URL
https://opencores.org/ocsvn/ao486/ao486/trunk
Subversion Repositories ao486
[/] [ao486/] [trunk/] [bochs486/] [cpu/] [crregs.h] - Rev 2
Compare with Previous | Blame | View Log
///////////////////////////////////////////////////////////////////////// // $Id: crregs.h 11572 2013-01-14 17:02:51Z sshwarts $ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2007-2011 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #ifndef BX_CRREGS #define BX_CRREGS #define BX_CR0_PE_MASK (1 << 0) #define BX_CR0_MP_MASK (1 << 1) #define BX_CR0_EM_MASK (1 << 2) #define BX_CR0_TS_MASK (1 << 3) #define BX_CR0_ET_MASK (1 << 4) #define BX_CR0_NE_MASK (1 << 5) #define BX_CR0_WP_MASK (1 << 16) #define BX_CR0_AM_MASK (1 << 18) #define BX_CR0_NW_MASK (1 << 29) #define BX_CR0_CD_MASK (1 << 30) #define BX_CR0_PG_MASK (1 << 31) struct bx_cr0_t { Bit32u val32; // 32bit value of register // Accessors for all cr0 bitfields. #define IMPLEMENT_CRREG_ACCESSORS(name, bitnum) \ BX_CPP_INLINE bx_bool get_##name() const { \ return 1 & (val32 >> bitnum); \ } \ BX_CPP_INLINE void set_##name(Bit8u val) { \ val32 = (val32 & ~(1<<bitnum)) | ((!!val) << bitnum); \ } // CR0 notes: // Each x86 level has its own quirks regarding how it handles // reserved bits. I used DOS DEBUG.EXE in real mode on the // following processors, tried to clear bits 1..30, then tried // to set bits 1..30, to see how these bits are handled. // I found the following: // // Processor try to clear bits 1..30 try to set bits 1..30 // 386 7FFFFFF0 7FFFFFFE // 486DX2 00000010 6005003E // Pentium 00000010 7FFFFFFE // Pentium-II 00000010 6005003E // // My assumptions: // All processors: bit 4 is hardwired to 1 (not true on all clones) // 386: bits 5..30 of CR0 are also hardwired to 1 // Pentium: reserved bits retain value set using mov cr0, reg32 // 486DX2/Pentium-II: reserved bits are hardwired to 0 IMPLEMENT_CRREG_ACCESSORS(PE, 0); IMPLEMENT_CRREG_ACCESSORS(MP, 1); IMPLEMENT_CRREG_ACCESSORS(EM, 2); IMPLEMENT_CRREG_ACCESSORS(TS, 3); #if BX_CPU_LEVEL >= 4 IMPLEMENT_CRREG_ACCESSORS(ET, 4); IMPLEMENT_CRREG_ACCESSORS(NE, 5); IMPLEMENT_CRREG_ACCESSORS(WP, 16); IMPLEMENT_CRREG_ACCESSORS(AM, 18); IMPLEMENT_CRREG_ACCESSORS(NW, 29); IMPLEMENT_CRREG_ACCESSORS(CD, 30); #endif IMPLEMENT_CRREG_ACCESSORS(PG, 31); BX_CPP_INLINE Bit32u get32() const { return val32; } // ET is hardwired bit in CR0 BX_CPP_INLINE void set32(Bit32u val) { val32 = val | 0x10; } }; #if BX_CPU_LEVEL >= 5 #define BX_CR4_VME_MASK (1 << 0) #define BX_CR4_PVI_MASK (1 << 1) #define BX_CR4_TSD_MASK (1 << 2) #define BX_CR4_DE_MASK (1 << 3) #define BX_CR4_PSE_MASK (1 << 4) #define BX_CR4_PAE_MASK (1 << 5) #define BX_CR4_MCE_MASK (1 << 6) #define BX_CR4_PGE_MASK (1 << 7) #define BX_CR4_PCE_MASK (1 << 8) #define BX_CR4_OSFXSR_MASK (1 << 9) #define BX_CR4_OSXMMEXCPT_MASK (1 << 10) #define BX_CR4_VMXE_MASK (1 << 13) #define BX_CR4_SMXE_MASK (1 << 14) #define BX_CR4_FSGSBASE_MASK (1 << 16) #define BX_CR4_PCIDE_MASK (1 << 17) #define BX_CR4_OSXSAVE_MASK (1 << 18) #define BX_CR4_SMEP_MASK (1 << 20) #define BX_CR4_SMAP_MASK (1 << 21) struct bx_cr4_t { Bit32u val32; // 32bit value of register IMPLEMENT_CRREG_ACCESSORS(VME, 0); IMPLEMENT_CRREG_ACCESSORS(PVI, 1); IMPLEMENT_CRREG_ACCESSORS(TSD, 2); IMPLEMENT_CRREG_ACCESSORS(DE, 3); IMPLEMENT_CRREG_ACCESSORS(PSE, 4); IMPLEMENT_CRREG_ACCESSORS(PAE, 5); IMPLEMENT_CRREG_ACCESSORS(MCE, 6); IMPLEMENT_CRREG_ACCESSORS(PGE, 7); IMPLEMENT_CRREG_ACCESSORS(PCE, 8); IMPLEMENT_CRREG_ACCESSORS(OSFXSR, 9); IMPLEMENT_CRREG_ACCESSORS(OSXMMEXCPT, 10); #if BX_SUPPORT_VMX IMPLEMENT_CRREG_ACCESSORS(VMXE, 13); #endif IMPLEMENT_CRREG_ACCESSORS(SMXE, 14); #if BX_SUPPORT_X86_64 IMPLEMENT_CRREG_ACCESSORS(FSGSBASE, 16); #endif IMPLEMENT_CRREG_ACCESSORS(PCIDE, 17); IMPLEMENT_CRREG_ACCESSORS(OSXSAVE, 18); IMPLEMENT_CRREG_ACCESSORS(SMEP, 20); IMPLEMENT_CRREG_ACCESSORS(SMAP, 21); BX_CPP_INLINE Bit32u get32() const { return val32; } BX_CPP_INLINE void set32(Bit32u val) { val32 = val; } }; #define BX_CR4_FLUSH_TLB_MASK \ (BX_CR4_PSE_MASK | BX_CR4_PAE_MASK | BX_CR4_PGE_MASK | BX_CR4_PCIDE_MASK | BX_CR4_SMEP_MASK | BX_CR4_SMAP_MASK) #endif // #if BX_CPU_LEVEL >= 5 struct bx_dr6_t { Bit32u val32; // 32bit value of register IMPLEMENT_CRREG_ACCESSORS(B0, 0); IMPLEMENT_CRREG_ACCESSORS(B1, 1); IMPLEMENT_CRREG_ACCESSORS(B2, 2); IMPLEMENT_CRREG_ACCESSORS(B3, 3); #define BX_DEBUG_TRAP_HIT (1 << 12) #define BX_DEBUG_DR_ACCESS_BIT (1 << 13) #define BX_DEBUG_SINGLE_STEP_BIT (1 << 14) #define BX_DEBUG_TRAP_TASK_SWITCH_BIT (1 << 15) IMPLEMENT_CRREG_ACCESSORS(BD, 13); IMPLEMENT_CRREG_ACCESSORS(BS, 14); IMPLEMENT_CRREG_ACCESSORS(BT, 15); BX_CPP_INLINE Bit32u get32() const { return val32; } BX_CPP_INLINE void set32(Bit32u val) { val32 = val; } }; struct bx_dr7_t { Bit32u val32; // 32bit value of register IMPLEMENT_CRREG_ACCESSORS(L0, 0); IMPLEMENT_CRREG_ACCESSORS(G0, 1); IMPLEMENT_CRREG_ACCESSORS(L1, 2); IMPLEMENT_CRREG_ACCESSORS(G1, 3); IMPLEMENT_CRREG_ACCESSORS(L2, 4); IMPLEMENT_CRREG_ACCESSORS(G2, 5); IMPLEMENT_CRREG_ACCESSORS(L3, 6); IMPLEMENT_CRREG_ACCESSORS(G3, 7); IMPLEMENT_CRREG_ACCESSORS(LE, 8); IMPLEMENT_CRREG_ACCESSORS(GE, 9); IMPLEMENT_CRREG_ACCESSORS(GD, 13); #define IMPLEMENT_DRREG_ACCESSORS(name, bitmask, bitnum) \ int get_##name() const { \ return (val32 & (bitmask)) >> (bitnum); \ } IMPLEMENT_DRREG_ACCESSORS(R_W0, 0x00030000, 16); IMPLEMENT_DRREG_ACCESSORS(LEN0, 0x000C0000, 18); IMPLEMENT_DRREG_ACCESSORS(R_W1, 0x00300000, 20); IMPLEMENT_DRREG_ACCESSORS(LEN1, 0x00C00000, 22); IMPLEMENT_DRREG_ACCESSORS(R_W2, 0x03000000, 24); IMPLEMENT_DRREG_ACCESSORS(LEN2, 0x0C000000, 26); IMPLEMENT_DRREG_ACCESSORS(R_W3, 0x30000000, 28); IMPLEMENT_DRREG_ACCESSORS(LEN3, 0xC0000000, 30); IMPLEMENT_DRREG_ACCESSORS(bp_enabled, 0xFF, 0); BX_CPP_INLINE Bit32u get32() const { return val32; } BX_CPP_INLINE void set32(Bit32u val) { val32 = val; } }; #if BX_CPU_LEVEL >= 5 #define BX_EFER_SCE_MASK (1 << 0) #define BX_EFER_LME_MASK (1 << 8) #define BX_EFER_LMA_MASK (1 << 10) #define BX_EFER_NXE_MASK (1 << 11) #define BX_EFER_SVME_MASK (1 << 12) #define BX_EFER_LMSLE_MASK (1 << 13) #define BX_EFER_FFXSR_MASK (1 << 14) struct bx_efer_t { Bit32u val32; // 32bit value of register IMPLEMENT_CRREG_ACCESSORS(SCE, 0); #if BX_SUPPORT_X86_64 IMPLEMENT_CRREG_ACCESSORS(LME, 8); IMPLEMENT_CRREG_ACCESSORS(LMA, 10); #endif IMPLEMENT_CRREG_ACCESSORS(NXE, 11); #if BX_SUPPORT_X86_64 IMPLEMENT_CRREG_ACCESSORS(SVME, 12); /* AMD Secure Virtual Machine */ IMPLEMENT_CRREG_ACCESSORS(LMSLE, 13); /* AMD Long Mode Segment Limit */ IMPLEMENT_CRREG_ACCESSORS(FFXSR, 14); #endif BX_CPP_INLINE Bit32u get32() const { return val32; } BX_CPP_INLINE void set32(Bit32u val) { val32 = val; } }; #endif #if BX_CPU_LEVEL >= 6 struct xcr0_t { Bit32u val32; // 32bit value of register #define BX_XCR0_FPU_BIT 0 #define BX_XCR0_FPU_MASK (1<<BX_XCR0_FPU_BIT) #define BX_XCR0_SSE_BIT 1 #define BX_XCR0_SSE_MASK (1<<BX_XCR0_SSE_BIT) #define BX_XCR0_AVX_BIT 2 #define BX_XCR0_AVX_MASK (1<<BX_XCR0_AVX_BIT) IMPLEMENT_CRREG_ACCESSORS(FPU, BX_XCR0_FPU_BIT); IMPLEMENT_CRREG_ACCESSORS(SSE, BX_XCR0_SSE_BIT); IMPLEMENT_CRREG_ACCESSORS(AVX, BX_XCR0_AVX_BIT); BX_CPP_INLINE Bit32u get32() const { return val32; } BX_CPP_INLINE void set32(Bit32u val) { val32 = val; } }; #endif #undef IMPLEMENT_CRREG_ACCESSORS #undef IMPLEMENT_DRREG_ACCESSORS #if BX_CPU_LEVEL >= 5 typedef struct msr { unsigned index; // MSR index unsigned type; // MSR type: 1 - lin address, 2 - phy address #define BX_LIN_ADDRESS_MSR 1 #define BX_PHY_ADDRESS_MSR 2 Bit64u val64; // current MSR value Bit64u reset_value; // reset value Bit64u reserved; // r/o bits - fault on write Bit64u ignored; // hardwired bits - ignored on write msr(unsigned idx, unsigned msr_type = 0, Bit64u reset_val = 0, Bit64u rsrv = 0, Bit64u ign = 0): index(idx), type(msr_type), val64(reset_val), reset_value(reset_val), reserved(rsrv), ignored(ign) {} msr(unsigned idx, Bit64u reset_val = 0, Bit64u rsrv = 0, Bit64u ign = 0): index(idx), type(0), val64(reset_val), reset_value(reset_val), reserved(rsrv), ignored(ign) {} BX_CPP_INLINE void reset() { val64 = reset_value; } BX_CPP_INLINE Bit64u get64() const { return val64; } BX_CPP_INLINE bx_bool set64(Bit64u new_val) { new_val = (new_val & ~ignored) | (val64 & ignored); switch(type) { #if BX_SUPPORT_X86_64 case BX_LIN_ADDRESS_MSR: if (! IsCanonical(new_val)) return 0; break; #endif case BX_PHY_ADDRESS_MSR: if (! IsValidPhyAddr(new_val)) return 0; break; default: if ((val64 ^ new_val) & reserved) return 0; break; } val64 = new_val; return 1; } } MSR; #endif // BX_CPU_LEVEL >= 5 #endif