OpenCores
URL https://opencores.org/ocsvn/cryptosorter/cryptosorter/trunk

Subversion Repositories cryptosorter

[/] [cryptosorter/] [trunk/] [memocodeDesignContest2008/] [xup/] [PLBMaster/] [PLBMaster_backupPPC.bsv] - Rev 3

Go to most recent revision | Compare with Previous | Blame | View Log

/*
Copyright (c) 2007 MIT

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Author: Kermin Fleming
*/

// Global Imports
import GetPut::*;
import FIFO::*;
import RegFile::*;
import BRAMInitiatorWires::*;
import RegFile::*;
import FIFOF::*;

import BRAM::*;
// Project Imports
import Types::*;
import Interfaces::*;
import Parameters::*;
import DebugFlags::*;

import BRAMInitiator::*;
import PLBMasterWires::*;
import StmtFSM::*;

(* synthesize *)
module mkPLB_backupPPC(BRAMInitiatorWires#(Bit#(14)));
 
  RegFile#(Bit#(20), Bit#(32))  matrixA <- mkRegFileFullLoad("matrixA.hex");
  RegFile#(Bit#(20), Bit#(32))  matrixB <- mkRegFileFullLoad("matrixB.hex");
  RegFile#(Bit#(20), Bit#(32))  matrixC <- mkRegFileFull();  
  RegFile#(Bit#(20), Bit#(32))  scratch <- mkRegFileFull();
  RegFile#(Bit#(20), Bit#(32))  golden  <- mkRegFileFullLoad("golden.hex"); 

  Reg#(Bit#(32))      goldenElementCounter <- mkReg(0); 

  RegFile#(Bit#(16), Bit#(64))     prog <- mkRegFileFullLoad("program.hex");
  Reg#(Bit#(16))               prog_idx <- mkReg(0);

  
  //State

  BRAMInitiator#(Bit#(14)) bramInit <- mkBRAMInitiator;
  let bram = bramInit.bram;
  
  //BRAM#(Bit#(14), Bit#(32))   bram <- mkBRAM_Full();
  
  FIFOF#(Bit#(32))             outQ <- mkFIFOF();
  FIFO#(Bit#(32))               inQ <- mkFIFO();
  FIFO#(Bit#(64))          commandQ <- mkFIFO();
  Reg#(Bit#(30))           baseAddr <- mkRegU;

  let minWritePtr  =   0;
  let maxWritePtr  =  129*2-1;

  let minReadPtr   =  129*2;
  let maxReadPtr   =  129*4-1;

  let burstSize    =  128;

  Reg#(Bit#(14))    readPtr <- mkReg(minReadPtr); 
  Reg#(Bit#(14))   writePtr <- mkReg(minWritePtr);
  



  let incWritePtr  = (writePtr == maxWritePtr) ? minWritePtr : (writePtr + 1);
  let incReadPtr   = (readPtr == maxReadPtr) ? minReadPtr : (readPtr + 1);
  
  let ready = True;
  let debugF = debug(False);
  


  Reg#(Bit#(10))      count <- mkReg(0);
  
  Reg#(Bit#(32))      value <- mkReg(0);
  
  Reg#(Bit#(64)) totalTicks <- mkReg(0);
  Reg#(Bit#(32))  rowOffset <- mkReg(0);  // stored in terms of words
  
  
  function Action readAddr(addr);
    case (addr[21:20]) 
      2'b00:  return (matrixA.sub(addr[19:0]));  
      2'b01:  return (matrixB.sub(addr[19:0]));
      2'b10:  return (matrixC.sub(addr[19:0]));
      2'b11:  return (scratch.sub(addr[19:0]));
    endcase
  endfunction
  
  function Action writeAddr(addr,val);
    action
      case (addr[21:20])
        2'b00:  begin
                  debugF($display("PLB: writing to matA %h",addr[19:0]));
                  matrixA.upd(addr[19:0],val);
                end
        2'b01:  begin
                  debugF($display("PLB: writing to matB %h",addr[19:0]));
                  matrixB.upd(addr[19:0],val);
                end
        2'b10:  begin
                  debugF($display("PLB: writing to matC %h",addr[19:0]));
                  matrixC.upd(addr[19:0],val);
                  let oldval    = matrixC.sub(addr[19:0]);
                  let goldenval = golden.sub(addr[19:0]);
                  
                if ((goldenval != oldval) && (goldenval == val)) // a new correct val
                  begin
                    goldenElementCounter <= goldenElementCounter +1;
                    if (truncate(goldenElementCounter) == 16'hFFFF) // time to announce
                      $display("Correct Value Count: %d @ %d", goldenElementCounter+1,totalTicks);
                    if (goldenElementCounter + 1 ==   (rowOffset * rowOffset))
                      begin
                        $display("PASSED @ %d", totalTicks);
                        $finish;
                      end
                  end
              end
      2'b11:  begin
                debugF($display("PLB: writing to scratch %h",addr[19:0]));
                scratch.upd(addr[19:0],val);
              end
      endcase
    endaction
  endfunction

  
  ///////////////////////////////////////////////////////////  
  // In goes to MEM, Out goes back to FPGA
  ///////////////////////////////////////////////////////////

  Stmt doReadStmt =
    seq
      bram.read_req(readPtr);
      action
        let v <- bram.read_resp();
        value <= v;
        count <= 0;
      endaction    
      if (value != 0)
        seq
          while(count < burstSize)
            seq
              action
                readPtr <= incReadPtr;
                count <= count + 1;
                let v <- bram.read_resp();
                writeAddr(baseAddr+zeroExtend(count), v);
                if (count <burstSize) 
                  bram.read_req(readPtr+1); //
                if (count == burstSize)
                  bram.write(readPtr - burstSize, 0); // take
              endaction
            endseq
        endseq
  endseq;
  
  FSM doRead <- mkFSM(doReadStmt); 
  
  Stmt doWriteStmt =
    seq
      bram.read_req(writePtr);
      action
        let v <- bram.read_resp();
        value <= v;
        count <= 0;
      endaction    
      if (value == 0)
        seq
          while(count < burstSize)
            seq
              action
                writePtr <= incWritePtr;
                count <= count + 1;
                if (count <burstSize) 
                  begin
                    let val = readAddr(baseAddr+zeroExtend(count));
                    bram.write(writePtr+1, val); //
                  end
                if (count == burstSize)
                  bram.write(writePtr - burstSize, 32'hFFFFFFFF); // take
              endaction
            endseq
        endseq
      commandQ.deq();
    endseq;
  
  FSM doWrite <- mkFSM(doWriteStmt); 
  
  rule doStuff(doRead.done && doWrite.done);
    let inst = unpack(truncate(commandQ.first));
    
    let mload  = translateLoad(inst);
    let mstore = translateStore(inst);
    let mrow   = translateRowSize(inst);
    
    commandQ.deq();
    
    if (isJust(mload))
      begin
        baseAddr <= unJust(mload);
        doRead.start();
      end
    else if (isJust(mstore))
      begin
        baseAddr <= unJust(mstore);
        doWrite.start();        
      end
    else if (isJust(mrow))
      begin
        rowOffset <= zeroExtend(unJust(mrow));
      end
  endrule
  
  rule tick(True);
    totalTicks <= totalTicks +1;
  endrule

  rule doProgRead(prog.sub(prog_idx) != 64'hAAAA_AAAA_AAAA_AAAA);
    let x = prog.sub(prog_idx);
    commandQ.enq(x);
    prog_idx <= prog_idx + 1;
  endrule

  return (bramInit.bramInitiatorWires);
endmodule

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.