URL
https://opencores.org/ocsvn/cryptography/cryptography/trunk
Subversion Repositories cryptography
[/] [cryptography/] [trunk/] [decryption/] [decryptor.vhd.bak] - Rev 4
Compare with Previous | Blame | View Log
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity decryptor is
port (
plaintext_d :out std_logic_vector(15 downto 0);-- 16 bit Plaintext output of decryptor
ready_d :out std_logic; -- 1 bit ready output of decryptor
ciphertext :in std_logic_vector(15 downto 0);-- 16 bit ciphertext input to decrytpor which is output of encryptor
round_keys_d:in std_logic_vector(15 downto 0);-- 16 bit roundkeys given to decryptor
start_d :in std_logic;
reset :in std_logic;
clock :in std_logic
);
end decryptor;
Architecture arch_decryptor of decryptor is
component multiplier
port( B :in std_logic_vector(15 downto 0);
Product :out std_logic_vector(15 downto 0)
);
end component;
-- constants for the plain text fsm
constant idle:std_logic_vector(3 downto 0):= "0000";
constant out_A :std_logic_vector(3 downto 0):= "0001";
constant out_B :std_logic_vector(3 downto 0):= "0010";
constant out_C :std_logic_vector(3 downto 0):= "0011";
constant out_D :std_logic_vector(3 downto 0):= "0100";
--ct1, ttemp and utemp are temprary registers to hold the values of t, u and C.
--signal round_keys_d_saved:std_logic_vector(15 downto 0);
signal ready_d_pre: std_logic; -- ready_d_pre is used to trigger the plaintext fsm (earlier version of ready_d)
signal state:std_logic_vector(5 downto 0); --state of primary fsm
signal state_out:std_logic_vector(3 downto 0); -- state of plaintext fsm
signal sig3,sig4:integer range 0 TO 15;
signal last_round ,cleanup : std_logic;
signal A_final,B_final,C_final,D_final:std_logic_vector(15 downto 0);
signal utemp1,ttemp1 :std_logic_vector(15 downto 0);-------a_new
signal A, B, C, D :std_logic_vector(15 downto 0);
signal product1,product2 : std_logic_vector(15 downto 0);
---key constant------
constant p:std_logic_vector(15 downto 0):= "1011011111100001";
constant q:std_logic_vector(15 downto 0):= "1001111000110111";
type s_tp is array(43 downto 0) of std_logic_vector(15 downto 0);
signal s :s_tp;
type l_tp is array(42 downto 0) of std_logic_vector(15 downto 0);
signal l :l_tp;
begin
a1: multiplier port map (B,product1);
b1: multiplier port map (D,product2);
sig3<=conv_integer(unsigned(utemp1(3 downto 0)));
sig4<=conv_integer(unsigned(ttemp1(3 downto 0)));
----key algo----
s(0) <= P ; -- initialize constant array
l(0)<=(round_keys_d + s(0));
s(1)<=(l(0)+ s(0)+ q);
l(1)<=( l(0)+s(1));
s(2)<=(l(1)+ s(1)+ q);
l(2)<=( l(1)+s(2));
s(3)<=(l(2)+ s(2)+ q);
l(3)<=( l(2)+s(3));
s(4)<=(l(3)+ s(3)+ q);
l(4)<=( l(3)+s(4));
s(5)<=(l(4)+ s(4)+ q);
l(5)<=( l(4)+s(5));
s(6)<=(l(5)+ s(5)+ q);
l(6)<=( l(5)+s(6));
s(7)<=(l(6)+ s(6)+ q);
l(7)<=( l(6)+s(7));
s(8)<=(l(7)+ s(7)+ q);
l(8)<=( l(7)+s(8));
s(9)<=(l(8)+ s(8)+ q);
l(9)<=( l(8)+s(9));
s(10)<=(l(9)+ s(9)+ q);
l(10)<=( l(9)+s(10 ));
s(11)<=(l(10)+ s(10)+ q);
l(11)<=( l(10)+s(11));
s(12)<=(l(11)+ s(11)+ q);
l(12)<=( l(11)+s(12));
s(13)<=(l(12)+ s(12)+ q);
l(13)<=( l(12)+s(13));
s(14)<=(l(13)+ s(13)+ q);
l(14)<=( l(13)+s(14));
s(15)<=(l(14)+ s(14)+ q);
l(15)<=( l(14)+s(15));
s(16)<=(l(15)+ s(15)+ q);
l(16)<=( l(15)+s(16));
s(17)<=(l(16)+ s(16)+ q);
l(17)<=( l(16)+s(17));
s(18)<=(l(17)+ s(17)+ q);
l(18)<=( l(17)+s(18));
s(19)<=(l(18)+ s(18)+ q);
l(19)<=( l(18)+s(19));
s(20)<=(l(19)+ s(19)+ q);
l(20)<=( l(19)+s(20));
s(21)<=(l(20)+ s(20)+ q);
l(21)<=( l(20)+s(21));
s(22)<=(l(21)+ s(21)+ q);
l(22)<=( l(21)+s(22));
s(23)<=(l(22)+ s(22)+ q);
l(23)<=( l(22)+s(23));
s(24)<=(l(23)+ s(23)+ q);
l(24)<=( l(23)+s(24));
s(25)<=(l(24)+ s(24)+ q);
l(25)<=( l(24)+s(25));
s(26)<=(l(25)+ s(25)+ q);
l(26)<=( l(25)+s(26));
s(27)<=(l(26)+ s(26)+ q);
l(27)<=( l(26)+s(27));
s(28)<=(l(27)+ s(27)+ q);
l(28)<=( l(27)+s(28));
s(29)<=(l(28)+ s(28)+ q);
l(29)<=( l(23)+s(24));
s(30)<=(l(29)+ s(29)+ q);
l(30)<=( l(29)+s(30));
s(31)<=(l(30)+ s(30)+ q);
l(31)<=( l(30)+s(31));
s(32)<=(l(31)+ s(31)+ q);
l(32)<=( l(31)+s(32));
s(33)<=(l(32)+ s(32)+ q);
l(33)<=( l(32)+s(33));
s(34)<=(l(33)+ s(33)+ q);
l(34)<=( l(33)+s(34));
s(35)<=(l(34)+ s(34)+ q);
l(35)<=( l(34)+s(35));
s(36)<=(l(35)+ s(35)+ q);
l(36)<=( l(35)+s(36));
s(37)<=(l(36)+ s(36)+ q);
l(37)<=( l(36)+s(37));
s(38)<=(l(37)+ s(37)+ q);
l(38)<=( l(37)+s(38));
s(39)<=(l(38)+ s(38)+ q);
l(39)<=( l(33)+s(34));
s(40)<=(l(39)+ s(39)+ q);
l(40)<=( l(39)+s(40));
s(40)<=(l(39)+ s(39)+ q);
l(41)<=( l(40)+s(40));
s(41)<=(l(40)+ s(40)+ q);
l(42)<=( l(41)+s(41));
s(42)<=(l(41)+ s(41)+ q);
s(43)<=(l(42)+ s(42)+ q);
process(clock,reset,ciphertext,sig3,sig4)
variable tempA,tempB,tempC,tempD :std_logic_vector(15 downto 0);
variable temp_AD,temp_BA,temp_CB,temp_DC :std_logic_vector(15 downto 0);
VARIABLE t,u,t_pre,u_pre:std_logic_vector( 15 downto 0);--temporary VARIABLE used for calculation of A, C, t and u
VARIABLE A_pre_2,C_pre_2,A_pre ,C_pre :std_logic_vector(15 downto 0);
variable cnt: std_logic_vector(6 downto 0):="0000000";
begin
if (reset='1') then
state <= "000001"; -- reset state
ready_d <= '0';
cnt :=(others=>'0');
A := (others=>'0');
B := (others=>'0');
C := (others=>'0');
D := (others=>'0');
ready_d <= '0';
TEMPA:=(others=>'0');
TEMPB:=(others=>'0');
TEMPC:=(others=>'0');
TEMPD:=(others=>'0');
temp_AD:= (others=>'0');
temp_BA:= (others=>'0');
temp_CB:= (others=>'0');
temp_DC:= (others=>'0');
elsif(clock'event and clock='1') then
case state is --synopsys parallel_case
when"000001"=>
if (start_d = '0') then
state <= "000001";
else
state <= "000010";
ready_d <= '1';
end if;
when "000010"=>
state <= "000011";
A := ciphertext;--read ciphertext into A
ready_d <= '0';
when "000011"=>
state <= "000100";
B := ciphertext; -- read ciphertext into B
ready_d <= '0';
when "000100"=>
state <= "000101";
C := ciphertext; -- read ciphertext into C
ready_d <= '0';
when "000101"=>
state <= "000110";
D := ciphertext;--assign ciphertext to D
A := A - s(42); -- Use round keys to calculate new value of A
C := C - s(43); -- read ciphertext - roundkeys into C
ready_d <= '0';
when "000110"=> -- begin calculation of plaintext loop from r downto 1
state <= "001000";
TEMPA:=A;
TEMPB:=B;
TEMPC:=C;
TEMPD:=D;
--swap the value of A, B ,C and D so that new value of A,B ,C AND D can be used.
temp_AD:= tempA xor tempD;
A:= temp_AD xor tempA;
temp_BA:= tempB xor tempA;
B:= temp_BA xor tempB;
temp_CB:= tempC xor tempB;
C:= temp_CB xor tempC;
temp_DC:= tempD xor tempC;
D:= temp_DC xor tempD;
ready_d <= '0';
when "001000"=>
STATE <="001001";
t_pre := product1;
u_pre := product2;
t:= t_pre(11 downto 0) & t_pre(15 downto 12);
ttemp1<=t;
u:= u_pre(11 downto 0)& u_pre(15 downto 12);
utemp1<=u;
ready_d <= '0';
when "001001"=>
state <= "001010";
for i in 1 to 20 loop
A_pre_2 := (A - s(2*i)); -- A = A-S[2i]
C_pre_2 := (C - s(2*i+1)); -- C = C - S[2i+1]
end loop ;
ready_d <= '0';
--sig3<=conv_integer(unsigned(u(3 downto 0)));
A_pre :=A_pre_2(sig3-1 downto 0) & A_pre_2(15 downto sig3);
A := (A_pre xor t); -- A = ((A-S[2i] >>>u) xor t
--sig4<=conv_integer(unsigned(t(3 downto 0)));
C_pre:=C_pre_2(sig4-1 downto 0)& C_pre_2(15 downto sig4);
C := (C_pre xor u); -- C = ((C-S[2i+1]>>>t) xor u
when "001010"=>
state <= "000001";
if(cnt<19 )then
cnt:=cnt+1 ;
state <="000110";
else
last_round <='1';
state<="001011";
cnt:="0000000" ;
end if;
when "001011"=>
state <= "001100";
D := D - s(1); -- Calculate final value of D
ready_d <= '0';
when "001100" =>
state <= "001101";
B := B - s(0); -- Calculate final value of B
ready_d <= '1'; -- set ready_d signal high as decryption process is over
cleanup<='1';
ready_d_pre <= '1';-- Assign ready_d_pre high which essentially starts up second FSM.
when "001101" =>
if(cleanup='1') then
A_final <= A;
B_final <= B;
C_final <= C;
D_final <= D;
else
A_final <= A_final ;
B_final <= B_final ;
C_final <= C_final ;
D_final <= D_final ;
end if;
when others=>
state <= "000001";
ready_d <= '1';
A := (others=>'0');
B := (others=>'0');
C := (others=>'0');
D := (others=>'0');
end case;
end if;
end process;
process(clock,reset,ready_d_pre,A_final,B_final,C_final,D_final)
begin
if (reset='1') then
state_out <= idle;
plaintext_d <= (others=>'0');
elsif (clock'event and clock='1') then
case state_out is --synopsys parallel_case
when idle=>
if (ready_d_pre='1') then
state_out <= out_A;
else
state_out <= idle;
plaintext_d <= (others=>'0');
end if;
when out_A=>
state_out <= out_B;
plaintext_d <= A_final; -- Output plaintext as A
when out_B=>
state_out <= out_C;
plaintext_d <= B_final; -- Output plaintext as B
when out_C=>
state_out <= out_D;
plaintext_d <= C_final; -- Output plaintext as C
when out_D=>
state_out <= idle;
plaintext_d <= D_final; -- Output plaintext as D
when others=>
state_out <= idle;
plaintext_d <= (others=>'0');
end case;
end if;
end process;
end arch_decryptor ;