URL
https://opencores.org/ocsvn/c0or1k/c0or1k/trunk
Subversion Repositories c0or1k
[/] [c0or1k/] [trunk/] [src/] [generic/] [scheduler.c] - Rev 7
Go to most recent revision | Compare with Previous | Blame | View Log
/* * A basic priority-based scheduler. * * Copyright (C) 2007, 2008 Bahadir Balban */ #include <l4/lib/list.h> #include <l4/lib/printk.h> #include <l4/lib/string.h> #include <l4/lib/mutex.h> #include <l4/lib/math.h> #include <l4/lib/bit.h> #include <l4/lib/spinlock.h> #include <l4/generic/scheduler.h> #include <l4/generic/resource.h> #include <l4/generic/container.h> #include <l4/generic/preempt.h> #include <l4/generic/thread.h> #include <l4/generic/debug.h> #include <l4/generic/irq.h> #include <l4/generic/tcb.h> #include <l4/api/errno.h> #include <l4/api/kip.h> #include INC_SUBARCH(mm.h) #include INC_GLUE(mapping.h) #include INC_GLUE(init.h) #include INC_PLAT(platform.h) #include INC_ARCH(exception.h) #include INC_SUBARCH(irq.h) DECLARE_PERCPU(struct scheduler, scheduler); /* This is incremented on each irq or voluntarily by preempt_disable() */ DECLARE_PERCPU(extern unsigned int, current_irq_nest_count); /* This ensures no scheduling occurs after voluntary preempt_disable() */ DECLARE_PERCPU(static int, voluntary_preempt); void sched_lock_runqueues(struct scheduler *sched, unsigned long *irqflags) { spin_lock_irq(&sched->sched_rq[0].lock, irqflags); spin_lock(&sched->sched_rq[1].lock); BUG_ON(irqs_enabled()); } void sched_unlock_runqueues(struct scheduler *sched, unsigned long irqflags) { spin_unlock(&sched->sched_rq[1].lock); spin_unlock_irq(&sched->sched_rq[0].lock, irqflags); } int preemptive() { return per_cpu(current_irq_nest_count) == 0; } int preempt_count() { return per_cpu(current_irq_nest_count); } #if !defined(CONFIG_PREEMPT_DISABLE) void preempt_enable(void) { per_cpu(voluntary_preempt)--; per_cpu(current_irq_nest_count)--; } /* A positive irq nest count implies current context cannot be preempted. */ void preempt_disable(void) { per_cpu(current_irq_nest_count)++; per_cpu(voluntary_preempt)++; } #else /* End of !CONFIG_PREEMPT_DISABLE */ void preempt_enable(void) { } void preempt_disable(void) { } #endif /* CONFIG_PREEMPT_DISABLE */ int in_irq_context(void) { /* * If there was a real irq, irq nest count must be * one more than all preempt_disable()'s which are * counted by voluntary_preempt. */ return (per_cpu(current_irq_nest_count) == (per_cpu(voluntary_preempt) + 1)); } int in_nested_irq_context(void) { /* Deducing voluntary preemptions we get real irq nesting */ return (per_cpu(current_irq_nest_count) - per_cpu(voluntary_preempt)) > 1; } int in_process_context(void) { return !in_irq_context(); } void sched_init_runqueue(struct scheduler *sched, struct runqueue *rq) { link_init(&rq->task_list); spin_lock_init(&rq->lock); rq->sched = sched; } void sched_init() { struct scheduler *sched = &per_cpu(scheduler); for (int i = 0; i < SCHED_RQ_TOTAL; i++) sched_init_runqueue(sched, &sched->sched_rq[i]); sched->rq_runnable = &sched->sched_rq[0]; sched->rq_expired = &sched->sched_rq[1]; sched->rq_rt_runnable = &sched->sched_rq[2]; sched->rq_rt_expired = &sched->sched_rq[3]; sched->prio_total = TASK_PRIO_TOTAL; sched->idle_task = current; } /* Swap runnable and expired runqueues. */ static void sched_rq_swap_queues(void) { struct runqueue *temp; BUG_ON(list_empty(&per_cpu(scheduler).rq_expired->task_list)); /* Queues are swapped and expired list becomes runnable */ temp = per_cpu(scheduler).rq_runnable; per_cpu(scheduler).rq_runnable = per_cpu(scheduler).rq_expired; per_cpu(scheduler).rq_expired = temp; } static void sched_rq_swap_rtqueues(void) { struct runqueue *temp; BUG_ON(list_empty(&per_cpu(scheduler).rq_rt_expired->task_list)); /* Queues are swapped and expired list becomes runnable */ temp = per_cpu(scheduler).rq_rt_runnable; per_cpu(scheduler).rq_rt_runnable = per_cpu(scheduler).rq_rt_expired; per_cpu(scheduler).rq_rt_expired = temp; } /* Set policy on where to add tasks in the runqueue */ #define RQ_ADD_BEHIND 0 #define RQ_ADD_FRONT 1 /* Helper for adding a new task to a runqueue */ static void sched_rq_add_task(struct ktcb *task, struct runqueue *rq, int front) { unsigned long irqflags; struct scheduler *sched = &per_cpu_byid(scheduler, task->affinity); BUG_ON(!list_empty(&task->rq_list)); /* Lock that particular cpu's runqueue set */ sched_lock_runqueues(sched, &irqflags); if (front) list_insert(&task->rq_list, &rq->task_list); else list_insert_tail(&task->rq_list, &rq->task_list); rq->total++; task->rq = rq; /* Unlock that particular cpu's runqueue set */ sched_unlock_runqueues(sched, irqflags); } /* Helper for removing a task from its runqueue. */ static inline void sched_rq_remove_task(struct ktcb *task) { unsigned long irqflags; struct scheduler *sched = &per_cpu_byid(scheduler, task->affinity); sched_lock_runqueues(sched, &irqflags); /* * We must lock both, otherwise rqs may swap and * we may get the wrong rq. */ BUG_ON(list_empty(&task->rq_list)); list_remove_init(&task->rq_list); task->rq->total--; BUG_ON(task->rq->total < 0); task->rq = 0; sched_unlock_runqueues(sched, irqflags); } static inline void sched_run_task(struct ktcb *task, struct scheduler *sched) { if (task->flags & TASK_REALTIME) sched_rq_add_task(task, sched->rq_rt_runnable, RQ_ADD_BEHIND); else sched_rq_add_task(task, sched->rq_runnable, RQ_ADD_BEHIND); } static inline void sched_expire_task(struct ktcb *task, struct scheduler *sched) { if (task->flags & TASK_REALTIME) sched_rq_add_task(current, sched->rq_rt_expired, RQ_ADD_BEHIND); else sched_rq_add_task(current, sched->rq_expired, RQ_ADD_BEHIND); } void sched_init_task(struct ktcb *task, int prio) { link_init(&task->rq_list); task->priority = prio; task->ticks_left = 0; task->state = TASK_INACTIVE; task->ts_need_resched = 0; task->flags |= TASK_RESUMING; } /* Synchronously resumes a task */ void sched_resume_sync(struct ktcb *task) { BUG_ON(task == current); task->state = TASK_RUNNABLE; sched_run_task(task, &per_cpu_byid(scheduler, task->affinity)); schedule(); } /* * Asynchronously resumes a task. * The task will run in the future, but at * the scheduler's discretion. It is possible that current * task wakes itself up via this function in the scheduler(). */ void sched_resume_async(struct ktcb *task) { task->state = TASK_RUNNABLE; sched_run_task(task, &per_cpu_byid(scheduler, task->affinity)); } /* * Takes all the action that will make a task sleep * in the scheduler. If the task is woken up before * it schedules, then operations here are simply * undone and task remains as runnable. */ void sched_prepare_sleep() { preempt_disable(); sched_rq_remove_task(current); current->state = TASK_SLEEPING; preempt_enable(); } /* * preempt_enable/disable()'s are for avoiding the * entry to scheduler during this period - but this * is only true for current cpu. */ void sched_suspend_sync(void) { preempt_disable(); sched_rq_remove_task(current); current->state = TASK_INACTIVE; current->flags &= ~TASK_SUSPENDING; if (current->pagerid != current->tid) wake_up(¤t->wqh_pager, 0); preempt_enable(); schedule(); } void sched_suspend_async(void) { preempt_disable(); sched_rq_remove_task(current); current->state = TASK_INACTIVE; current->flags &= ~TASK_SUSPENDING; if (current->pagerid != current->tid) wake_up(¤t->wqh_pager, 0); preempt_enable(); need_resched = 1; } extern void arch_context_switch(struct ktcb *cur, struct ktcb *next); static inline void context_switch(struct ktcb *next) { struct ktcb *cur = current; // printk("Core:%d (%d) to (%d)\n", smp_get_cpuid(), cur->tid, next->tid); system_account_context_switch(); /* Flush caches and everything */ BUG_ON(!current); BUG_ON(!current->space); BUG_ON(!next); BUG_ON(!next->space); BUG_ON(!next->space); if (current->space->spid != next->space->spid) arch_space_switch(next); /* Update utcb region for next task */ task_update_utcb(next); /* Switch context */ arch_context_switch(cur, next); // printk("Returning from yield. Tid: (%d)\n", cur->tid); } /* * Priority calculation is so simple it is inlined. The task gets * the ratio of its priority to total priority of all runnable tasks. */ static inline int sched_recalc_ticks(struct ktcb *task, int prio_total) { BUG_ON(prio_total < task->priority); BUG_ON(prio_total == 0); return task->ticks_assigned = CONFIG_SCHED_TICKS * task->priority / prio_total; } /* * Select a real-time task 1/8th of any one selection */ static inline int sched_select_rt(struct scheduler *sched) { int ctr = sched->task_select_ctr++ & 0xF; if (ctr == 0 || ctr == 8 || ctr == 15) return 0; else return 1; } /* * Selection happens as follows: * * A real-time task is chosen %87.5 of the time. This is evenly * distributed to a given interval. * * Idle task is run once when it is explicitly suggested (e.g. * for cleanup after a task exited) but only when no real-time * tasks are in the queues. * * And idle task is otherwise run only when no other tasks are * runnable. */ struct ktcb *sched_select_next(void) { struct scheduler *sched = &per_cpu(scheduler); int realtime = sched_select_rt(sched); struct ktcb *next = 0; for (;;) { /* Decision to run an RT task? */ if (realtime && sched->rq_rt_runnable->total > 0) { /* Get a real-time task, if available */ next = link_to_struct(sched->rq_rt_runnable->task_list.next, struct ktcb, rq_list); break; } else if (realtime && sched->rq_rt_expired->total > 0) { /* Swap real-time queues */ sched_rq_swap_rtqueues(); /* Get a real-time task */ next = link_to_struct(sched->rq_rt_runnable->task_list.next, struct ktcb, rq_list); break; /* Idle flagged for run? */ } else if (sched->flags & SCHED_RUN_IDLE) { /* Clear idle flag */ sched->flags &= ~SCHED_RUN_IDLE; next = sched->idle_task; break; } else if (sched->rq_runnable->total > 0) { /* Get a regular runnable task, if available */ next = link_to_struct(sched->rq_runnable->task_list.next, struct ktcb, rq_list); break; } else if (sched->rq_expired->total > 0) { /* Swap queues and retry if not */ sched_rq_swap_queues(); next = link_to_struct(sched->rq_runnable->task_list.next, struct ktcb, rq_list); break; } else if (in_process_context()) { /* No runnable task. Do idle if in process context */ next = sched->idle_task; break; } else { /* * Nobody is runnable. Irq calls must return * to interrupted current process to run idle task */ next = current; break; } } return next; } /* Prepare next runnable task right before switching to it */ void sched_prepare_next(struct ktcb *next) { /* New tasks affect runqueue total priority. */ if (next->flags & TASK_RESUMING) next->flags &= ~TASK_RESUMING; /* Zero ticks indicates task hasn't ran since last rq swap */ if (next->ticks_left == 0) { /* * Redistribute timeslice. We do this as each task * becomes runnable rather than all at once. It is done * every runqueue swap */ sched_recalc_ticks(next, per_cpu(scheduler).prio_total); next->ticks_left = next->ticks_assigned; } /* Reinitialise task's schedule granularity boundary */ next->sched_granule = SCHED_GRANULARITY; } /* * Tasks come here, either by setting need_resched (via next irq), * or by directly calling it (in process context). * * The scheduler is similar to Linux's so called O(1) scheduler, * although a lot simpler. Task priorities determine task timeslices. * Each task gets a ratio of its priority to the total priority of * all runnable tasks. When this total changes, (e.g. threads die or * are created, or a thread's priority is changed) the timeslices are * recalculated on a per-task basis as each thread becomes runnable. * Once all runnable tasks expire, runqueues are swapped. Sleeping * tasks are removed from the runnable queue, and added back later * without affecting the timeslices. Suspended tasks however, * necessitate a timeslice recalculation as they are considered to go * inactive indefinitely or for a very long time. They are put back * to the expired queue if they want to run again. * * A task is rescheduled either when it hits a SCHED_GRANULARITY * boundary, or when its timeslice has expired. SCHED_GRANULARITY * ensures context switches do occur at a maximum boundary even if a * task's timeslice is very long. In the future, real-time tasks will * be added, and they will be able to ignore SCHED_GRANULARITY. * * In the future, the tasks will be sorted by priority in their * runqueue, as well as having an adjusted timeslice. * * Runqueues are swapped at a single second's interval. This implies * the timeslice recalculations would also occur at this interval. */ void schedule() { struct ktcb *next; /* Should not schedule with preemption * disabled or in nested irq */ BUG_ON(per_cpu(voluntary_preempt)); BUG_ON(in_nested_irq_context()); /* Should not have more ticks than SCHED_TICKS */ BUG_ON(current->ticks_left > CONFIG_SCHED_TICKS); /* If coming from process path, cannot have * any irqs that schedule after this */ preempt_disable(); /* Reset schedule flag */ need_resched = 0; /* Remove from runnable and put into appropriate runqueue */ if (current->state == TASK_RUNNABLE) { sched_rq_remove_task(current); if (current->ticks_left) sched_run_task(current, &per_cpu(scheduler)); else sched_expire_task(current, &per_cpu(scheduler)); } /* * FIXME: Are these smp-safe? BB: On first glance they * should be because runqueues are per-cpu right now. * * If task is about to sleep and * it has pending events, wake it up. */ if ((current->flags & TASK_PENDING_SIGNAL) && current->state == TASK_SLEEPING) wake_up_task(current, WAKEUP_INTERRUPT); /* * If task has pending events, and is in userspace * (guaranteed to have no unfinished jobs in kernel) * handle those events */ if ((current->flags & TASK_PENDING_SIGNAL) && current->state == TASK_RUNNABLE && TASK_IN_USER(current)) { if (current->flags & TASK_SUSPENDING) sched_suspend_async(); } /* Hint scheduler to run idle asap to free task */ if (current->flags & TASK_EXITED) { current->flags &= ~TASK_EXITED; per_cpu(scheduler).flags |= SCHED_RUN_IDLE; } /* Decide on next runnable task */ next = sched_select_next(); /* Prepare next task for running */ sched_prepare_next(next); /* Finish */ disable_irqs(); preempt_enable(); context_switch(next); } /* * Start the timer and switch to current task * for first-ever scheduling. */ void scheduler_start() { platform_timer_start(); switch_to_user(current); }
Go to most recent revision | Compare with Previous | Blame | View Log