URL
https://opencores.org/ocsvn/cryptosorter/cryptosorter/trunk
Subversion Repositories cryptosorter
[/] [cryptosorter/] [trunk/] [memocodeDesignContest2008/] [xup/] [PLBMaster/] [PLBMaster_backupPPC.bsv] - Rev 6
Compare with Previous | Blame | View Log
/*
Copyright (c) 2007 MIT
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
Author: Kermin Fleming
*/
// Global Imports
import GetPut::*;
import FIFO::*;
import RegFile::*;
import BRAMInitiatorWires::*;
import RegFile::*;
import FIFOF::*;
import BRAM::*;
// Project Imports
import Types::*;
import Interfaces::*;
import Parameters::*;
import DebugFlags::*;
import BRAMInitiator::*;
import PLBMasterWires::*;
import StmtFSM::*;
(* synthesize *)
module mkPLB_backupPPC(BRAMInitiatorWires#(Bit#(14)));
RegFile#(Bit#(20), Bit#(32)) matrixA <- mkRegFileFullLoad("matrixA.hex");
RegFile#(Bit#(20), Bit#(32)) matrixB <- mkRegFileFullLoad("matrixB.hex");
RegFile#(Bit#(20), Bit#(32)) matrixC <- mkRegFileFull();
RegFile#(Bit#(20), Bit#(32)) scratch <- mkRegFileFull();
RegFile#(Bit#(20), Bit#(32)) golden <- mkRegFileFullLoad("golden.hex");
Reg#(Bit#(32)) goldenElementCounter <- mkReg(0);
RegFile#(Bit#(16), Bit#(64)) prog <- mkRegFileFullLoad("program.hex");
Reg#(Bit#(16)) prog_idx <- mkReg(0);
//State
BRAMInitiator#(Bit#(14)) bramInit <- mkBRAMInitiator;
let bram = bramInit.bram;
//BRAM#(Bit#(14), Bit#(32)) bram <- mkBRAM_Full();
FIFOF#(Bit#(32)) outQ <- mkFIFOF();
FIFO#(Bit#(32)) inQ <- mkFIFO();
FIFO#(Bit#(64)) commandQ <- mkFIFO();
Reg#(Bit#(30)) baseAddr <- mkRegU;
let minWritePtr = 0;
let maxWritePtr = 129*2-1;
let minReadPtr = 129*2;
let maxReadPtr = 129*4-1;
let burstSize = 128;
Reg#(Bit#(14)) readPtr <- mkReg(minReadPtr);
Reg#(Bit#(14)) writePtr <- mkReg(minWritePtr);
let incWritePtr = (writePtr == maxWritePtr) ? minWritePtr : (writePtr + 1);
let incReadPtr = (readPtr == maxReadPtr) ? minReadPtr : (readPtr + 1);
let ready = True;
let debugF = debug(False);
Reg#(Bit#(10)) count <- mkReg(0);
Reg#(Bit#(32)) value <- mkReg(0);
Reg#(Bit#(64)) totalTicks <- mkReg(0);
Reg#(Bit#(32)) rowOffset <- mkReg(0); // stored in terms of words
function Action readAddr(addr);
case (addr[21:20])
2'b00: return (matrixA.sub(addr[19:0]));
2'b01: return (matrixB.sub(addr[19:0]));
2'b10: return (matrixC.sub(addr[19:0]));
2'b11: return (scratch.sub(addr[19:0]));
endcase
endfunction
function Action writeAddr(addr,val);
action
case (addr[21:20])
2'b00: begin
debugF($display("PLB: writing to matA %h",addr[19:0]));
matrixA.upd(addr[19:0],val);
end
2'b01: begin
debugF($display("PLB: writing to matB %h",addr[19:0]));
matrixB.upd(addr[19:0],val);
end
2'b10: begin
debugF($display("PLB: writing to matC %h",addr[19:0]));
matrixC.upd(addr[19:0],val);
let oldval = matrixC.sub(addr[19:0]);
let goldenval = golden.sub(addr[19:0]);
if ((goldenval != oldval) && (goldenval == val)) // a new correct val
begin
goldenElementCounter <= goldenElementCounter +1;
if (truncate(goldenElementCounter) == 16'hFFFF) // time to announce
$display("Correct Value Count: %d @ %d", goldenElementCounter+1,totalTicks);
if (goldenElementCounter + 1 == (rowOffset * rowOffset))
begin
$display("PASSED @ %d", totalTicks);
$finish;
end
end
end
2'b11: begin
debugF($display("PLB: writing to scratch %h",addr[19:0]));
scratch.upd(addr[19:0],val);
end
endcase
endaction
endfunction
///////////////////////////////////////////////////////////
// In goes to MEM, Out goes back to FPGA
///////////////////////////////////////////////////////////
Stmt doReadStmt =
seq
bram.read_req(readPtr);
action
let v <- bram.read_resp();
value <= v;
count <= 0;
endaction
if (value != 0)
seq
while(count < burstSize)
seq
action
readPtr <= incReadPtr;
count <= count + 1;
let v <- bram.read_resp();
writeAddr(baseAddr+zeroExtend(count), v);
if (count <burstSize)
bram.read_req(readPtr+1); //
if (count == burstSize)
bram.write(readPtr - burstSize, 0); // take
endaction
endseq
endseq
endseq;
FSM doRead <- mkFSM(doReadStmt);
Stmt doWriteStmt =
seq
bram.read_req(writePtr);
action
let v <- bram.read_resp();
value <= v;
count <= 0;
endaction
if (value == 0)
seq
while(count < burstSize)
seq
action
writePtr <= incWritePtr;
count <= count + 1;
if (count <burstSize)
begin
let val = readAddr(baseAddr+zeroExtend(count));
bram.write(writePtr+1, val); //
end
if (count == burstSize)
bram.write(writePtr - burstSize, 32'hFFFFFFFF); // take
endaction
endseq
endseq
commandQ.deq();
endseq;
FSM doWrite <- mkFSM(doWriteStmt);
rule doStuff(doRead.done && doWrite.done);
let inst = unpack(truncate(commandQ.first));
let mload = translateLoad(inst);
let mstore = translateStore(inst);
let mrow = translateRowSize(inst);
commandQ.deq();
if (isJust(mload))
begin
baseAddr <= unJust(mload);
doRead.start();
end
else if (isJust(mstore))
begin
baseAddr <= unJust(mstore);
doWrite.start();
end
else if (isJust(mrow))
begin
rowOffset <= zeroExtend(unJust(mrow));
end
endrule
rule tick(True);
totalTicks <= totalTicks +1;
endrule
rule doProgRead(prog.sub(prog_idx) != 64'hAAAA_AAAA_AAAA_AAAA);
let x = prog.sub(prog_idx);
commandQ.enq(x);
prog_idx <= prog_idx + 1;
endrule
return (bramInit.bramInitiatorWires);
endmodule