URL
https://opencores.org/ocsvn/astron_diagnostics/astron_diagnostics/trunk
Subversion Repositories astron_diagnostics
[/] [astron_diagnostics/] [trunk/] [mms_diag_rx_seq.vhd] - Rev 4
Compare with Previous | Blame | View Log
------------------------------------------------------------------------------- -- -- Copyright 2020 -- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/> -- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. -- ------------------------------------------------------------------------------- -- Purpose: Provide MM access via slave register to diag_rx_seq -- Description: -- -- Each DP stream has its own diag_rx_seq and its own MM control register. -- The MM control registers are accessible via a single MM port thanks to -- the common_mem_mux. Each single MM control register is defined as: -- -- 31 24 23 16 15 8 7 0 wi -- |-----------------|-----------------|-----------------|-----------------| -- | diag_sel = [1], diag_en = [0] | 0 RW -- |-----------------------------------------------------------------------| -- | res_val_n = [1], res_ok_n = [0] | 1 RO -- |-----------------------------------------------------------------------| -- | rx_cnt[31:0] | 2 RO -- |-----------------------------------------------------------------------| -- | rx_sample[g_seq_dat_w-1:0] | 3 RO -- |-----------------------------------------------------------------------| -- | diag_steps_arr[0][g_seq_dat_w-1:0] | 4 RW -- |-----------------------------------------------------------------------| -- | diag_steps_arr[1][g_seq_dat_w-1:0] | 5 RW -- |-----------------------------------------------------------------------| -- | diag_steps_arr[2][g_seq_dat_w-1:0] | 6 RW -- |-----------------------------------------------------------------------| -- | diag_steps_arr[3][g_seq_dat_w-1:0] | 7 RW -- |-----------------------------------------------------------------------| -- -- . g_nof_streams -- The MM control register for stream I in 0:g_nof_streams-1 starts at word -- index wi = I * 2**c_mm_reg.adr_w. -- -- . diag_en -- '0' = stop and reset input sequence verification -- '1' = enable input sequence verification -- -- . diag_sel -- '0' = verify PSRG data -- '1' = verify CNTR data -- -- . Results -- When res_val_n = '1' then no valid data is being received. When -- res_val_n = '0' then at least two valid data have been received so the -- diag_rx_seq can detect whether the subsequent data is ok. When res_ok_n -- = '0' then indeed all data that has been received so far is correct. -- When res_ok_n = '1' then at least 1 data word was received with errors. -- Once res_ok_n goes high it remains high. -- -- . g_data_w and g_seq_dat_w -- The DP streaming data field is c_dp_stream_data_w bits wide but only -- g_data_w bits are used. The g_seq_dat_w must be >= 1 and <= g_data_w. -- If g_seq_dat_w < g_data_w then the data carries replicated copies of -- the g_seq_dat_w. The maximum g_seq_dat_w depends on the pseudo random -- data width of the LFSR sequeces in common_lfsr_sequences_pkg and on -- whether timing closure can still be achieved for wider g_seq_dat_w. -- Thanks to the replication a smaller g_seq_dat_w can be used to provide -- CNTR or LFSR data for the DP data. If the higher bits do notmatch the -- sequence in the lower bits, then the rx data is forced to -1, and that -- will then be detected and reported by u_diag_rx_seq as a sequence error. -- -- . rx_cnt -- Counts the number of valid input data that was received since diag_en -- went active. An incrementing rx_cnt shows that data is being received. -- -- . rx_sample -- The rx_sample keeps the last valid in_dat value. When diag_en='0' it is -- reset to 0. Reading rx_sample via MM gives an impression of the valid -- in_dat activity. -- -- . g_use_steps -- When g_use_steps=FALSE then diag_sel selects whether PSRG or COUNTER -- data with increment +1 is used to verify the input data. -- When g_use_steps=TRUE then the g_nof_steps = -- c_diag_seq_rx_reg_nof_steps = 4 MM step registers define the allowed -- COUNTER increment values. LIBRARY IEEE, common_pkg_lib, dp_pkg_lib, astron_mm_lib, astron_ram_lib; USE IEEE.std_logic_1164.ALL; USE IEEE.numeric_std.ALL; USE common_pkg_lib.common_pkg.ALL; USE astron_ram_lib.common_ram_pkg.ALL; USE astron_mm_lib.common_field_pkg.ALL; USE dp_pkg_lib.dp_stream_pkg.ALL; USE work.diag_pkg.ALL; ENTITY mms_diag_rx_seq IS GENERIC ( g_nof_streams : NATURAL := 1; g_use_steps : BOOLEAN := FALSE; g_nof_steps : NATURAL := c_diag_seq_rx_reg_nof_steps; g_seq_dat_w : NATURAL := c_word_w; -- >= 1, test sequence data width g_data_w : NATURAL := c_word_w -- >= g_seq_dat_w, user data width ); PORT ( -- Clocks and reset mm_rst : IN STD_LOGIC; -- reset synchronous with mm_clk mm_clk : IN STD_LOGIC; -- MM bus clock dp_rst : IN STD_LOGIC; -- reset synchronous with dp_clk dp_clk : IN STD_LOGIC; -- DP streaming bus clock -- Memory Mapped Slave reg_mosi : IN t_mem_mosi; -- multiplexed port for g_nof_streams MM control/status registers reg_miso : OUT t_mem_miso; -- Streaming interface rx_snk_in_arr : IN t_dp_sosi_arr(g_nof_streams-1 DOWNTO 0) ); END mms_diag_rx_seq; ARCHITECTURE str OF mms_diag_rx_seq IS -- Define MM slave register size CONSTANT c_mm_reg : t_c_mem := (latency => 1, adr_w => c_diag_seq_rx_reg_adr_w, dat_w => c_word_w, -- Use MM bus data width = c_word_w = 32 for all MM registers nof_dat => c_diag_seq_rx_reg_nof_dat, init_sl => '0'); -- Define MM slave register fields for Python peripheral using pi_common.py (specify MM register access per word, not per individual bit because mm_fields assumes 1 field per MM word) CONSTANT c_mm_reg_field_arr : t_common_field_arr(c_mm_reg.nof_dat-1 DOWNTO 0) := ( ( field_name_pad("step_3"), "RW", c_word_w, field_default(0) ), -- [7] = diag_steps_arr[3], c_diag_seq_rx_reg_nof_steps = 4 ( field_name_pad("step_2"), "RW", c_word_w, field_default(0) ), -- [6] = diag_steps_arr[2] ( field_name_pad("step_1"), "RW", c_word_w, field_default(0) ), -- [5] = diag_steps_arr[1] ( field_name_pad("step_0"), "RW", c_word_w, field_default(0) ), -- [4] = diag_steps_arr[0] ( field_name_pad("rx_sample"), "RO", c_word_w, field_default(0) ), -- [3] ( field_name_pad("rx_cnt"), "RO", c_word_w, field_default(0) ), -- [2] ( field_name_pad("result"), "RO", 2, field_default(0) ), -- [1] = result[1:0] = res_val_n & res_ok_n ( field_name_pad("control"), "RW", 2, field_default(0) )); -- [0] = control[1:0] = diag_sel & diag_en CONSTANT c_reg_slv_w : NATURAL := c_mm_reg.nof_dat*c_mm_reg.dat_w; CONSTANT c_reg_dat_w : NATURAL := smallest(c_word_w, g_seq_dat_w); CONSTANT c_nof_steps_wi : NATURAL := c_diag_seq_rx_reg_nof_steps_wi; TYPE t_reg_slv_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_reg_slv_w-1 DOWNTO 0); TYPE t_seq_dat_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(g_seq_dat_w-1 DOWNTO 0); TYPE t_data_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(g_data_w-1 DOWNTO 0); TYPE t_steps_2arr IS ARRAY (INTEGER RANGE <>) OF t_integer_arr(g_nof_steps-1 DOWNTO 0); SIGNAL reg_mosi_arr : t_mem_mosi_arr(g_nof_streams-1 DOWNTO 0); SIGNAL reg_miso_arr : t_mem_miso_arr(g_nof_streams-1 DOWNTO 0); -- Registers in dp_clk domain SIGNAL ctrl_reg_arr : t_reg_slv_arr(g_nof_streams-1 DOWNTO 0) := (OTHERS=>(OTHERS=>'0')); SIGNAL stat_reg_arr : t_reg_slv_arr(g_nof_streams-1 DOWNTO 0) := (OTHERS=>(OTHERS=>'0')); SIGNAL diag_en_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); SIGNAL diag_sel_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); SIGNAL diag_steps_2arr : t_steps_2arr(g_nof_streams-1 DOWNTO 0); SIGNAL rx_cnt_arr : t_slv_32_arr(g_nof_streams-1 DOWNTO 0); -- can use t_slv_32_arr because c_mm_reg.dat_w = c_word_w = 32 fixed SIGNAL rx_sample_arr : t_seq_dat_arr(g_nof_streams-1 DOWNTO 0); SIGNAL rx_sample_diff_arr : t_seq_dat_arr(g_nof_streams-1 DOWNTO 0); SIGNAL rx_sample_val_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); SIGNAL rx_seq_arr : t_seq_dat_arr(g_nof_streams-1 DOWNTO 0); SIGNAL rx_seq_val_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); SIGNAL rx_data_arr : t_data_arr(g_nof_streams-1 DOWNTO 0); SIGNAL rx_data_val_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); SIGNAL diag_res_arr : t_seq_dat_arr(g_nof_streams-1 DOWNTO 0); SIGNAL diag_res_val_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); SIGNAL stat_res_ok_n_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); SIGNAL stat_res_val_n_arr : STD_LOGIC_VECTOR(g_nof_streams-1 DOWNTO 0); BEGIN ASSERT g_data_w >= g_seq_dat_w REPORT "mms_diag_rx_seq: g_data_w < g_seq_dat_w is not allowed." SEVERITY FAILURE; gen_nof_streams: FOR I IN 0 to g_nof_streams-1 GENERATE -- no unreplicate needed gen_one : IF g_data_w = g_seq_dat_w GENERATE rx_seq_arr(I) <= rx_snk_in_arr(i).data(g_seq_dat_w-1 DOWNTO 0); rx_seq_val_arr(I) <= rx_snk_in_arr(i).valid; END GENERATE; -- unreplicate needed gen_unreplicate : IF g_data_w > g_seq_dat_w GENERATE -- keep sequence in low bits and set high bits to '1' if they mismatch the corresponding bit in the sequence rx_data_arr(I) <= UNREPLICATE_DP_DATA(rx_snk_in_arr(i).data(g_data_w-1 DOWNTO 0), g_seq_dat_w); rx_data_val_arr(I) <= rx_snk_in_arr(i).valid; -- keep sequence in low bits if the high bits match otherwise force low bits value to -1 to indicate the mismatch p_rx_seq : PROCESS(dp_clk) BEGIN IF rising_edge(dp_clk) THEN -- register to ease timing closure IF UNSIGNED(rx_data_arr(I)(g_data_w-1 DOWNTO g_seq_dat_w))=0 THEN rx_seq_arr(I) <= rx_data_arr(I)(g_seq_dat_w-1 DOWNTO 0); ELSE rx_seq_arr(I) <= TO_SVEC(-1, g_seq_dat_w); END IF; rx_seq_val_arr(I) <= rx_data_val_arr(I); END IF; END PROCESS; END GENERATE; -- detect rx sequence errors u_diag_rx_seq: ENTITY WORK.diag_rx_seq GENERIC MAP ( g_use_steps => g_use_steps, g_nof_steps => g_nof_steps, g_cnt_w => c_word_w, g_dat_w => g_seq_dat_w, g_diag_res_w => g_seq_dat_w -- do not use g_seq_dat_w+1 to include NOT diag_res_val in MSbit, instead use diag_res_val output ) PORT MAP ( rst => dp_rst, clk => dp_clk, -- Write and read back registers: diag_en => diag_en_arr(I), diag_sel => diag_sel_arr(I), diag_steps_arr => diag_steps_2arr(I), -- Read only registers: diag_res => diag_res_arr(I), diag_res_val => diag_res_val_arr(I), diag_sample => rx_sample_arr(I), diag_sample_diff => rx_sample_diff_arr(I), diag_sample_val => rx_sample_val_arr(I), -- Streaming in_cnt => rx_cnt_arr(I), in_dat => rx_seq_arr(I), in_val => rx_seq_val_arr(I) ); -- Map diag_res to single bit and register it to ease timing closure stat_res_ok_n_arr(I) <= orv(diag_res_arr(I)) WHEN rising_edge(dp_clk); stat_res_val_n_arr(I) <= NOT diag_res_val_arr(I) WHEN rising_edge(dp_clk); -- Register mapping -- . write ctrl_reg_arr diag_en_arr(I) <= ctrl_reg_arr(I)(0); -- address 0, data bit [0] diag_sel_arr(I) <= ctrl_reg_arr(I)(1); -- address 0, data bit [1] gen_diag_steps_2arr : FOR J IN 0 TO g_nof_steps-1 GENERATE diag_steps_2arr(I)(J) <= TO_SINT(ctrl_reg_arr(I)(c_reg_dat_w-1 + (c_nof_steps_wi+J)*c_word_w DOWNTO (c_nof_steps_wi+J)*c_word_w)); -- address 4, 5, 6, 7 END GENERATE; -- . read stat_reg_arr p_stat_reg_arr : PROCESS(ctrl_reg_arr, stat_res_ok_n_arr, stat_res_val_n_arr, rx_cnt_arr, rx_sample_arr) BEGIN -- Default write / readback: stat_reg_arr(I) <= ctrl_reg_arr(I); -- default control read back -- Status read only: stat_reg_arr(I)( 0+1*c_word_w) <= stat_res_ok_n_arr(I); -- address 1, data bit [0] stat_reg_arr(I)( 1+1*c_word_w) <= stat_res_val_n_arr(I); -- address 1, data bit [1] stat_reg_arr(I)(3*c_word_w-1 DOWNTO 2*c_word_w) <= rx_cnt_arr(I); -- address 2: read rx_cnt per stream stat_reg_arr(I)(4*c_word_w-1 DOWNTO 3*c_word_w) <= RESIZE_UVEC(rx_sample_arr(I), c_word_w); -- address 3: read valid sample per stream END PROCESS; u_reg : ENTITY astron_mm_lib.common_reg_r_w_dc GENERIC MAP ( g_cross_clock_domain => TRUE, g_readback => FALSE, -- must use FALSE for write/read or read only register when g_cross_clock_domain=TRUE g_reg => c_mm_reg ) PORT MAP ( -- Clocks and reset mm_rst => mm_rst, mm_clk => mm_clk, st_rst => dp_rst, st_clk => dp_clk, -- Memory Mapped Slave in mm_clk domain sla_in => reg_mosi_arr(I), sla_out => reg_miso_arr(I), -- MM registers in dp_clk domain in_reg => stat_reg_arr(I), out_reg => ctrl_reg_arr(I) ); END GENERATE; -- Combine the internal array of mm interfaces for the bg_data to one array that is connected to the port of the MM bus u_mem_mux : ENTITY astron_mm_lib.common_mem_mux GENERIC MAP ( g_nof_mosi => g_nof_streams, g_mult_addr_w => c_mm_reg.adr_w ) PORT MAP ( mosi => reg_mosi, miso => reg_miso, mosi_arr => reg_mosi_arr, miso_arr => reg_miso_arr ); END str;