URL
https://opencores.org/ocsvn/dbg_interface/dbg_interface/trunk
Subversion Repositories dbg_interface
[/] [dbg_interface/] [trunk/] [rtl/] [verilog/] [dbg_cpu.v] - Rev 100
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// dbg_cpu.v //// //// //// //// //// //// This file is part of the SoC/OpenRISC Development Interface //// //// http://www.opencores.org/projects/DebugInterface/ //// //// //// //// Author(s): //// //// Igor Mohor (igorm@opencores.org) //// //// //// //// //// //// All additional information is avaliable in the README.txt //// //// file. //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 - 2004 Authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // // // synopsys translate_off `include "timescale.v" // synopsys translate_on `include "dbg_cpu_defines.v" // Top module module dbg_cpu( // JTAG signals tck_i, tdi_i, tdo_o, // TAP states shift_dr_i, pause_dr_i, update_dr_i, cpu_ce_i, crc_match_i, crc_en_o, shift_crc_o, rst_i, clk_i ); // JTAG signals input tck_i; input tdi_i; output tdo_o; // TAP states input shift_dr_i; input pause_dr_i; input update_dr_i; input cpu_ce_i; input crc_match_i; output crc_en_o; output shift_crc_o; input rst_i; input clk_i; reg tdo_o; wire cmd_cnt_en; reg [1:0] cmd_cnt; wire cmd_cnt_end; reg cmd_cnt_end_q; wire addr_cnt_en; reg [5:0] addr_cnt; reg [5:0] addr_cnt_limit; wire addr_cnt_end; wire crc_cnt_en; reg [5:0] crc_cnt; wire crc_cnt_end; reg crc_cnt_end_q; wire data_cnt_en; reg [5:0] data_cnt; reg [5:0] data_cnt_limit; wire data_cnt_end; reg data_cnt_end_q; wire status_cnt_end; reg status_cnt1, status_cnt2, status_cnt3, status_cnt4; reg [3:0] status; wire enable; reg read_cycle_reg; reg read_cycle_cpu; reg write_cycle_reg; reg write_cycle_cpu; wire read_cycle; wire write_cycle; reg [34:0] dr; wire dr_read_reg; wire dr_write_reg; wire dr_read_cpu8; wire dr_read_cpu32; wire dr_write_cpu8; wire dr_write_cpu32; wire dr_go; reg dr_read_reg_latched; reg dr_write_reg_latched; reg dr_read_cpu8_latched; reg dr_read_cpu32_latched; reg dr_write_cpu8_latched; reg dr_write_cpu32_latched; reg dr_go_latched; reg cmd_read_reg; reg cmd_read_cpu; reg cmd_write_reg; reg cmd_write_cpu; wire go_prelim; wire crc_cnt_31; assign enable = cpu_ce_i & shift_dr_i; assign crc_en_o = enable & crc_cnt_end & (~status_cnt_end); assign shift_crc_o = enable & status_cnt_end; // Signals dbg module to shift out the CRC assign cmd_cnt_en = enable & (~cmd_cnt_end); // Command counter always @ (posedge tck_i or posedge rst_i) begin if (rst_i) cmd_cnt <= #1 'h0; else if (update_dr_i) cmd_cnt <= #1 'h0; else if (cmd_cnt_en) cmd_cnt <= #1 cmd_cnt + 1'b1; end assign addr_cnt_en = enable & cmd_cnt_end & (~addr_cnt_end); // Address/length counter always @ (posedge tck_i or posedge rst_i) begin if (rst_i) addr_cnt <= #1 'h0; else if (update_dr_i) addr_cnt <= #1 'h0; else if (addr_cnt_en) addr_cnt <= #1 addr_cnt + 1'b1; end assign data_cnt_en = enable & (~data_cnt_end) & (cmd_cnt_end & write_cycle | crc_cnt_end & read_cycle); // Data counter always @ (posedge tck_i or posedge rst_i) begin if (rst_i) data_cnt <= #1 'h0; else if (update_dr_i) data_cnt <= #1 'h0; else if (data_cnt_en) data_cnt <= #1 data_cnt + 1'b1; end assign crc_cnt_en = enable & (~crc_cnt_end) & (cmd_cnt_end & addr_cnt_end & (~write_cycle) | (data_cnt_end & write_cycle)); // crc counter always @ (posedge tck_i or posedge rst_i) begin if (rst_i) crc_cnt <= #1 'h0; else if(crc_cnt_en) crc_cnt <= #1 crc_cnt + 1'b1; else if (update_dr_i) crc_cnt <= #1 'h0; end // Upper limit. Address/length counter counts until this value is reached always @ (posedge tck_i) begin if (cmd_cnt == 2'h2) begin if ((~dr[0]) & (~tdi_i)) // (current command is WB_STATUS or WB_GO) addr_cnt_limit = 6'd0; else // (current command is WB_WRITEx or WB_READx) addr_cnt_limit = 6'd32; end end assign cmd_cnt_end = cmd_cnt == 2'h3; assign addr_cnt_end = addr_cnt == addr_cnt_limit; assign crc_cnt_end = crc_cnt == 6'd32; assign crc_cnt_31 = crc_cnt == 6'd31; assign data_cnt_end = (data_cnt == data_cnt_limit); always @ (posedge tck_i) begin crc_cnt_end_q <= #1 crc_cnt_end; cmd_cnt_end_q <= #1 cmd_cnt_end; data_cnt_end_q <= #1 data_cnt_end; end // Status counter is made of 4 serialy connected registers always @ (posedge tck_i or posedge rst_i) begin if (rst_i) status_cnt1 <= #1 1'b0; else if (update_dr_i) status_cnt1 <= #1 1'b0; else if (data_cnt_end & read_cycle | crc_cnt_end & (~read_cycle) ) status_cnt1 <= #1 1'b1; end always @ (posedge tck_i or posedge rst_i) begin if (rst_i) begin status_cnt2 <= #1 1'b0; status_cnt3 <= #1 1'b0; status_cnt4 <= #1 1'b0; end else if (update_dr_i) begin status_cnt2 <= #1 1'b0; status_cnt3 <= #1 1'b0; status_cnt4 <= #1 1'b0; end else begin status_cnt2 <= #1 status_cnt1; status_cnt3 <= #1 status_cnt2; status_cnt4 <= #1 status_cnt3; end end assign status_cnt_end = status_cnt4; reg [31:0] adr; reg set_addr; // Latching address always @ (posedge tck_i) begin if(crc_cnt_end & (~crc_cnt_end_q) & crc_match_i) begin if (~dr_go_latched) begin adr <= #1 dr[31:0]; set_addr <= #1 1'b1; end end else set_addr <= #1 1'b0; end reg latch_data; reg [199:0] latching_data_text; // Shift register for shifting in and out the data always @ (posedge tck_i) begin if (enable & ((~addr_cnt_end) | (~cmd_cnt_end) | ((~data_cnt_end) & write_cycle))) begin dr <= #1 {dr[33:0], tdi_i}; latch_data <= #1 1'b0; latching_data_text = "tdi shifted in"; end else latching_data_text = "nothing"; end assign dr_read_reg = dr[2:0] == `CPU_READ_REG; assign dr_write_reg = dr[2:0] == `CPU_WRITE_REG; assign dr_read_cpu8 = dr[2:0] == `CPU_READ8; assign dr_read_cpu32 = dr[2:0] == `CPU_READ32; assign dr_write_cpu8 = dr[2:0] == `CPU_WRITE8; assign dr_write_cpu32 = dr[2:0] == `CPU_WRITE32; assign dr_go = dr[2:0] == `CPU_GO; // Latching instruction always @ (posedge tck_i) begin if (update_dr_i) begin dr_read_reg_latched <= #1 1'b0; dr_read_cpu8_latched <= #1 1'b0; dr_read_cpu32_latched <= #1 1'b0; dr_write_reg_latched <= #1 1'b0; dr_write_cpu8_latched <= #1 1'b0; dr_write_cpu32_latched <= #1 1'b0; dr_go_latched <= #1 1'b0; end else if (cmd_cnt_end & (~cmd_cnt_end_q)) begin dr_read_reg_latched <= #1 dr_read_reg; dr_read_cpu8_latched <= #1 dr_read_cpu8; dr_read_cpu32_latched <= #1 dr_read_cpu32; dr_write_reg_latched <= #1 dr_write_reg; dr_write_cpu8_latched <= #1 dr_write_cpu8; dr_write_cpu32_latched <= #1 dr_write_cpu32; dr_go_latched <= #1 dr_go; end end // Latching instruction always @ (posedge tck_i or posedge rst_i) begin if (rst_i) begin cmd_read_reg <= #1 1'b0; cmd_read_cpu <= #1 1'b0; cmd_write_reg <= #1 1'b0; cmd_write_cpu <= #1 1'b0; end else if(crc_cnt_end & (~crc_cnt_end_q) & crc_match_i) begin cmd_read_reg <= #1 dr_read_reg_latched; cmd_read_cpu <= #1 dr_read_cpu8_latched | dr_read_cpu32_latched; cmd_write_reg <= #1 dr_write_reg_latched; cmd_write_cpu <= #1 dr_write_cpu8_latched | dr_write_cpu32_latched; end end // Upper limit. Data counter counts until this value is reached. always @ (posedge tck_i or posedge rst_i) begin if (rst_i) data_cnt_limit <= #1 6'h0; else if(crc_cnt_end & (~crc_cnt_end_q) & crc_match_i) begin if (dr_read_cpu32_latched | dr_write_cpu32_latched) data_cnt_limit <= #1 6'd32; else data_cnt_limit <= #1 6'd8; end end assign go_prelim = (cmd_cnt == 2'h2) & dr[1] & (~dr[0]) & (~tdi_i); always @ (posedge tck_i) begin if (update_dr_i) read_cycle_reg <= #1 1'b0; else if (cmd_read_reg & go_prelim) read_cycle_reg <= #1 1'b1; end always @ (posedge tck_i) begin if (update_dr_i) read_cycle_cpu <= #1 1'b0; else if (cmd_read_cpu & go_prelim) read_cycle_cpu <= #1 1'b1; end always @ (posedge tck_i) begin if (update_dr_i) write_cycle_reg <= #1 1'b0; else if (cmd_write_reg & go_prelim) write_cycle_reg <= #1 1'b1; end always @ (posedge tck_i) begin if (update_dr_i) write_cycle_cpu <= #1 1'b0; else if (cmd_write_cpu & go_prelim) write_cycle_cpu <= #1 1'b1; end assign read_cycle = read_cycle_reg | read_cycle_cpu; assign write_cycle = write_cycle_reg | write_cycle_cpu; reg reg_access; // Start register write cycle always @ (posedge tck_i) begin if (write_cycle_reg & data_cnt_end & (~data_cnt_end_q)) begin reg_access <= #1 1'b1; end else reg_access <= #1 1'b0; end // Connecting dbg_cpu_registers dbg_cpu_registers i_dbg_cpu_registers ( .data_in (dr[7:0]), .data_out (), .address (adr[1:0]), .rw (write_cycle), .access (reg_access), .clk (tck_i), .bp (1'b1), .reset (rst_i), .cpu_stall (), .cpu_stall_all (), .cpu_sel (), .cpu_reset () ); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log