URL
https://opencores.org/ocsvn/core_arm/core_arm/trunk
Subversion Repositories core_arm
[/] [core_arm/] [trunk/] [vhdl/] [sparc/] [dcom_uart.vhd] - Rev 4
Compare with Previous | Blame | View Log
---------------------------------------------------------------------------- -- This file is a part of the LEON VHDL model -- Copyright (C) 1999 European Space Agency (ESA) -- -- This library is free software; you can redistribute it and/or -- modify it under the terms of the GNU Lesser General Public -- License as published by the Free Software Foundation; either -- version 2 of the License, or (at your option) any later version. -- -- See the file COPYING.LGPL for the full details of the license. ----------------------------------------------------------------------------- -- Entity: dcom_uart -- File: dcom_uart.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: Asynchronous UART with baud-rate detection. ------------------------------------------------------------------------------ library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned."+"; use IEEE.std_logic_unsigned."-"; use IEEE.std_logic_unsigned.">"; use work.leon_target.all; use work.leon_config.all; use work.leon_iface.all; use work.macro.all; use work.amba.all; --pragma translate_off use ieee.std_logic_unsigned.conv_integer; use STD.TEXTIO.all; --pragma translate_on entity dcom_uart is port ( rst : in std_logic; clk : in clk_type; apbi : in apb_slv_in_type; apbo : out apb_slv_out_type; uarti : in dcom_uart_in_type; uarto : out dcom_uart_out_type ); end; architecture rtl of dcom_uart is type rxfsmtype is (idle, startbit, data, stopbit); type txfsmtype is (idle, data, stopbit); type uartregs is record rxen : std_logic; -- receiver enabled dready : std_logic; -- data ready rsempty : std_logic; -- receiver shift register empty (internal) tsempty : std_logic; -- transmitter shift register empty thempty : std_logic; -- transmitter hold register empty break : std_logic; -- break detected ovf : std_logic; -- receiver overflow frame : std_logic; -- framing error rhold : std_logic_vector(7 downto 0); rshift : std_logic_vector(7 downto 0); tshift : std_logic_vector(10 downto 0); thold : std_logic_vector(7 downto 0); txstate : txfsmtype; txclk : std_logic_vector(2 downto 0); -- tx clock divider txtick : std_logic; -- tx clock (internal) rxstate : rxfsmtype; rxclk : std_logic_vector(2 downto 0); -- rx clock divider rxdb : std_logic; -- rx data filtering buffer rxtick : std_logic; -- rx clock (internal) tick : std_logic; -- rx clock (internal) scaler : std_logic_vector(17 downto 0); brate : std_logic_vector(17 downto 0); tcnt : std_logic_vector(1 downto 0); -- autobaud counter rxdb2 : std_logic; -- delayed rx data rxf : std_logic_vector(7 downto 0); -- rx data filtering buffer fedge : std_logic; -- rx falling edge end record; signal r, rin : uartregs; begin uartop : process(rst, r, apbi, uarti ) variable rdata : std_logic_vector(31 downto 0); variable scaler : std_logic_vector(17 downto 0); variable rxclk, txclk : std_logic_vector(2 downto 0); variable rxd : std_logic; variable v : uartregs; begin v := r; v.txtick := '0'; v.rxtick := '0'; v.tick := '0'; rdata := (others => '0'); -- scaler -- pragma translate_off if not is_x(r.scaler) then -- avoid warnings at reset time -- pragma translate_on if r.tcnt = "11" then scaler := r.scaler - 1; else scaler := r.scaler + 1; end if; -- pragma translate_off end if; -- pragma translate_on v.rxdb2 := r.rxdb; if r.tcnt /= "11" then if (r.rxdb2 and not r.rxdb) = '1' then v.fedge := '1'; end if; if (r.fedge) = '1' then v.scaler := scaler; if (r.scaler(17) and not r.scaler(16)) = '1' then v.fedge := '0'; v.tcnt := "00"; v.scaler := "111111111111111011"; end if; end if; if (r.rxdb2 and r.fedge and not r.rxdb) = '1' then if ieee.std_logic_unsigned.">"(r.brate(17 downto 4),r.scaler(17 downto 4)) then v.brate := r.scaler; v.tcnt := "00"; end if; v.scaler := "111111111111111011"; if (r.brate(17 downto 4) = r.scaler(17 downto 4)) then v.tcnt := r.tcnt + 1; if r.tcnt = "10" then v.brate := "0000" & r.scaler(17 downto 4); v.scaler := v.brate; v.rxen := '1'; end if; end if; end if; else if (r.break and r.rxdb2) = '1' then v.scaler := "111111111111111011"; v.brate := (others => '1'); v.tcnt := "00"; v.break := '0'; v.rxen := '0'; end if; end if; if r.rxen = '1' then v.scaler := scaler; v.tick := scaler(15) and not r.scaler(15); if v.tick = '1' then v.scaler := r.brate; end if; end if; -- read/write registers if uarti.read = '1' then v.dready := '0'; end if; case apbi.paddr(3 downto 2) is -- when "00" => -- rdata(7 downto 0) := r.rhold; -- if (apbi.psel and apbi.penable and (not apbi.pwrite)) = '1' then -- v.dready := '0'; -- end if; when "01" => rdata(6 downto 0) := r.frame & '0' & r.ovf & r.break & r.thempty & r.tsempty & r.dready; --pragma translate_off if DEBUGUART then rdata(2 downto 1) := "11"; end if; --pragma translate_on when "10" => rdata(1 downto 0) := (r.tcnt(1) or r.tcnt(0)) & r.rxen; when others => rdata(17 downto 0) := r.brate; end case; if (apbi.psel and apbi.penable and apbi.pwrite) = '1' then case apbi.paddr(3 downto 2) is when "01" => v.frame := apbi.pwdata(6); v.ovf := apbi.pwdata(4); v.break := apbi.pwdata(3); when "10" => v.tcnt := apbi.pwdata(1) & apbi.pwdata(1); v.rxen := apbi.pwdata(0); when "11" => v.brate := apbi.pwdata(17 downto 0); v.scaler := apbi.pwdata(17 downto 0); when others => end case; end if; -- tx clock -- pragma translate_off if not is_x(r.txclk) then -- avoid warnings at reset time -- pragma translate_on txclk := r.txclk + 1; -- pragma translate_off else txclk := (others => 'X'); end if; -- pragma translate_on if r.tick = '1' then v.txclk := txclk; v.txtick := r.txclk(2) and not txclk(2); end if; -- rx clock -- pragma translate_off if not is_x(r.rxclk) then -- avoid warnings at reset time -- pragma translate_on rxclk := r.rxclk + 1; -- pragma translate_off else rxclk := (others => 'X'); end if; -- pragma translate_on if r.tick = '1' then v.rxclk := rxclk; v.rxtick := r.rxclk(2) and not rxclk(2); end if; -- filter rx data v.rxf := r.rxf(6 downto 0) & uarti.rxd; if ((r.rxf(7) & r.rxf(7) & r.rxf(7) & r.rxf(7) & r.rxf(7) & r.rxf(7) & r.rxf(7)) = r.rxf(6 downto 0)) then v.rxdb := r.rxf(7); end if; rxd := r.rxdb; -- transmitter operation case r.txstate is when idle => -- idle state if (r.txtick = '1') then v.tsempty := '1'; end if; if (r.rxen and (not r.thempty) and r.txtick) = '1' then v.tshift := "10" & r.thold & '0'; v.txstate := data; v.thempty := '1'; v.tsempty := '0'; v.txclk := "00" & r.tick; v.txtick := '0'; end if; when data => -- transmitt data frame if r.txtick = '1' then v.tshift := '1' & r.tshift(10 downto 1); if r.tshift(10 downto 1) = "1111111110" then v.tshift(0) := '1'; v.txstate := stopbit; end if; end if; when stopbit => -- transmitt stop bit if r.txtick = '1' then v.tshift := '1' & r.tshift(10 downto 1); v.txstate := idle; end if; end case; -- writing of tx data register must be done after tx fsm to get correct -- operation of thempty flag if uarti.write = '1' then v.thold := uarti.data(7 downto 0); v.thempty := '0'; end if; -- receiver operation case r.rxstate is when idle => -- wait for start bit if ((not r.rsempty) and not r.dready) = '1' then v.rhold := r.rshift; v.rsempty := '1'; v.dready := '1'; end if; if (r.rxen and r.rxdb2 and (not rxd)) = '1' then v.rxstate := startbit; v.rshift := (others => '1'); v.rxclk := "100"; if v.rsempty = '0' then v.ovf := '1'; end if; v.rsempty := '0'; v.rxtick := '0'; end if; when startbit => -- check validity of start bit if r.rxtick = '1' then if rxd = '0' then v.rshift := rxd & r.rshift(7 downto 1); v.rxstate := data; else v.rxstate := idle; end if; end if; when data => -- receive data frame if r.rxtick = '1' then v.rshift := rxd & r.rshift(7 downto 1); if r.rshift(0) = '0' then v.rxstate := stopbit; end if; end if; when stopbit => -- receive stop bit if r.rxtick = '1' then if rxd = '1' then v.rsempty := '0'; if v.dready = '0' then v.rhold := r.rshift; v.rsempty := '1'; v.dready := '1'; end if; else if r.rshift = "00000000" then v.break := '1'; -- break else v.frame := '1'; -- framing error end if; v.rsempty := '1'; end if; v.rxstate := idle; end if; end case; -- reset operation if rst = '0' then v.frame := '0'; v.rsempty := '1'; v.ovf := '0'; v.break := '0'; v.thempty := '1'; v.tsempty := '1'; v.dready := '0'; v.fedge := '0'; v.txstate := idle; v.rxstate := idle; v.tshift(0) := '1'; v.scaler := "111111111111111011"; v.brate := (others => '1'); v.rxen := '0'; v.tcnt := "00"; v.txclk := (others => '0'); v.rxclk := (others => '0'); end if; -- update registers rin <= v; -- drive outputs uarto.txd <= r.tshift(0); uarto.dready <= r.dready; uarto.tsempty <= r.tsempty; uarto.thempty <= r.thempty; uarto.lock <= r.tcnt(1) and r.tcnt(0); uarto.enable <= r.rxen; uarto.data <= r.rhold; apbo.prdata <= rdata; end process; regs : process(clk) begin if rising_edge(clk) then r <= rin; end if; end process; end;