMODER_Sel = (Address == `ETH_MIIMODER_ADR ); wire MIICOMMAND_Sel = (Address == `ETH_MIICOMMAND_ADR ); wire MIIADDRESS_Sel = (Address == `ETH_MIIADDRESS_ADR ); wire MIITX_DATA_Sel = (Address == `ETH_MIITX_DATA_ADR ); wire MAC_ADDR0_Sel = (Address == `ETH_MAC_ADDR0_ADR ); wire MAC_ADDR1_Sel = (Address == `ETH_MAC_ADDR1_ADR ); wire HASH0_Sel = (Address == `ETH_HASH0_ADR ); wire HASH1_Sel = (Address == `ETH_HASH1_ADR ); wire TXCTRL_Sel = (Address == `ETH_TX_CTRL_ADR ); wire RXCTRL_Sel = (Address == `ETH_RX_CTRL_ADR ); wire TX_BD_NUM_Sel = (Address == `ETH_TX_BD_NUM_ADR ); wire [2:0] MODER_Wr; wire [0:0] INT_SOURCE_Wr; wire [0:0] INT_MASK_Wr; wire [0:0] IPGT_Wr; wire [0:0] IPGR1_Wr; wire [0:0] IPGR2_Wr; wire [3:0] PACKETLEN_Wr; wire [2:0] COLLCONF_Wr; wire [0:0] CTRLMODER_Wr; wire [1:0] MIIMODER_Wr; wire [0:0] MIICOMMAND_Wr; wire [1:0] MIIADDRESS_Wr; wire [1:0] MIITX_DATA_Wr; wire MIIRX_DATA_Wr; wire [3:0] MAC_ADDR0_Wr; wire [1:0] MAC_ADDR1_Wr; wire [3:0] HASH0_Wr; wire [3:0] HASH1_Wr; wire [2:0] TXCTRL_Wr; wire [0:0] TX_BD_NUM_Wr; assign MODER_Wr[0] = Write[0] & MODER_Sel; assign MODER_Wr[1] = Write[1] & MODER_Sel; assign MODER_Wr[2] = Write[2] & MODER_Sel; assign INT_SOURCE_Wr[0] = Write[0] & INT_SOURCE_Sel; assign INT_MASK_Wr[0] = Write[0] & INT_MASK_Sel; assign IPGT_Wr[0] = Write[0] & IPGT_Sel; assign IPGR1_Wr[0] = Write[0] & IPGR1_Sel; assign IPGR2_Wr[0] = Write[0] & IPGR2_Sel; assign PACKETLEN_Wr[0] = Write[0] & PACKETLEN_Sel; assign PACKETLEN_Wr[1] = Write[1] & PACKETLEN_Sel; assign PACKETLEN_Wr[2] = Write[2] & PACKETLEN_Sel; assign PACKETLEN_Wr[3] = Write[3] & PACKETLEN_Sel; assign COLLCONF_Wr[0] = Write[0] & COLLCONF_Sel; assign COLLCONF_Wr[1] = 1'b0; // Not used assign COLLCONF_Wr[2] = Write[2] & COLLCONF_Sel; assign CTRLMODER_Wr[0] = Write[0] & CTRLMODER_Sel; assign MIIMODER_Wr[0] = Write[0] & MIIMODER_Sel; assign MIIMODER_Wr[1] = Write[1] & MIIMODER_Sel; assign MIICOMMAND_Wr[0] = Write[0] & MIICOMMAND_Sel; assign MIIADDRESS_Wr[0] = Write[0] & MIIADDRESS_Sel; assign MIIADDRESS_Wr[1] = Write[1] & MIIADDRESS_Sel; assign MIITX_DATA_Wr[0] = Write[0] & MIITX_DATA_Sel; assign MIITX_DATA_Wr[1] = Write[1] & MIITX_DATA_Sel; assign MIIRX_DATA_Wr = UpdateMIIRX_DATAReg; assign MAC_ADDR0_Wr[0] = Write[0] & MAC_ADDR0_Sel; assign MAC_ADDR0_Wr[1] = Write[1] & MAC_ADDR0_Sel; assign MAC_ADDR0_Wr[2] = Write[2] & MAC_ADDR0_Sel; assign MAC_ADDR0_Wr[3] = Write[3] & MAC_ADDR0_Sel; assign MAC_ADDR1_Wr[0] = Write[0] & MAC_ADDR1_Sel; assign MAC_ADDR1_Wr[1] = Write[1] & MAC_ADDR1_Sel; assign HASH0_Wr[0] = Write[0] & HASH0_Sel; assign HASH0_Wr[1] = Write[1] & HASH0_Sel; assign HASH0_Wr[2] = Write[2] & HASH0_Sel; assign HASH0_Wr[3] = Write[3] & HASH0_Sel; assign HASH1_Wr[0] = Write[0] & HASH1_Sel; assign HASH1_Wr[1] = Write[1] & HASH1_Sel; assign HASH1_Wr[2] = Write[2] & HASH1_Sel; assign HASH1_Wr[3] = Write[3] & HASH1_Sel; assign TXCTRL_Wr[0] = Write[0] & TXCTRL_Sel; assign TXCTRL_Wr[1] = Write[1] & TXCTRL_Sel; assign TXCTRL_Wr[2] = Write[2] & TXCTRL_Sel; assign TX_BD_NUM_Wr[0] = Write[0] & TX_BD_NUM_Sel & (DataIn<='h80); wire [31:0] MODEROut; wire [31:0] INT_SOURCEOut; wire [31:0] INT_MASKOut; wire [31:0] IPGTOut; wire [31:0] IPGR1Out; wire [31:0] IPGR2Out; wire [31:0] PACKETLENOut; wire [31:0] COLLCONFOut; wire [31:0] CTRLMODEROut; wire [31:0] MIIMODEROut; wire [31:0] MIICOMMANDOut; wire [31:0] MIIADDRESSOut; wire [31:0] MIITX_DATAOut; wire [31:0] MIIRX_DATAOut; wire [31:0] MIISTATUSOut; wire [31:0] MAC_ADDR0Out; wire [31:0] MAC_ADDR1Out; wire [31:0] TX_BD_NUMOut; wire [31:0] HASH0Out; wire [31:0] HASH1Out; wire [31:0] TXCTRLOut; // MODER Register eth_register #(`ETH_MODER_WIDTH_0, `ETH_MODER_DEF_0) MODER_0 ( .DataIn (DataIn[`ETH_MODER_WIDTH_0 - 1:0]), .DataOut (MODEROut[`ETH_MODER_WIDTH_0 - 1:0]), .Write (MODER_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MODER_WIDTH_1, `ETH_MODER_DEF_1) MODER_1 ( .DataIn (DataIn[`ETH_MODER_WIDTH_1 + 7:8]), .DataOut (MODEROut[`ETH_MODER_WIDTH_1 + 7:8]), .Write (MODER_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MODER_WIDTH_2, `ETH_MODER_DEF_2) MODER_2 ( .DataIn (DataIn[`ETH_MODER_WIDTH_2 + 15:16]), .DataOut (MODEROut[`ETH_MODER_WIDTH_2 + 15:16]), .Write (MODER_Wr[2]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign MODEROut[31:`ETH_MODER_WIDTH_2 + 16] = 0; // INT_MASK Register eth_register #(`ETH_INT_MASK_WIDTH_0, `ETH_INT_MASK_DEF_0) INT_MASK_0 ( .DataIn (DataIn[`ETH_INT_MASK_WIDTH_0 - 1:0]), .DataOut (INT_MASKOut[`ETH_INT_MASK_WIDTH_0 - 1:0]), .Write (INT_MASK_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign INT_MASKOut[31:`ETH_INT_MASK_WIDTH_0] = 0; // IPGT Register eth_register #(`ETH_IPGT_WIDTH_0, `ETH_IPGT_DEF_0) IPGT_0 ( .DataIn (DataIn[`ETH_IPGT_WIDTH_0 - 1:0]), .DataOut (IPGTOut[`ETH_IPGT_WIDTH_0 - 1:0]), .Write (IPGT_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign IPGTOut[31:`ETH_IPGT_WIDTH_0] = 0; // IPGR1 Register eth_register #(`ETH_IPGR1_WIDTH_0, `ETH_IPGR1_DEF_0) IPGR1_0 ( .DataIn (DataIn[`ETH_IPGR1_WIDTH_0 - 1:0]), .DataOut (IPGR1Out[`ETH_IPGR1_WIDTH_0 - 1:0]), .Write (IPGR1_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign IPGR1Out[31:`ETH_IPGR1_WIDTH_0] = 0; // IPGR2 Register eth_register #(`ETH_IPGR2_WIDTH_0, `ETH_IPGR2_DEF_0) IPGR2_0 ( .DataIn (DataIn[`ETH_IPGR2_WIDTH_0 - 1:0]), .DataOut (IPGR2Out[`ETH_IPGR2_WIDTH_0 - 1:0]), .Write (IPGR2_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign IPGR2Out[31:`ETH_IPGR2_WIDTH_0] = 0; // PACKETLEN Register eth_register #(`ETH_PACKETLEN_WIDTH_0, `ETH_PACKETLEN_DEF_0) PACKETLEN_0 ( .DataIn (DataIn[`ETH_PACKETLEN_WIDTH_0 - 1:0]), .DataOut (PACKETLENOut[`ETH_PACKETLEN_WIDTH_0 - 1:0]), .Write (PACKETLEN_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_PACKETLEN_WIDTH_1, `ETH_PACKETLEN_DEF_1) PACKETLEN_1 ( .DataIn (DataIn[`ETH_PACKETLEN_WIDTH_1 + 7:8]), .DataOut (PACKETLENOut[`ETH_PACKETLEN_WIDTH_1 + 7:8]), .Write (PACKETLEN_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_PACKETLEN_WIDTH_2, `ETH_PACKETLEN_DEF_2) PACKETLEN_2 ( .DataIn (DataIn[`ETH_PACKETLEN_WIDTH_2 + 15:16]), .DataOut (PACKETLENOut[`ETH_PACKETLEN_WIDTH_2 + 15:16]), .Write (PACKETLEN_Wr[2]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_PACKETLEN_WIDTH_3, `ETH_PACKETLEN_DEF_3) PACKETLEN_3 ( .DataIn (DataIn[`ETH_PACKETLEN_WIDTH_3 + 23:24]), .DataOut (PACKETLENOut[`ETH_PACKETLEN_WIDTH_3 + 23:24]), .Write (PACKETLEN_Wr[3]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); // COLLCONF Register eth_register #(`ETH_COLLCONF_WIDTH_0, `ETH_COLLCONF_DEF_0) COLLCONF_0 ( .DataIn (DataIn[`ETH_COLLCONF_WIDTH_0 - 1:0]), .DataOut (COLLCONFOut[`ETH_COLLCONF_WIDTH_0 - 1:0]), .Write (COLLCONF_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_COLLCONF_WIDTH_2, `ETH_COLLCONF_DEF_2) COLLCONF_2 ( .DataIn (DataIn[`ETH_COLLCONF_WIDTH_2 + 15:16]), .DataOut (COLLCONFOut[`ETH_COLLCONF_WIDTH_2 + 15:16]), .Write (COLLCONF_Wr[2]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign COLLCONFOut[15:`ETH_COLLCONF_WIDTH_0] = 0; assign COLLCONFOut[31:`ETH_COLLCONF_WIDTH_2 + 16] = 0; // TX_BD_NUM Register eth_register #(`ETH_TX_BD_NUM_WIDTH_0, `ETH_TX_BD_NUM_DEF_0) TX_BD_NUM_0 ( .DataIn (DataIn[`ETH_TX_BD_NUM_WIDTH_0 - 1:0]), .DataOut (TX_BD_NUMOut[`ETH_TX_BD_NUM_WIDTH_0 - 1:0]), .Write (TX_BD_NUM_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign TX_BD_NUMOut[31:`ETH_TX_BD_NUM_WIDTH_0] = 0; // CTRLMODER Register eth_register #(`ETH_CTRLMODER_WIDTH_0, `ETH_CTRLMODER_DEF_0) CTRLMODER_0 ( .DataIn (DataIn[`ETH_CTRLMODER_WIDTH_0 - 1:0]), .DataOut (CTRLMODEROut[`ETH_CTRLMODER_WIDTH_0 - 1:0]), .Write (CTRLMODER_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign CTRLMODEROut[31:`ETH_CTRLMODER_WIDTH_0] = 0; // MIIMODER Register eth_register #(`ETH_MIIMODER_WIDTH_0, `ETH_MIIMODER_DEF_0) MIIMODER_0 ( .DataIn (DataIn[`ETH_MIIMODER_WIDTH_0 - 1:0]), .DataOut (MIIMODEROut[`ETH_MIIMODER_WIDTH_0 - 1:0]), .Write (MIIMODER_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MIIMODER_WIDTH_1, `ETH_MIIMODER_DEF_1) MIIMODER_1 ( .DataIn (DataIn[`ETH_MIIMODER_WIDTH_1 + 7:8]), .DataOut (MIIMODEROut[`ETH_MIIMODER_WIDTH_1 + 7:8]), .Write (MIIMODER_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign MIIMODEROut[31:`ETH_MIIMODER_WIDTH_1 + 8] = 0; // MIICOMMAND Register eth_register #(1, 0) MIICOMMAND0 ( .DataIn (DataIn[0]), .DataOut (MIICOMMANDOut[0]), .Write (MIICOMMAND_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(1, 0) MIICOMMAND1 ( .DataIn (DataIn[1]), .DataOut (MIICOMMANDOut[1]), .Write (MIICOMMAND_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (RStatStart) ); eth_register #(1, 0) MIICOMMAND2 ( .DataIn (DataIn[2]), .DataOut (MIICOMMANDOut[2]), .Write (MIICOMMAND_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (WCtrlDataStart) ); assign MIICOMMANDOut[31:`ETH_MIICOMMAND_WIDTH_0] = 29'h0; // MIIADDRESSRegister eth_register #(`ETH_MIIADDRESS_WIDTH_0, `ETH_MIIADDRESS_DEF_0) MIIADDRESS_0 ( .DataIn (DataIn[`ETH_MIIADDRESS_WIDTH_0 - 1:0]), .DataOut (MIIADDRESSOut[`ETH_MIIADDRESS_WIDTH_0 - 1:0]), .Write (MIIADDRESS_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MIIADDRESS_WIDTH_1, `ETH_MIIADDRESS_DEF_1) MIIADDRESS_1 ( .DataIn (DataIn[`ETH_MIIADDRESS_WIDTH_1 + 7:8]), .DataOut (MIIADDRESSOut[`ETH_MIIADDRESS_WIDTH_1 + 7:8]), .Write (MIIADDRESS_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign MIIADDRESSOut[7:`ETH_MIIADDRESS_WIDTH_0] = 0; assign MIIADDRESSOut[31:`ETH_MIIADDRESS_WIDTH_1 + 8] = 0; // MIITX_DATA Register eth_register #(`ETH_MIITX_DATA_WIDTH_0, `ETH_MIITX_DATA_DEF_0) MIITX_DATA_0 ( .DataIn (DataIn[`ETH_MIITX_DATA_WIDTH_0 - 1:0]), .DataOut (MIITX_DATAOut[`ETH_MIITX_DATA_WIDTH_0 - 1:0]), .Write (MIITX_DATA_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MIITX_DATA_WIDTH_1, `ETH_MIITX_DATA_DEF_1) MIITX_DATA_1 ( .DataIn (DataIn[`ETH_MIITX_DATA_WIDTH_1 + 7:8]), .DataOut (MIITX_DATAOut[`ETH_MIITX_DATA_WIDTH_1 + 7:8]), .Write (MIITX_DATA_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign MIITX_DATAOut[31:`ETH_MIITX_DATA_WIDTH_1 + 8] = 0; // MIIRX_DATA Register eth_register #(`ETH_MIIRX_DATA_WIDTH, `ETH_MIIRX_DATA_DEF) MIIRX_DATA ( .DataIn (Prsd[`ETH_MIIRX_DATA_WIDTH-1:0]), .DataOut (MIIRX_DATAOut[`ETH_MIIRX_DATA_WIDTH-1:0]), .Write (MIIRX_DATA_Wr), // not written from WB .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign MIIRX_DATAOut[31:`ETH_MIIRX_DATA_WIDTH] = 0; // MAC_ADDR0 Register eth_register #(`ETH_MAC_ADDR0_WIDTH_0, `ETH_MAC_ADDR0_DEF_0) MAC_ADDR0_0 ( .DataIn (DataIn[`ETH_MAC_ADDR0_WIDTH_0 - 1:0]), .DataOut (MAC_ADDR0Out[`ETH_MAC_ADDR0_WIDTH_0 - 1:0]), .Write (MAC_ADDR0_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MAC_ADDR0_WIDTH_1, `ETH_MAC_ADDR0_DEF_1) MAC_ADDR0_1 ( .DataIn (DataIn[`ETH_MAC_ADDR0_WIDTH_1 + 7:8]), .DataOut (MAC_ADDR0Out[`ETH_MAC_ADDR0_WIDTH_1 + 7:8]), .Write (MAC_ADDR0_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MAC_ADDR0_WIDTH_2, `ETH_MAC_ADDR0_DEF_2) MAC_ADDR0_2 ( .DataIn (DataIn[`ETH_MAC_ADDR0_WIDTH_2 + 15:16]), .DataOut (MAC_ADDR0Out[`ETH_MAC_ADDR0_WIDTH_2 + 15:16]), .Write (MAC_ADDR0_Wr[2]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MAC_ADDR0_WIDTH_3, `ETH_MAC_ADDR0_DEF_3) MAC_ADDR0_3 ( .DataIn (DataIn[`ETH_MAC_ADDR0_WIDTH_3 + 23:24]), .DataOut (MAC_ADDR0Out[`ETH_MAC_ADDR0_WIDTH_3 + 23:24]), .Write (MAC_ADDR0_Wr[3]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); // MAC_ADDR1 Register eth_register #(`ETH_MAC_ADDR1_WIDTH_0, `ETH_MAC_ADDR1_DEF_0) MAC_ADDR1_0 ( .DataIn (DataIn[`ETH_MAC_ADDR1_WIDTH_0 - 1:0]), .DataOut (MAC_ADDR1Out[`ETH_MAC_ADDR1_WIDTH_0 - 1:0]), .Write (MAC_ADDR1_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_MAC_ADDR1_WIDTH_1, `ETH_MAC_ADDR1_DEF_1) MAC_ADDR1_1 ( .DataIn (DataIn[`ETH_MAC_ADDR1_WIDTH_1 + 7:8]), .DataOut (MAC_ADDR1Out[`ETH_MAC_ADDR1_WIDTH_1 + 7:8]), .Write (MAC_ADDR1_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); assign MAC_ADDR1Out[31:`ETH_MAC_ADDR1_WIDTH_1 + 8] = 0; // RXHASH0 Register eth_register #(`ETH_HASH0_WIDTH_0, `ETH_HASH0_DEF_0) RXHASH0_0 ( .DataIn (DataIn[`ETH_HASH0_WIDTH_0 - 1:0]), .DataOut (HASH0Out[`ETH_HASH0_WIDTH_0 - 1:0]), .Write (HASH0_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_HASH0_WIDTH_1, `ETH_HASH0_DEF_1) RXHASH0_1 ( .DataIn (DataIn[`ETH_HASH0_WIDTH_1 + 7:8]), .DataOut (HASH0Out[`ETH_HASH0_WIDTH_1 + 7:8]), .Write (HASH0_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_HASH0_WIDTH_2, `ETH_HASH0_DEF_2) RXHASH0_2 ( .DataIn (DataIn[`ETH_HASH0_WIDTH_2 + 15:16]), .DataOut (HASH0Out[`ETH_HASH0_WIDTH_2 + 15:16]), .Write (HASH0_Wr[2]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_HASH0_WIDTH_3, `ETH_HASH0_DEF_3) RXHASH0_3 ( .DataIn (DataIn[`ETH_HASH0_WIDTH_3 + 23:24]), .DataOut (HASH0Out[`ETH_HASH0_WIDTH_3 + 23:24]), .Write (HASH0_Wr[3]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); // RXHASH1 Register eth_register #(`ETH_HASH1_WIDTH_0, `ETH_HASH1_DEF_0) RXHASH1_0 ( .DataIn (DataIn[`ETH_HASH1_WIDTH_0 - 1:0]), .DataOut (HASH1Out[`ETH_HASH1_WIDTH_0 - 1:0]), .Write (HASH1_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_HASH1_WIDTH_1, `ETH_HASH1_DEF_1) RXHASH1_1 ( .DataIn (DataIn[`ETH_HASH1_WIDTH_1 + 7:8]), .DataOut (HASH1Out[`ETH_HASH1_WIDTH_1 + 7:8]), .Write (HASH1_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_HASH1_WIDTH_2, `ETH_HASH1_DEF_2) RXHASH1_2 ( .DataIn (DataIn[`ETH_HASH1_WIDTH_2 + 15:16]), .DataOut (HASH1Out[`ETH_HASH1_WIDTH_2 + 15:16]), .Write (HASH1_Wr[2]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_HASH1_WIDTH_3, `ETH_HASH1_DEF_3) RXHASH1_3 ( .DataIn (DataIn[`ETH_HASH1_WIDTH_3 + 23:24]), .DataOut (HASH1Out[`ETH_HASH1_WIDTH_3 + 23:24]), .Write (HASH1_Wr[3]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); // TXCTRL Register eth_register #(`ETH_TX_CTRL_WIDTH_0, `ETH_TX_CTRL_DEF_0) TXCTRL_0 ( .DataIn (DataIn[`ETH_TX_CTRL_WIDTH_0 - 1:0]), .DataOut (TXCTRLOut[`ETH_TX_CTRL_WIDTH_0 - 1:0]), .Write (TXCTRL_Wr[0]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_TX_CTRL_WIDTH_1, `ETH_TX_CTRL_DEF_1) TXCTRL_1 ( .DataIn (DataIn[`ETH_TX_CTRL_WIDTH_1 + 7:8]), .DataOut (TXCTRLOut[`ETH_TX_CTRL_WIDTH_1 + 7:8]), .Write (TXCTRL_Wr[1]), .Clk (Clk), .Reset (Reset), .SyncReset (1'b0) ); eth_register #(`ETH_TX_CTRL_WIDTH_2, `ETH_TX_CTRL_DEF_2) TXCTRL_2 // Request bit is synchronously reset ( .DataIn (DataIn[`ETH_TX_CTRL_WIDTH_2 + 15:16]), .DataOut (TXCTRLOut[`ETH_TX_CTRL_WIDTH_2 + 15:16]), .Write (TXCTRL_Wr[2]), .Clk (Clk), .Reset (Reset), .SyncReset (RstTxPauseRq) ); assign TXCTRLOut[31:`ETH_TX_CTRL_WIDTH_2 + 16] = 0; // Reading data from registers always @ (Address or Read or MODEROut or INT_SOURCEOut or INT_MASKOut or IPGTOut or IPGR1Out or IPGR2Out or PACKETLENOut or COLLCONFOut or CTRLMODEROut or MIIMODEROut or MIICOMMANDOut or MIIADDRESSOut or MIITX_DATAOut or MIIRX_DATAOut or MIISTATUSOut or MAC_ADDR0Out or MAC_ADDR1Out or TX_BD_NUMOut or HASH0Out or HASH1Out or TXCTRLOut ) begin if(Read) // read begin case(Address) `ETH_MODER_ADR : DataOut<=MODEROut; `ETH_INT_SOURCE_ADR : DataOut<=INT_SOURCEOut; `ETH_INT_MASK_ADR : DataOut<=INT_MASKOut; `ETH_IPGT_ADR : DataOut<=IPGTOut; `ETH_IPGR1_ADR : DataOut<=IPGR1Out; `ETH_IPGR2_ADR : DataOut<=IPGR2Out; `ETH_PACKETLEN_ADR : DataOut<=PACKETLENOut; `ETH_COLLCONF_ADR : DataOut<=COLLCONFOut; `ETH_CTRLMODER_ADR : DataOut<=CTRLMODEROut; `ETH_MIIMODER_ADR : DataOut<=MIIMODEROut; `ETH_MIICOMMAND_ADR : DataOut<=MIICOMMANDOut; `ETH_MIIADDRESS_ADR : DataOut<=MIIADDRESSOut; `ETH_MIITX_DATA_ADR : DataOut<=MIITX_DATAOut; `ETH_MIIRX_DATA_ADR : DataOut<=MIIRX_DATAOut; `ETH_MIISTATUS_ADR : DataOut<=MIISTATUSOut; `ETH_MAC_ADDR0_ADR : DataOut<=MAC_ADDR0Out; `ETH_MAC_ADDR1_ADR : DataOut<=MAC_ADDR1Out; `ETH_TX_BD_NUM_ADR : DataOut<=TX_BD_NUMOut; `ETH_HASH0_ADR : DataOut<=HASH0Out; `ETH_HASH1_ADR : DataOut<=HASH1Out; `ETH_TX_CTRL_ADR : DataOut<=TXCTRLOut; default: DataOut<=32'h0; endcase end else DataOut<=32'h0; end assign r_RecSmall = MODEROut[16]; assign r_Pad = MODEROut[15]; assign r_HugEn = MODEROut[14]; assign r_CrcEn = MODEROut[13]; assign r_DlyCrcEn = MODEROut[12]; // assign r_Rst = MODEROut[11]; This signal is not used any more assign r_FullD = MODEROut[10]; assign r_ExDfrEn = MODEROut[9]; assign r_NoBckof = MODEROut[8]; assign r_LoopBck = MODEROut[7]; assign r_IFG = MODEROut[6]; assign r_Pro = MODEROut[5]; assign r_Iam = MODEROut[4]; assign r_Bro = MODEROut[3]; assign r_NoPre = MODEROut[2]; assign r_TxEn = MODEROut[1] & (TX_BD_NUMOut>0); // Transmission is enabled when there is at least one TxBD. assign r_RxEn = MODEROut[0] & (TX_BD_NUMOut<'h80); // Reception is enabled when there is at least one RxBD. assign r_IPGT[6:0] = IPGTOut[6:0]; assign r_IPGR1[6:0] = IPGR1Out[6:0]; assign r_IPGR2[6:0] = IPGR2Out[6:0]; assign r_MinFL[15:0] = PACKETLENOut[31:16]; assign r_MaxFL[15:0] = PACKETLENOut[15:0]; assign r_MaxRet[3:0] = COLLCONFOut[19:16]; assign r_CollValid[5:0] = COLLCONFOut[5:0]; assign r_TxFlow = CTRLMODEROut[2]; assign r_RxFlow = CTRLMODEROut[1]; assign r_PassAll = CTRLMODEROut[0]; assign r_MiiNoPre = MIIMODEROut[8]; assign r_ClkDiv[7:0] = MIIMODEROut[7:0]; assign r_WCtrlData = MIICOMMANDOut[2]; assign r_RStat = MIICOMMANDOut[1]; assign r_ScanStat = MIICOMMANDOut[0]; assign r_RGAD[4:0] = MIIADDRESSOut[12:8]; assign r_FIAD[4:0] = MIIADDRESSOut[4:0]; assign r_CtrlData[15:0] = MIITX_DATAOut[15:0]; assign MIISTATUSOut[31:`ETH_MIISTATUS_WIDTH] = 0; assign MIISTATUSOut[2] = NValid_stat ; assign MIISTATUSOut[1] = Busy_stat ; assign MIISTATUSOut[0] = LinkFail ; assign r_MAC[31:0] = MAC_ADDR0Out[31:0]; assign r_MAC[47:32] = MAC_ADDR1Out[15:0]; assign r_HASH1[31:0] = HASH1Out; assign r_HASH0[31:0] = HASH0Out; assign r_TxBDNum[7:0] = TX_BD_NUMOut[7:0]; assign r_TxPauseTV[15:0] = TXCTRLOut[15:0]; assign r_TxPauseRq = TXCTRLOut[16]; // Synchronizing TxC Interrupt always @ (posedge TxClk or posedge Reset) begin if(Reset) SetTxCIrq_txclk <=#Tp 1'b0; else if(TxCtrlEndFrm & StartTxDone & r_TxFlow) SetTxCIrq_txclk <=#Tp 1'b1; else if(ResetTxCIrq_sync2) SetTxCIrq_txclk <=#Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetTxCIrq_sync1 <=#Tp 1'b0; else SetTxCIrq_sync1 <=#Tp SetTxCIrq_txclk; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetTxCIrq_sync2 <=#Tp 1'b0; else SetTxCIrq_sync2 <=#Tp SetTxCIrq_sync1; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetTxCIrq_sync3 <=#Tp 1'b0; else SetTxCIrq_sync3 <=#Tp SetTxCIrq_sync2; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetTxCIrq <=#Tp 1'b0; else SetTxCIrq <=#Tp SetTxCIrq_sync2 & ~SetTxCIrq_sync3; end always @ (posedge TxClk or posedge Reset) begin if(Reset) ResetTxCIrq_sync1 <=#Tp 1'b0; else ResetTxCIrq_sync1 <=#Tp SetTxCIrq_sync2; end always @ (posedge TxClk or posedge Reset) begin if(Reset) ResetTxCIrq_sync2 <=#Tp 1'b0; else ResetTxCIrq_sync2 <=#Tp SetTxCIrq_sync1; end // Synchronizing RxC Interrupt always @ (posedge RxClk or posedge Reset) begin if(Reset) SetRxCIrq_rxclk <=#Tp 1'b0; else if(SetPauseTimer & r_RxFlow) SetRxCIrq_rxclk <=#Tp 1'b1; else if(ResetRxCIrq_sync2 & (~ResetRxCIrq_sync3)) SetRxCIrq_rxclk <=#Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetRxCIrq_sync1 <=#Tp 1'b0; else SetRxCIrq_sync1 <=#Tp SetRxCIrq_rxclk; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetRxCIrq_sync2 <=#Tp 1'b0; else SetRxCIrq_sync2 <=#Tp SetRxCIrq_sync1; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetRxCIrq_sync3 <=#Tp 1'b0; else SetRxCIrq_sync3 <=#Tp SetRxCIrq_sync2; end always @ (posedge Clk or posedge Reset) begin if(Reset) SetRxCIrq <=#Tp 1'b0; else SetRxCIrq <=#Tp SetRxCIrq_sync2 & ~SetRxCIrq_sync3; end always @ (posedge RxClk or posedge Reset) begin if(Reset) ResetRxCIrq_sync1 <=#Tp 1'b0; else ResetRxCIrq_sync1 <=#Tp SetRxCIrq_sync2; end always @ (posedge RxClk or posedge Reset) begin if(Reset) ResetRxCIrq_sync2 <=#Tp 1'b0; else ResetRxCIrq_sync2 <=#Tp ResetRxCIrq_sync1; end always @ (posedge RxClk or posedge Reset) begin if(Reset) ResetRxCIrq_sync3 <=#Tp 1'b0; else ResetRxCIrq_sync3 <=#Tp ResetRxCIrq_sync2; end // Interrupt generation always @ (posedge Clk or posedge Reset) begin if(Reset) irq_txb <= 1'b0; else if(TxB_IRQ) irq_txb <= #Tp 1'b1; else if(INT_SOURCE_Wr[0] & DataIn[0]) irq_txb <= #Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) irq_txe <= 1'b0; else if(TxE_IRQ) irq_txe <= #Tp 1'b1; else if(INT_SOURCE_Wr[0] & DataIn[1]) irq_txe <= #Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) irq_rxb <= 1'b0; else if(RxB_IRQ) irq_rxb <= #Tp 1'b1; else if(INT_SOURCE_Wr[0] & DataIn[2]) irq_rxb <= #Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) irq_rxe <= 1'b0; else if(RxE_IRQ) irq_rxe <= #Tp 1'b1; else if(INT_SOURCE_Wr[0] & DataIn[3]) irq_rxe <= #Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) irq_busy <= 1'b0; else if(Busy_IRQ) irq_busy <= #Tp 1'b1; else if(INT_SOURCE_Wr[0] & DataIn[4]) irq_busy <= #Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) irq_txc <= 1'b0; else if(SetTxCIrq) irq_txc <= #Tp 1'b1; else if(INT_SOURCE_Wr[0] & DataIn[5]) irq_txc <= #Tp 1'b0; end always @ (posedge Clk or posedge Reset) begin if(Reset) irq_rxc <= 1'b0; else if(SetRxCIrq) irq_rxc <= #Tp 1'b1; else if(INT_SOURCE_Wr[0] & DataIn[6]) irq_rxc <= #Tp 1'b0; end // Generating interrupt signal assign int_o = irq_txb & INT_MASKOut[0] | irq_txe & INT_MASKOut[1] | irq_rxb & INT_MASKOut[2] | irq_rxe & INT_MASKOut[3] | irq_busy & INT_MASKOut[4] | irq_txc & INT_MASKOut[5] | irq_rxc & INT_MASKOut[6] ; // For reading interrupt status assign INT_SOURCEOut = {{(32-`ETH_INT_SOURCE_WIDTH_0){1'b0}}, irq_rxc, irq_txc, irq_busy, irq_rxe, irq_rxb, irq_txe, irq_txb}; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log