URL
https://opencores.org/ocsvn/core_arm/core_arm/trunk
Subversion Repositories core_arm
[/] [core_arm/] [trunk/] [vhdl/] [sparc/] [mul.vhd] - Rev 2
Go to most recent revision | Compare with Previous | Blame | View Log
---------------------------------------------------------------------------- -- This file is a part of the LEON VHDL model -- Copyright (C) 1999 European Space Agency (ESA) -- -- This library is free software; you can redistribute it and/or -- modify it under the terms of the GNU Lesser General Public -- License as published by the Free Software Foundation; either -- version 2 of the License, or (at your option) any later version. -- -- See the file COPYING.LGPL for the full details of the license. ----------------------------------------------------------------------------- -- Entity: mul -- File: mul.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: This unit implemets integer multiply and optionally the -- UMUL/SMUL/UMAC/SMAC instructions. ------------------------------------------------------------------------------ library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned."+"; use work.leon_target.all; use work.leon_config.all; use work.leon_iface.all; use work.tech_map.all; entity mul is port ( rst : in std_logic; clk : in clk_type; holdn : in std_logic; muli : in mul_in_type; mulo : out mul_out_type ); end; architecture rtl of mul is type mul_regtype is record acc : std_logic_vector(63 downto 0); state : std_logic_vector(1 downto 0); start : std_logic; ready : std_logic; end record; type mac_regtype is record mac : std_logic; signed : std_logic; end record; signal rm, rmin : mul_regtype; signal mm, mmin : mac_regtype; signal ma, mb : std_logic_vector(32 downto 0); signal prod : std_logic_vector(65 downto 0); signal mreg : std_logic_vector(49 downto 0); begin mulcomb : process(rst, rm, muli, mreg, prod, mm) variable mop1, mop2 : std_logic_vector(32 downto 0); variable acc, acc1, acc2 : std_logic_vector(48 downto 0); variable zero : std_logic; variable v : mul_regtype; variable w : mac_regtype; constant CZero: std_logic_vector(47 downto 0) := "000000000000000000000000000000000000000000000000"; begin v := rm; w := mm; v.start := muli.start; v.ready := '0'; mop1 := muli.op1; mop2 := muli.op2; acc1 := (others => '0'); acc2 := (others => '0'); w.mac := muli.mac; w.signed := muli.signed; zero := '0'; -- select input 2 to accumulator case MULTIPLIER is when m16x16 => acc2(32 downto 0) := mreg(32 downto 0); when m32x8 => acc2(40 downto 0) := mreg(40 downto 0); when m32x16 => acc2(48 downto 0) := mreg(48 downto 0); when others => null; end case; -- state machine + inputs to multiplier and accumulator input 1 case rm.state is when "00" => case MULTIPLIER is when m16x16 => mop1(16 downto 0) := '0' & muli.op1(15 downto 0); mop2(16 downto 0) := '0' & muli.op2(15 downto 0); if MULPIPE and (rm.ready = '1' ) then acc1(32 downto 0) := rm.acc(48 downto 16); else acc1(32 downto 0) := '0' & rm.acc(63 downto 32); end if; when m32x8 => mop1 := muli.op1; mop2(8 downto 0) := '0' & muli.op2(7 downto 0); acc1(40 downto 0) := '0' & rm.acc(63 downto 24); when m32x16 => mop1 := muli.op1; mop2(16 downto 0) := '0' & muli.op2(15 downto 0); acc1(48 downto 0) := '0' & rm.acc(63 downto 16); when others => null; end case; if (rm.start = '1') then v.state := "01"; end if; when "01" => case MULTIPLIER is when m16x16 => mop1(16 downto 0) := muli.op1(32 downto 16); mop2(16 downto 0) := '0' & muli.op2(15 downto 0); if MULPIPE then acc1(32 downto 0) := '0' & rm.acc(63 downto 32); end if; v.state := "10"; when m32x8 => mop1 := muli.op1; mop2(8 downto 0) := '0' & muli.op2(15 downto 8); v.state := "10"; when m32x16 => mop1 := muli.op1; mop2(16 downto 0) := muli.op2(32 downto 16); v.state := "00"; when others => null; end case; when "10" => case MULTIPLIER is when m16x16 => mop1(16 downto 0) := '0' & muli.op1(15 downto 0); mop2(16 downto 0) := muli.op2(32 downto 16); if MULPIPE then acc1 := (others => '0'); acc2 := (others => '0'); else acc1(32 downto 0) := rm.acc(48 downto 16); end if; v.state := "11"; when m32x8 => mop1 := muli.op1; mop2(8 downto 0) := '0' & muli.op2(23 downto 16); acc1(40 downto 0) := rm.acc(48 downto 8); v.state := "11"; when others => null; end case; when others => case MULTIPLIER is when m16x16 => mop1(16 downto 0) := muli.op1(32 downto 16); mop2(16 downto 0) := muli.op2(32 downto 16); if MULPIPE then acc1(32 downto 0) := rm.acc(48 downto 16); else acc1(32 downto 0) := rm.acc(48 downto 16); end if; v.state := "00"; when m32x8 => mop1 := muli.op1; mop2(8 downto 0) := muli.op2(32 downto 24); acc1(40 downto 0) := rm.acc(56 downto 16); v.state := "00"; when others => null; end case; end case; -- optional UMAC/SMAC support if MACEN then if ((muli.mac and muli.signed) = '1') then mop1(16) := muli.op1(15); mop2(16) := muli.op2(15); end if; if mm.mac = '1' then acc1(32 downto 0) := muli.y(0) & muli.asr18; if mm.signed = '1' then acc2(39 downto 32) := (others => mreg(31)); else acc2(39 downto 32) := (others => '0'); end if; end if; acc1(39 downto 33) := muli.y(7 downto 1); end if; -- accumulator for iterative multiplication (and MAC) -- pragma translate_off if not (is_x(acc1 & acc2)) then -- pragma translate_on case MULTIPLIER is when m16x16 => if MACEN then acc(39 downto 0) := acc1(39 downto 0) + acc2(39 downto 0); else acc(32 downto 0) := acc1(32 downto 0) + acc2(32 downto 0); end if; when m32x8 => acc(40 downto 0) := acc1(40 downto 0) + acc2(40 downto 0); when m32x16 => acc(48 downto 0) := acc1(48 downto 0) + acc2(48 downto 0); when m32x32 => v.acc(31 downto 0) := prod(63 downto 32); when others => null; end case; -- pragma translate_off end if; -- pragma translate_on -- save intermediate result to accumulator case rm.state is when "00" => case MULTIPLIER is when m16x16 => if MULPIPE and (rm.ready = '1' ) then v.acc(48 downto 16) := acc(32 downto 0); if muli.signed = '1' then v.acc(63 downto 49) := (others => acc(32)); end if; else v.acc(63 downto 32) := acc(31 downto 0); end if; when m32x8 => v.acc(63 downto 24) := acc(39 downto 0); when m32x16 => v.acc(63 downto 16) := acc(47 downto 0); when others => null; end case; when "01" => case MULTIPLIER is when m16x16 => if MULPIPE then v.acc := (others => '0'); else v.acc := CZero(31 downto 0) & mreg(31 downto 0); end if; when m32x8 => v.acc := CZero(23 downto 0) & mreg(39 downto 0); if muli.signed = '1' then v.acc(48 downto 40) := (others => acc(40)); end if; when m32x16 => v.acc := CZero(15 downto 0) & mreg(47 downto 0); v.ready := '1'; if muli.signed = '1' then v.acc(63 downto 48) := (others => acc(48)); end if; when others => null; end case; when "10" => case MULTIPLIER is when m16x16 => if MULPIPE then v.acc := CZero(31 downto 0) & mreg(31 downto 0); else v.acc(48 downto 16) := acc(32 downto 0); end if; when m32x8 => v.acc(48 downto 8) := acc(40 downto 0); if muli.signed = '1' then v.acc(56 downto 49) := (others => acc(40)); end if; when others => null; end case; when others => case MULTIPLIER is when m16x16 => if MULPIPE then v.acc(48 downto 16) := acc(32 downto 0); else v.acc(48 downto 16) := acc(32 downto 0); if muli.signed = '1' then v.acc(63 downto 49) := (others => acc(32)); end if; end if; v.ready := '1'; when m32x8 => v.acc(56 downto 16) := acc(40 downto 0); v.ready := '1'; if muli.signed = '1' then v.acc(63 downto 57) := (others => acc(40)); end if; when others => null; end case; end case; -- drive result and condition codes if (rst = '0') or (muli.flush = '1') then v.state := "00"; v.start := '0'; end if; rmin <= v; ma <= mop1; mb <= mop2; mmin <= w; if MULPIPE then mulo.ready <= rm.ready; else mulo.ready <= v.ready; end if; case MULTIPLIER is when m16x16 => if rm.acc(31 downto 0) = CZero(31 downto 0) then zero := '1'; end if; if MACEN and (mm.mac = '1') then mulo.result(39 downto 0) <= acc(39 downto 0); if mm.signed = '1' then mulo.result(63 downto 40) <= (others => acc(39)); else mulo.result(63 downto 40) <= (others => '0'); end if; else mulo.result(39 downto 0) <= v.acc(39 downto 32) & rm.acc(31 downto 0); mulo.result(63 downto 40) <= v.acc(63 downto 40); end if; mulo.icc <= rm.acc(31) & zero & "00"; when m32x8 => if (rm.acc(23 downto 0) = CZero(23 downto 0)) and (v.acc(31 downto 24) = CZero(7 downto 0)) then zero := '1'; end if; mulo.result <= v.acc(63 downto 24) & rm.acc(23 downto 0); mulo.icc <= v.acc(31) & zero & "00"; when m32x16 => if (rm.acc(15 downto 0) = CZero(15 downto 0)) and (v.acc(31 downto 16) = CZero(15 downto 0)) then zero := '1'; end if; mulo.result <= v.acc(63 downto 16) & rm.acc(15 downto 0); mulo.icc <= v.acc(31) & zero & "00"; when m32x32 => mulo.result <= rm.acc(31 downto 0) & prod(31 downto 0); mulo.icc <= "0000"; -- icc set in iu.vhd when others => null; mulo.result <= (others => '-'); mulo.icc <= (others => '-'); end case; end process; xm1616 : if MULTIPLIER = m16x16 generate m0 : hw_smult generic map (17, 17) port map (clk, holdn, ma(16 downto 0), mb(16 downto 0), prod(33 downto 0)); reg : process(clk) begin if rising_edge(clk) then if (holdn = '1') then if MACEN then mm <= mmin; end if; mreg(33 downto 0) <= prod(33 downto 0); end if; end if; end process; end generate; xm3208 : if MULTIPLIER = m32x8 generate m0 : hw_smult generic map (33, 9) port map (clk, holdn, ma(32 downto 0), mb(8 downto 0), prod(41 downto 0)); reg : process(clk) begin if rising_edge(clk) then if (holdn = '1') then mreg(41 downto 0) <= prod(41 downto 0); end if; end if; end process; end generate; xm3216 : if MULTIPLIER = m32x16 generate m0 : hw_smult generic map (33, 17) port map (clk, holdn, ma(32 downto 0), mb(16 downto 0), prod(49 downto 0)); reg : process(clk) begin if rising_edge(clk) then if (holdn = '1') then mreg(49 downto 0) <= prod(49 downto 0); end if; end if; end process; end generate; xm3232 : if MULTIPLIER = m32x32 generate m0 : hw_smult generic map (33, 33) port map (clk, holdn, ma(32 downto 0), mb(32 downto 0), prod(65 downto 0)); end generate; reg : process(clk) begin if rising_edge(clk) then if (holdn = '1') then rm <= rmin; end if; end if; end process; end;
Go to most recent revision | Compare with Previous | Blame | View Log