URL
https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk
Subversion Repositories dblclockfft
[/] [dblclockfft/] [trunk/] [bench/] [cpp/] [fft_tb.cpp] - Rev 16
Go to most recent revision | Compare with Previous | Blame | View Log
// // Filename: fft_tb.cpp // // Project: A Doubletime Pipelined FFT // // Purpose: A test-bench for the main program, fftmain.v, of the double // clocked FFT. This file may be run autonomously (when // fully functional). If so, the last line output will either // read "SUCCESS" on success, or some other failure message // otherwise. // // This file depends upon verilator to both compile, run, and // therefore test fftmain.v // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Tecnology, LLC // /////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////// #include <stdio.h> #include <math.h> #include <fftw3.h> #include "verilated.h" #include "Vfftmain.h" #define LGWIDTH 11 #define IWIDTH 16 #define OWIDTH 22 #define FFTLEN (1<<LGWIDTH) class FFT_TB { public: Vfftmain *m_fft; long m_data[FFTLEN], m_log[4*FFTLEN]; int m_iaddr, m_oaddr, m_ntest; FILE *m_dumpfp; fftw_plan m_plan; double *m_fft_buf; bool m_syncd; FFT_TB(void) { m_fft = new Vfftmain; m_iaddr = m_oaddr = 0; m_dumpfp = NULL; m_fft_buf = (double *)fftw_malloc(sizeof(fftw_complex)*(FFTLEN)); m_plan = fftw_plan_dft_1d(FFTLEN, (fftw_complex *)m_fft_buf, (fftw_complex *)m_fft_buf, FFTW_FORWARD, FFTW_MEASURE); m_syncd = false; m_ntest = 0; } void tick(void) { m_fft->i_clk = 0; m_fft->eval(); m_fft->i_clk = 1; m_fft->eval(); } void reset(void) { m_fft->i_ce = 0; m_fft->i_rst = 1; tick(); m_fft->i_rst = 0; tick(); m_iaddr = m_oaddr = 0; m_syncd = false; } long twos_complement(const long val, const int bits) { long r; r = val & ((1l<<bits)-1); if (r & (1l << (bits-1))) r |= (-1l << bits); return r; } void checkresults(void) { double *dp, *sp; // Complex array double vout[FFTLEN*2]; double isq=0.0, osq = 0.0; long *lp; // Fill up our test array from the log array // printf("%3d : CHECK: %8d %5x\n", m_ntest, m_iaddr, m_iaddr); dp = m_fft_buf; lp = &m_log[(m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))]; for(int i=0; i<FFTLEN; i++) { long tv = *lp++; dp[0] = twos_complement(tv >> IWIDTH, IWIDTH); dp[1] = twos_complement(tv, IWIDTH); // printf("IN[%4d = %4x] = %9.1f %9.1f\n", // i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))), // i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))), // dp[0], dp[1]); dp += 2; } // Let's measure ... are we the zero vector? If not, how close? dp = m_fft_buf; for(int i=0; i<FFTLEN; i++) isq += (*dp) * (*dp); fftw_execute(m_plan); // Let's load up the output we received into vout dp = vout; for(int i=0; i<FFTLEN; i++) { long tv = m_data[i]; // printf("OUT[%4d = %4x] = ", i, i); // printf("%12lx = ", tv); *dp = twos_complement(tv >> OWIDTH, OWIDTH); // printf("%10.1f + ", *dp); osq += (*dp) * (*dp); dp++; *dp = twos_complement(tv, OWIDTH); // printf("%10.1f j", *dp); osq += (*dp) * (*dp); dp++; // printf(" <-> %12.1f %12.1f\n", m_fft_buf[2*i], m_fft_buf[2*i+1]); } // Let's figure out if there's a scale factor difference ... double scale = 0.0, wt = 0.0; sp = m_fft_buf; dp = vout; for(int i=0; i<FFTLEN*2; i++) { scale += (*sp) * (*dp++); wt += (*sp) * (*sp); sp++; } scale = scale / wt; if (wt == 0.0) scale = 1.0; double xisq = 0.0; sp = m_fft_buf; dp = vout; for(int i=0; i<FFTLEN*2; i++) { double vl = (*sp++) * scale - (*dp++); xisq += vl * vl; } printf("%3d : SCALE = %12.6f, WT = %18.1f, ISQ = %15.1f, ", m_ntest, scale, wt, isq); printf("OSQ = %18.1f, ", osq); printf("XISQ = %18.1f\n", xisq); if (xisq > 1.2 * FFTLEN/2) { printf("TEST FAIL!! Result is out of bounds from "); printf("expected result with FFTW3.\n"); exit(-2); } m_ntest++; } bool test(int lft, int rht) { m_fft->i_ce = 1; m_fft->i_rst = 0; m_fft->i_left = lft; m_fft->i_right = rht; m_log[(m_iaddr++)&(4*FFTLEN-1)] = (long)lft; m_log[(m_iaddr++)&(4*FFTLEN-1)] = (long)rht; tick(); if (m_fft->o_sync) { m_oaddr &= (-1<<LGWIDTH); m_syncd = true; } else m_oaddr += 2; /* printf("%8x,%5d: %08x,%08x -> %011lx,%011lx" // "\t%011lx,%011lx" // "\t%011lx,%011lx" // "\t%06x,%06x" // "\t%06x,%06x" "\t%011lx,%06x,%06x" "\t%011lx,%06x,%06x" " %s%s%s%s%s%s%s%s%s%s %s%s\n", m_iaddr, m_oaddr, lft, rht, m_fft->o_left, m_fft->o_right, // m_fft->v__DOT__stage_e2048__DOT__ib_a, // m_fft->v__DOT__stage_e2048__DOT__ib_b, // m_fft->v__DOT__stage_e512__DOT__ib_a, // m_fft->v__DOT__stage_e512__DOT__ib_b, // m_fft->v__DOT__stage_e256__DOT__ib_a, // m_fft->v__DOT__stage_e256__DOT__ib_b, // m_fft->v__DOT__stage_e128__DOT__ib_a, // m_fft->v__DOT__stage_e128__DOT__ib_b, // m_fft->v__DOT__stage_e64__DOT__ib_a, // m_fft->v__DOT__stage_e64__DOT__ib_b, // m_fft->v__DOT__stage_e32__DOT__ib_a, // m_fft->v__DOT__stage_e32__DOT__ib_b, // m_fft->v__DOT__stage_e16__DOT__ib_a, // m_fft->v__DOT__stage_e16__DOT__ib_b, // m_fft->v__DOT__stage_e8__DOT__ib_a, // m_fft->v__DOT__stage_e8__DOT__ib_b, // m_fft->v__DOT__stage_o8__DOT__ib_a, // m_fft->v__DOT__stage_o8__DOT__ib_b, // m_fft->v__DOT__stage_e4__DOT__sum_r, // m_fft->v__DOT__stage_e4__DOT__sum_i, // m_fft->v__DOT__stage_o4__DOT__sum_r, // m_fft->v__DOT__stage_o4__DOT__sum_i, m_fft->v__DOT__stage_e4__DOT__ob_a, m_fft->v__DOT__stage_e4__DOT__ob_b_r, m_fft->v__DOT__stage_e4__DOT__ob_b_i, m_fft->v__DOT__stage_o4__DOT__ob_a, m_fft->v__DOT__stage_o4__DOT__ob_b_r, m_fft->v__DOT__stage_o4__DOT__ob_b_i, // m_fft->v__DOT__stage_2__DOT__out_0r, // m_fft->v__DOT__stage_2__DOT__out_0i, // m_fft->v__DOT__stage_2__DOT__out_1r, // m_fft->v__DOT__stage_2__DOT__out_1i, (m_fft->v__DOT__w_s2048)?"S":"-", (m_fft->v__DOT__w_s1024)?"S":"-", (m_fft->v__DOT__w_s512)?"S":"-", (m_fft->v__DOT__w_s256)?"S":"-", (m_fft->v__DOT__w_s128)?"S":"-", (m_fft->v__DOT__w_s64)?"S":"-", (m_fft->v__DOT__w_s32)?"S":"-", (m_fft->v__DOT__w_s16)?"S":"-", (m_fft->v__DOT__w_s8)?"S":"-", (m_fft->v__DOT__w_s4)?"S":"-", // (m_fft->v__DOT__w_s2)?"S":"-", // doesn't exist (m_fft->o_sync)?"\t(SYNC!)":"", (m_fft->o_left | m_fft->o_right)?" (NZ)":""); */ m_data[(m_oaddr )&(FFTLEN-1)] = m_fft->o_left; m_data[(m_oaddr+1)&(FFTLEN-1)] = m_fft->o_right; if ((m_syncd)&&((m_oaddr&(FFTLEN-1)) == FFTLEN-2)) { dumpwrite(); checkresults(); } return (m_fft->o_sync); } bool test(double lft_r, double lft_i, double rht_r, double rht_i) { int ilft, irht, ilft_r, ilft_i, irht_r, irht_i; ilft_r = (int)(lft_r) & ((1<<IWIDTH)-1); ilft_i = (int)(lft_i) & ((1<<IWIDTH)-1); irht_r = (int)(rht_r) & ((1<<IWIDTH)-1); irht_i = (int)(rht_i) & ((1<<IWIDTH)-1); ilft = (ilft_r << IWIDTH) | ilft_i; irht = (irht_r << IWIDTH) | irht_i; return test(ilft, irht); } double rdata(int addr) { long ivl = m_data[addr & (FFTLEN-1)]; ivl = twos_complement(ivl >> OWIDTH, OWIDTH); return (double)ivl; } double idata(int addr) { long ivl = m_data[addr & (FFTLEN-1)]; ivl = twos_complement(ivl, OWIDTH); return (double)ivl; } void dump(FILE *fp) { m_dumpfp = fp; } void dumpwrite(void) { if (!m_dumpfp) return; double *buf; buf = new double[FFTLEN * 2]; for(int i=0; i<FFTLEN; i++) { buf[i*2] = rdata(i); buf[i*2+1] = idata(i); } fwrite(buf, sizeof(double), FFTLEN*2, m_dumpfp); delete[] buf; } }; int main(int argc, char **argv, char **envp) { Verilated::commandArgs(argc, argv); FFT_TB *fft = new FFT_TB; FILE *fpout; fpout = fopen("fft_tb.dbl", "w"); if (NULL == fpout) { fprintf(stderr, "Cannot write output file, fft_tb.dbl\n"); exit(-1); } fft->reset(); fft->dump(fpout); // 1 -> 0x0001 // 2 -> 0x0002 // 4 -> 0x0004 // 8 -> 0x0008 // 16 -> 0x0010 // 32 -> 0x0020 // 64 -> 0x0040 // 128 -> 0x0080 // 256 -> 0x0100 // 512 -> 0x0200 // 1024 -> 0x0400 // 2048 -> 0x0800 // 4096 -> 0x1000 // 8192 -> 0x2000 // 16384 -> 0x4000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test((double)v,0.0,(double)v,0.0); // 1 -> 0xffff // 2 -> 0xfffe // 4 -> 0xfffc // 8 -> 0xfff8 // 16 -> 0xfff0 // 32 -> 0xffe0 // 64 -> 0xffc0 // 128 -> 0xff80 // 256 -> 0xff00 // 512 -> 0xfe00 // 1024 -> 0xfc00 // 2048 -> 0xf800 // 4096 -> 0xf000 // 8192 -> 0xe000 // 16384 -> 0xc000 // 32768 -> 0x8000 for(int v=1; v<=32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test(-(double)v,0.0,-(double)v,0.0); // 1 -> 0x000040 CORRECT!! // 2 -> 0x000080 // 4 -> 0x000100 // 8 -> 0x000200 // 16 -> 0x000400 // 32 -> 0x000800 // 64 -> 0x001000 // 128 -> 0x002000 // 256 -> 0x004000 // 512 -> 0x008000 // 1024 -> 0x010000 // 2048 -> 0x020000 // 4096 -> 0x040000 // 8192 -> 0x080000 // 16384 -> 0x100000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,(double)v,0.0,(double)v); // 1 -> 0x3fffc0 // 2 -> 0x3fff80 // 4 -> 0x3fff00 // 8 -> 0x3ffe00 // 16 -> 0x3ffc00 // 32 -> 0x3ff800 // 64 -> 0x3ff000 // 128 -> 0x3fe000 // 256 -> 0x3fc000 // 512 -> 0x3f8000 // 1024 -> 0x3f0000 // 2048 -> 0x3e0000 // 4096 -> 0x3c0000 // 8192 -> 0x380000 // 16384 -> 0x300000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,-(double)v,0.0,-(double)v); // 61. Now, how about the smallest alternating real signal for(int k=0; k<FFTLEN/2; k++) fft->test(2.0,0.0,0.0,0.0); // Don't forget to expect a bias! // 62. Now, how about the smallest alternating imaginary signal for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,2.0,0.0,0.0); // Don't forget to expect a bias! // 63. Now, how about the smallest alternating real signal,2nd phase for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,2.0,0.0); // Don't forget to expect a bias! // 64.Now, how about the smallest alternating imaginary signal,2nd phase for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,2.0); // Don't forget to expect a bias! // 65. for(int k=0; k<FFTLEN/2; k++) fft->test(32767.0,0.0,-32767.0,0.0); // 66. for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,-32767.0,0.0,32767.0); // 67. for(int k=0; k<FFTLEN/2; k++) fft->test(-32768.0,-32768.0,-32768.0,-32768.0); // 68. for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,-32767.0,0.0,32767.0); // 69. for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,32767.0,0.0,-32767.0); // 70. for(int k=0; k<FFTLEN/2; k++) fft->test(-32768.0,-32768.0,-32768.0,-32768.0); // 71. Now let's go for an impulse (SUCCESS) fft->test(16384.0, 0.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 72. And another one on the next clock (FAILS, ugly) fft->test(0.0, 0.0, 16384.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 73. And an imaginary one on the second clock fft->test(0.0, 0.0, 0.0, 16384.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 74. Likewise the next clock fft->test(0.0,0.0,0.0,0.0); fft->test(16384.0, 0.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 75. And it's imaginary counterpart fft->test(0.0,0.0,0.0,0.0); fft->test(0.0, 16384.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 76. Likewise the next clock fft->test(0.0,0.0,0.0,0.0); fft->test(0.0, 0.0, 16384.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 77. And it's imaginary counterpart fft->test(0.0,0.0,0.0,0.0); fft->test(0.0, 0.0, 0.0, 16384.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 78. Now let's try some exponentials for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN; cl = cos(W * (2*k )) * 16383.0; sl = sin(W * (2*k )) * 16383.0; cr = cos(W * (2*k+1)) * 16383.0; sr = sin(W * (2*k+1)) * 16383.0; fft->test(cl, sl, cr, sr); } // 72. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 5; cl = cos(W * (2*k )) * 16383.0; sl = sin(W * (2*k )) * 16383.0; cr = cos(W * (2*k+1)) * 16383.0; sr = sin(W * (2*k+1)) * 16383.0; fft->test(cl, sl, cr, sr); } // 73. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 8; cl = cos(W * (2*k )) * 8190.0; sl = sin(W * (2*k )) * 8190.0; cr = cos(W * (2*k+1)) * 8190.0; sr = sin(W * (2*k+1)) * 8190.0; fft->test(cl, sl, cr, sr); } // 74. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 25; cl = cos(W * (2*k )) * 4.0; sl = sin(W * (2*k )) * 4.0; cr = cos(W * (2*k+1)) * 4.0; sr = sin(W * (2*k+1)) * 4.0; fft->test(cl, sl, cr, sr); } // 19.--24. And finally, let's clear out our results / buffer for(int k=0; k<(FFTLEN/2) * 5; k++) fft->test(0.0,0.0,0.0,0.0); fclose(fpout); printf("SUCCESS!!\n"); exit(0); }
Go to most recent revision | Compare with Previous | Blame | View Log