OpenCores
URL https://opencores.org/ocsvn/apbtoaes128/apbtoaes128/trunk

Subversion Repositories apbtoaes128

[/] [apbtoaes128/] [trunk/] [rtl/] [host_interface.v] - Rev 14

Go to most recent revision | Compare with Previous | Blame | View Log

//////////////////////////////////////////////////////////////////
////
////
//// 	AES CORE BLOCK
////
////
////
//// This file is part of the APB to I2C project
////
//// http://www.opencores.org/cores/apbi2c/
////
////
////
//// Description
////
//// Implementation of APB IP core according to
////
//// aes128_spec IP core specification document.
////
////
////
//// To Do: Things are right here but always all block can suffer changes
////
////
////
////
////
//// Author(s): - Felipe Fernandes Da Costa, fefe2560@gmail.com
////		  Julio Cesar 
////
///////////////////////////////////////////////////////////////// 
////
////
//// Copyright (C) 2009 Authors and OPENCORES.ORG
////
////
////
//// This source file may be used and distributed without
////
//// restriction provided that this copyright statement is not
////
//// removed from the file and that any derivative work contains
//// the original copyright notice and the associated disclaimer.
////
////
//// This source file is free software; you can redistribute it
////
//// and/or modify it under the terms of the GNU Lesser General
////
//// Public License as published by the Free Software Foundation;
//// either version 2.1 of the License, or (at your option) any
////
//// later version.
////
////
////
//// This source is distributed in the hope that it will be
////
//// useful, but WITHOUT ANY WARRANTY; without even the implied
////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
////
//// PURPOSE. See the GNU Lesser General Public License for more
//// details.
////
////
////
//// You should have received a copy of the GNU Lesser General
////
//// Public License along with this source; if not, download it
////
//// from http://www.opencores.org/lgpl.shtml
////
////
///////////////////////////////////////////////////////////////////
module host_interface
(
	// OUTPUTS
	output [3:0] key_en,
	output [1:0] col_addr,
	output [1:0] chmod,
	output [1:0] mode,
	output [1:0] data_type,
	output col_wr_en,
	output col_rd_en,
	output [1:0] key_sel,
	output [3:0] iv_en,
	output [3:0] iv_sel,
	output int_ccf,
	output int_err,
	output disable_core,
	output reg first_block,
	output dma_req_wr,
	output dma_req_rd,
	output reg start_core,
	output [31:0] PRDATA,
	//INPUTS
	input [3:0] PADDR,
	input [12:0] PWDATA,
	input PWRITE,
	input PENABLE,
	input PSEL,
	input PCLK,
	input PRESETn,
	input [31:0] key_bus,
	input [31:0] col_bus,
	input [31:0] iv_bus,
	input ccf_set
);
 
//`include "include/host_interface.vh"
 
//=====================================================================================
// Memory Mapped Registers Address
//=====================================================================================
localparam AES_CR    = 4'd00;
localparam AES_SR    = 4'd01;
localparam AES_DINR  = 4'd02;
localparam AES_DOUTR = 4'd03;
localparam AES_KEYR0 = 4'd04;
localparam AES_KEYR1 = 4'd05;
localparam AES_KEYR2 = 4'd06;
localparam AES_KEYR3 = 4'd07;
localparam AES_IVR0  = 4'd08;
localparam AES_IVR1  = 4'd09;
localparam AES_IVR2  = 4'd10;
localparam AES_IVR3  = 4'd11;
 
//=============================================================================
// Operation Modes
//=============================================================================
localparam ENCRYPTION     = 2'b00;
localparam KEY_DERIVATION = 2'b01;
localparam DECRYPTION     = 2'b10;
localparam DECRYP_W_DERIV = 2'b11;
 
//=============================================================================
// AES Modes
//=============================================================================
localparam ECB = 2'b00;
localparam CBC = 2'b01;
localparam CTR = 2'b10;
 
//=============================================================================
// Resets Values
//=============================================================================
localparam AES_CR_RESET = 13'd0;
localparam AES_SR_RESET =  3'd0;
 
//=============================================================================
// Enable Value (Active High)
//=============================================================================
localparam ENABLE  = 1'b1;
localparam DISABLE = 1'b0;
 
//=============================================================================
// FSM STATES
//=============================================================================
localparam IDLE   = 3'd0;
localparam INPUT  = 3'd1;
localparam START  = 3'd2;
localparam WAIT   = 3'd3;
localparam OUTPUT = 3'd4;
 
wire [31:0] bus_out;
reg [31:0] bus_out_mux;
reg cnt_en;
reg enable_clear;
reg access_permission;
reg first_block_set;
reg first_block_clear;
wire [1:0] mode_in;
wire [1:0] chmod_in;
wire write_en;
wire read_en;
wire dma_out_en;
wire dma_in_en;
wire err_ie;
wire ccf_ie;
wire errc;
wire ccfc;
wire aes_cr_wr_en;
//wire aes_sr_wr_en;
wire wr_err_en;
wire rd_err_en;
wire write_completed;
wire read_completed;
wire key_deriv;
 
 
reg [10:0] aes_cr;
reg wr_err;
reg rd_err;
reg ccf;
reg [2:0] state, next_state;
reg [1:0] cnt;
reg dma_req;
wire enable;
 
// Write and read enable signals
assign write_en = PSEL & PENABLE & PWRITE;
assign read_en  = (PSEL & ~PWRITE)?1'b1:1'b0;
 
// Configuration Register Logic
assign dma_out_en = aes_cr[10];
assign dma_in_en  = aes_cr[9];
assign err_ie     = aes_cr[8];
assign ccf_ie     = aes_cr[7];
assign errc       = PWDATA[8];
assign ccfc       = PWDATA[7];
assign chmod      = aes_cr[6:5];
assign mode       = aes_cr[4:3];
assign data_type  = aes_cr[2:1];
assign enable     = aes_cr[0];
 
assign aes_cr_wr_en = (PADDR == AES_CR) & write_en;
assign mode_in  = PWDATA[4:3];
assign chmod_in = PWDATA[6:5];
 
always @(posedge PCLK, negedge PRESETn)
	begin
		if(!PRESETn)
			aes_cr <= AES_CR_RESET[10:0];
		else
			begin
				if(enable_clear)
					aes_cr[0] <= 1'b0;
				else
					if(aes_cr_wr_en)
						aes_cr[0] <= PWDATA[0];
 
				if(aes_cr_wr_en && access_permission)
					begin
						aes_cr[2:1] <= PWDATA[2:1];
						if(mode_in == DECRYP_W_DERIV && chmod_in == CTR)
							aes_cr[4:3] <= DECRYPTION;
						else
							aes_cr[4:3] <= mode_in;
						aes_cr[ 6:5] <= PWDATA[6:5];
						aes_cr[10:7] <= PWDATA[12:9];
					end
			end
	end
 
// Status Register Logic
//assign aes_sr_wr_en = (PADDR == AES_SR) & write_en & access_permission;
 
always @(posedge PCLK, negedge PRESETn)
	begin
		if(!PRESETn)
		begin
			{wr_err, rd_err, ccf} <= AES_SR_RESET;
 
		end
		else
			begin
				// Write Error Flag
				if(wr_err_en)
					wr_err <= 1'b1;
				else
					if(errc && aes_cr_wr_en && access_permission)
						wr_err <= 1'b0;
 
				//Read Error Flag
				if(rd_err_en)
					rd_err <= 1'b1;
				else
					if(errc && aes_cr_wr_en && access_permission)
						rd_err <= 1'b0;
 
				// Computation Complete Flag
				if(ccf_set)
				   	ccf <= 1'b1;
				else
					if(ccfc && aes_cr_wr_en )//&& access_permission)
						ccf <= 1'b0;
			end
	end
// Interruption on erros Signals
assign int_ccf = ccf_ie & ccf_set;
assign int_err = (wr_err_en | rd_err_en) & err_ie;
 
// Key Signals Decoding
assign key_en = (4'b1000 >> PADDR[1:0]) & {4{(~PADDR[3] & PADDR[2] & access_permission & write_en)}};
assign key_sel = ~PADDR[1:0] & {2{(PADDR[2] & access_permission)}};
 
// IV Signals Decoding
assign iv_sel = (4'b1000 >> PADDR[1:0]) & {4{(PADDR[3] & ~PADDR[2] & access_permission)}};
assign iv_en = iv_sel & {4{write_en}};
 
// State Register
always @(posedge PCLK, negedge PRESETn)
	begin
		if(!PRESETn)
			state <= IDLE;
		else
			if(!enable)
				state <= IDLE;
			else
				state <= next_state;
	end
 
assign write_completed = (cnt == 2'b11);
assign read_completed  = (cnt == 2'b11);
assign key_deriv = (mode == KEY_DERIVATION);
 
// Next State Logic
always @(*)
	begin
		next_state = state;
		case(state)
		IDLE  :
			begin
				if(enable)
					next_state = (key_deriv) ? START : INPUT;
			end
		INPUT :
			next_state = (write_completed && cnt_en) ? START : INPUT;
		START :
			next_state = WAIT;
		WAIT  :
			begin
				if(ccf_set)
					next_state = (key_deriv) ? IDLE : OUTPUT;
			end
		OUTPUT:
			next_state = (read_completed && cnt_en) ? INPUT : OUTPUT;
		endcase
	end
 
// Output Logic
assign disable_core = ~enable;
 
always @(*)
	begin
		access_permission = DISABLE;
		start_core = DISABLE;
		cnt_en = DISABLE;
		enable_clear = DISABLE;
		first_block_set = DISABLE;
		first_block_clear = DISABLE;
		case(state)
			IDLE:
				begin
					access_permission = ENABLE;
					first_block_set = ENABLE;
					if(enable && !key_deriv)
						cnt_en = ENABLE;
				end
			INPUT:
				begin
					if(PADDR == AES_DINR && write_en)
						cnt_en = ENABLE;
				end
			START:
				begin
					start_core = ENABLE;
				end
			WAIT:
				begin
					if(ccf_set)
						cnt_en = ENABLE;
					if(ccf_set && key_deriv)
						enable_clear = ENABLE;
				end
			OUTPUT:
				begin
					first_block_clear = ENABLE;
					if(PADDR == AES_DOUTR && read_en && PENABLE )//|| write_completed)
						cnt_en = ENABLE;
				end
		endcase
	end
 
// First Block Signal indicates when IV register is used
always @(posedge PCLK, negedge PRESETn)
	begin
		if(!PRESETn)
			first_block <= 1'b1;
		else
			if(first_block_set)
				first_block <= 1'b1;
			else
				if(first_block_clear)
					first_block <= 1'b0;
	end
 
always @(posedge PCLK, negedge PRESETn)
	begin
		if(!PRESETn)
			cnt <= 2'b11;
		else
			begin
				if(!enable || state == START)
					cnt <= 2'b11;
				else
					if(cnt_en)
						cnt <= cnt + 1'b1;
			end
	end
 
assign col_addr = cnt;
assign col_wr_en = (PADDR == AES_DINR  && write_en && state == INPUT);
assign col_rd_en = (PADDR == AES_DOUTR && read_en  && state == OUTPUT);
assign wr_err_en = (PADDR == AES_DINR  && write_en && (state != INPUT  && state != IDLE));
assign rd_err_en = (PADDR == AES_DOUTR && read_en  && (state != OUTPUT && state != IDLE));
 
// DMA Requests Logic
always @(posedge PCLK, negedge PRESETn)
	begin
		if(!PRESETn)
			dma_req <= 1'b0;
		else
			dma_req <= cnt[0];
	end
 
assign dma_req_wr = (dma_req ^ cnt[0]) & dma_in_en  & enable & (state == INPUT  || state == IDLE);
assign dma_req_rd = (dma_req ^ cnt[0]) & dma_out_en & enable & (state == OUTPUT);
 
// APB Read Signal
assign PRDATA = bus_out;
 
// Output Mux
always @(*)
	begin
		bus_out_mux = 32'd0;
		case(PADDR)
			AES_CR:
				bus_out_mux = {{19{1'b0}}, aes_cr[10:7], 2'b00, aes_cr[6:0]};
			AES_SR:
				bus_out_mux = {{29{1'b0}}, wr_err, rd_err, (ccf_set && ~PENABLE)? 1'b1:(ccfc && aes_cr_wr_en)?1'b0:ccf};
			AES_DINR, AES_DOUTR:
			begin
				if(~PWRITE && PADDR == AES_DOUTR && (ccf_set || ccf ))
					bus_out_mux = col_bus;
			end
			AES_KEYR0, AES_KEYR1, AES_KEYR2, AES_KEYR3:
				if(!enable)
					bus_out_mux = key_bus;
			AES_IVR0, AES_IVR1, AES_IVR2, AES_IVR3:
				if(!enable)
					bus_out_mux = iv_bus;
 
		endcase
	end
 
// The output Bus is registered
 
assign bus_out =(read_en)? bus_out_mux:32'd0;
 
/*
always @(posedge PCLK, negedge PRESETn)
	begin
		if(!PRESETn)
			bus_out <= 32'd0;
		else
			if(read_en)
				bus_out <= bus_out_mux;
	end
*/
 
endmodule
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.