URL
https://opencores.org/ocsvn/apbtoaes128/apbtoaes128/trunk
Subversion Repositories apbtoaes128
[/] [apbtoaes128/] [trunk/] [pli/] [bfm_ecb/] [aes_bfm_decryption_ecb.h] - Rev 9
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////// //// //// //// AES CORE BLOCK //// //// //// //// This file is part of the APB to AES128 project //// //// http://www.opencores.org/cores/apbtoaes128/ //// //// //// //// Description //// //// Implementation of APB IP core according to //// //// aes128_spec IP core specification document. //// //// //// //// To Do: Things are right here but always all block can suffer changes //// //// //// //// //// //// Author(s): - Felipe Fernandes Da Costa, fefe2560@gmail.com //// ///////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// the original copyright notice and the associated disclaimer. //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// /////////////////////////////////////////////////////////////////// static int aes_bfm_decryption_ecb_calltf(char*user_data) { vpiHandle PRESETn = vpi_handle_by_name("AES_GLADIC_tb.PRESETn", NULL); vpiHandle PWDATA = vpi_handle_by_name("AES_GLADIC_tb.PWDATA", NULL); vpiHandle PENABLE = vpi_handle_by_name("AES_GLADIC_tb.PENABLE", NULL); vpiHandle PSEL = vpi_handle_by_name("AES_GLADIC_tb.PSEL", NULL); vpiHandle PWRITE = vpi_handle_by_name("AES_GLADIC_tb.PWRITE", NULL); vpiHandle PADDR = vpi_handle_by_name("AES_GLADIC_tb.PADDR", NULL); vpiHandle PRDATA = vpi_handle_by_name("AES_GLADIC_tb.PRDATA", NULL); vpiHandle PREADY = vpi_handle_by_name("AES_GLADIC_tb.PREADY", NULL); vpiHandle PSLVERR = vpi_handle_by_name("AES_GLADIC_tb.PSLVERR", NULL); vpiHandle int_ccf = vpi_handle_by_name("AES_GLADIC_tb.int_ccf", NULL); vpiHandle int_err = vpi_handle_by_name("AES_GLADIC_tb.int_err", NULL); vpiHandle dma_req_wr = vpi_handle_by_name("AES_GLADIC_tb.dma_req_wr", NULL); vpiHandle dma_req_rd = vpi_handle_by_name("AES_GLADIC_tb.dma_req_rd", NULL); std::random_device rd; std::uniform_int_distribution<long int> data_in(0,4294967295); v_ecb.format=vpiIntVal; vpi_get_value(PRESETn, &v_ecb); //printf("%i\n",STATE); if(type_bfm == ECB_DECRYPTION && v_ecb.value.integer == 1) { switch(STATE) { case IDLE: if(PACKETS_GENERATED >= MAX_ITERATIONS) { STATE = IDLE; type_bfm = 0; }else { STATE = WRITE; counter = 0; v_ecb.value.integer = 0; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = vector_address[0]; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 0; vpi_put_value(PWDATA, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 1; vpi_put_value(PWRITE, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 1; vpi_put_value(PSEL, &v_ecb, NULL, vpiNoDelay); } break; case WRITE: if(counter == 0) { counter_write++; counter++; v_ecb.value.integer = 1; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); }else if(counter == 1) { v_ecb.value.integer = 0; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); if(counter_write < 9) { v_ecb.value.integer = vector_address[counter_write]; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); t_ecb.type = vpiScaledRealTime; t_ecb.real = 0; v_ecb.format=vpiIntVal; if(FIPS_ENABLE == FIPS) { if(vector_address[counter_write] == ADDR_AES_KEYR3 || vector_address[counter_write] == ADDR_AES_IVR3) { a = a | KEY_FIPS_DERIVATED[0]; a = a << 8; a = a | KEY_FIPS_DERIVATED[1]; a = a << 8; a = a | KEY_FIPS_DERIVATED[2]; a = a << 8; a = a | KEY_FIPS_DERIVATED[3]; v_ecb.value.integer = a; } if(vector_address[counter_write] == ADDR_AES_KEYR2 || vector_address[counter_write] == ADDR_AES_IVR2) { b = b | KEY_FIPS_DERIVATED[4]; b = b << 8; b = b | KEY_FIPS_DERIVATED[5]; b = b << 8; b = b | KEY_FIPS_DERIVATED[6]; b = b << 8; b = b | KEY_FIPS_DERIVATED[7]; v_ecb.value.integer = b; } if(vector_address[counter_write] == ADDR_AES_KEYR1 || vector_address[counter_write] == ADDR_AES_IVR1) { c = c | KEY_FIPS_DERIVATED[8]; c = c << 8; c = c | KEY_FIPS_DERIVATED[9]; c = c << 8; c = c | KEY_FIPS_DERIVATED[10]; c = c << 8; c = c | KEY_FIPS_DERIVATED[11]; v_ecb.value.integer = c; } if(vector_address[counter_write] == ADDR_AES_KEYR0 || vector_address[counter_write] == ADDR_AES_IVR0) { d = d | KEY_FIPS_DERIVATED[12]; d = d << 8; d = d | KEY_FIPS_DERIVATED[13]; d = d << 8; d = d | KEY_FIPS_DERIVATED[14]; d = d << 8; d = d | KEY_FIPS_DERIVATED[15]; v_ecb.value.integer = d; } }else if(FIPS_ENABLE == RANDOM_DATA) { v_ecb.value.integer = data_in(rd); } //vpi_put_value(PWDATA, &v_ecb, NULL, vpiNoDelay); vpi_put_value(PWDATA, &v_ecb, &t_ecb, vpiTransportDelay); a = 0; b = 0; c = 0; d = 0; } if(counter_write == 9) { v_ecb.value.integer = ADDR_AES_CR; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); t_ecb.type = vpiScaledRealTime; t_ecb.real = 0; v_ecb.format=vpiIntVal; v_ecb.value.integer = 17; vpi_put_value(PWDATA, &v_ecb, &t_ecb, vpiTransportDelay); } if(counter_write > 9 && counter_write < 14) //WRITE DINR { v_ecb.value.integer = ADDR_AES_DINR; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); if(FIPS_ENABLE == FIPS) { if(counter_write == 10) { a = a | TEXT_FIPS_DERIVATED[0]; a = a << 8; a = a | TEXT_FIPS_DERIVATED[1]; a = a << 8; a = a | TEXT_FIPS_DERIVATED[2]; a = a << 8; a = a | TEXT_FIPS_DERIVATED[3]; v_ecb.value.integer = a; }else if(counter_write == 11) { b = b | TEXT_FIPS_DERIVATED[4]; b = b << 8; b = b | TEXT_FIPS_DERIVATED[5]; b = b << 8; b = b | TEXT_FIPS_DERIVATED[6]; b = b << 8; b = b | TEXT_FIPS_DERIVATED[7]; v_ecb.value.integer = b; }else if(counter_write == 12 ) { c = c | TEXT_FIPS_DERIVATED[8]; c = c << 8; c = c | TEXT_FIPS_DERIVATED[9]; c = c << 8; c = c | TEXT_FIPS_DERIVATED[10]; c = c << 8; c = c | TEXT_FIPS_DERIVATED[11]; v_ecb.value.integer = c; }else if(counter_write == 13 ) { d = d | TEXT_FIPS_DERIVATED[12]; d = d << 8; d = d | TEXT_FIPS_DERIVATED[13]; d = d << 8; d = d | TEXT_FIPS_DERIVATED[14]; d = d << 8; d = d | TEXT_FIPS_DERIVATED[15]; v_ecb.value.integer = d; } }else if(FIPS_ENABLE == RANDOM_DATA) { v_ecb.value.integer = data_in(rd); } //vpi_put_value(PWDATA, &v_ecb, NULL, vpiNoDelay); vpi_put_value(PWDATA, &v_ecb, &t_ecb, vpiTransportDelay); a = 0; b = 0; c = 0; d = 0; } v_ecb.value.integer = 1; vpi_put_value(PSEL, &v_ecb, NULL, vpiNoDelay); counter=0; } if(counter_write == 14) { counter_write = 0; STATE =WAIT_SR; } break; case WAIT_SR: v_ecb.value.integer = ADDR_AES_SR; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 0; vpi_put_value(PWRITE, &v_ecb, NULL, vpiNoDelay); if(counter == 0) { counter++; v_ecb.value.integer = 1; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 0; vpi_get_value(PRDATA,&v_ecb); if(v_ecb.value.integer == 1) { STATE = READ_DOUTR; counter=1; } }else if(counter == 1) { v_ecb.value.integer = 0; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); counter=0; } break; case READ_DOUTR: if(counter == 0) { v_ecb.value.integer = 1; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); counter_read++; counter++; }else if(counter == 1) { v_ecb.value.integer = 0; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); if(counter_read < 4) { v_ecb.value.integer = ADDR_AES_DOUTR; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 4) { v_ecb.value.integer = ADDR_AES_KEYR3; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 5) { v_ecb.value.integer = ADDR_AES_KEYR2; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 6) { v_ecb.value.integer = ADDR_AES_KEYR1; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 7) { v_ecb.value.integer = ADDR_AES_KEYR0; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 8) { v_ecb.value.integer = ADDR_AES_IVR3; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 9) { v_ecb.value.integer = ADDR_AES_IVR2; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 10) { v_ecb.value.integer = ADDR_AES_IVR1; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } if(counter_read == 11) { v_ecb.value.integer = ADDR_AES_IVR0; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); } counter = 0; } if(counter_read == 12) { STATE = RESET_SR; counter_read = 0; } break; case RESET_SR: v_ecb.value.integer = 1; vpi_put_value(PWRITE, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 1; vpi_put_value(PSEL, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 0; vpi_put_value(PADDR, &v_ecb, NULL, vpiNoDelay); v_ecb.value.integer = 128; vpi_put_value(PWDATA, &v_ecb, NULL, vpiNoDelay); if(counter == 0) { counter_write++; counter++; v_ecb.value.integer = 1; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); }else if(counter == 1) { v_ecb.value.integer = 0; vpi_put_value(PENABLE, &v_ecb, NULL, vpiNoDelay); counter=0; } if(counter_write == 1) { STATE =IDLE; counter_write = 0; counter=0; PACKETS_GENERATED = PACKETS_GENERATED + 1; } break; } } return 0; }
Go to most recent revision | Compare with Previous | Blame | View Log