URL
https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk
Subversion Repositories dblclockfft
[/] [dblclockfft/] [trunk/] [bench/] [cpp/] [fft_tb.cpp] - Rev 41
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: fft_tb.cpp // // Project: A General Purpose Pipelined FFT Implementation // // Purpose: A test-bench for the main program, fftmain.v, of the double // clocked FFT. This file may be run autonomously (when // fully functional). If so, the last line output will either read // "SUCCESS" on success, or some other failure message otherwise. // // This file depends upon verilator to both compile, run, and therefore // test fftmain.v // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015,2018, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// #include <stdio.h> #include <stdlib.h> #include <math.h> #include <fftw3.h> #include "verilated.h" #include "verilated_vcd_c.h" #include "Vfftmain.h" #include "twoc.h" #include "fftsize.h" #ifdef NEW_VERILATOR #define VVAR(A) fftmain__DOT_ ## A #else #define VVAR(A) v__DOT_ ## A #endif #ifdef DBLCLKFFT #define revstage_iaddr VVAR(_revstage__DOT__iaddr) #else #define revstage_iaddr VVAR(_revstage__DOT__wraddr) #endif #define br_sync VVAR(_br_sync) #define br_started VVAR(_r_br_started) #define w_s2048 VVAR(_w_s2048) #define w_s1024 VVAR(_w_s1024) #define w_s512 VVAR(_w_s512) #define w_s256 VVAR(_w_s256) #define w_s128 VVAR(_w_s128) #define w_s64 VVAR(_w_s64) #define w_s32 VVAR(_w_s32) #define w_s16 VVAR(_w_s16) #define w_s8 VVAR(_w_s8) #define w_s4 VVAR(_w_s4) #define IWIDTH FFT_IWIDTH #define OWIDTH FFT_OWIDTH #define LGWIDTH FFT_LGWIDTH #if (IWIDTH > 16) typedef unsigned long ITYP; #else typedef unsigned int ITYP; #endif #if (OWIDTH > 16) typedef unsigned long OTYP; #else typedef unsigned int OTYP; #endif #define NFTLOG 16 #define FFTLEN (1<<LGWIDTH) #ifdef FFT_SKIPS_BIT_REVERSE #define APPLY_BITREVERSE_LOCALLY #endif unsigned long bitrev(const int nbits, const unsigned long vl) { unsigned long r = 0; unsigned long val = vl; for(int k=0; k<nbits; k++) { r<<= 1; r |= (val & 1); val >>= 1; } return r; } class FFT_TB { public: Vfftmain *m_fft; OTYP m_data[FFTLEN]; ITYP m_log[NFTLOG*FFTLEN]; int m_iaddr, m_oaddr, m_ntest, m_logbase; FILE *m_dumpfp; fftw_plan m_plan; double *m_fft_buf; bool m_syncd; unsigned long m_tickcount; VerilatedVcdC* m_trace; FFT_TB(void) { m_fft = new Vfftmain; Verilated::traceEverOn(true); m_iaddr = m_oaddr = 0; m_dumpfp = NULL; m_fft_buf = (double *)fftw_malloc(sizeof(fftw_complex)*(FFTLEN)); m_plan = fftw_plan_dft_1d(FFTLEN, (fftw_complex *)m_fft_buf, (fftw_complex *)m_fft_buf, FFTW_FORWARD, FFTW_MEASURE); m_syncd = false; m_ntest = 0; } ~FFT_TB(void) { closetrace(); delete m_fft; m_fft = NULL; } virtual void opentrace(const char *vcdname) { if (!m_trace) { m_trace = new VerilatedVcdC; m_fft->trace(m_trace, 99); m_trace->open(vcdname); } } virtual void closetrace(void) { if (m_trace) { m_trace->close(); delete m_trace; m_trace = NULL; } } void tick(void) { m_tickcount++; if (m_fft->i_reset) printf("TICK(%s,%s)\n", (m_fft->i_reset)?"RST":" ", (m_fft->i_ce)?"CE":" "); m_fft->i_clk = 0; m_fft->eval(); if (m_trace) m_trace->dump((vluint64_t)(10*m_tickcount-2)); m_fft->i_clk = 1; m_fft->eval(); if (m_trace) m_trace->dump((vluint64_t)(10*m_tickcount)); m_fft->i_clk = 0; m_fft->eval(); if (m_trace) { m_trace->dump((vluint64_t)(10*m_tickcount+5)); m_trace->flush(); } } void cetick(void) { int ce = m_fft->i_ce, nkce; tick(); nkce = (rand()&1); #ifdef FFT_CKPCE nkce += FFT_CKPCE; #endif if ((ce)&&(nkce>0)) { m_fft->i_ce = 0; for(int kce=1; kce < nkce; kce++) tick(); } m_fft->i_ce = ce; } void reset(void) { m_fft->i_ce = 0; m_fft->i_reset = 1; tick(); m_fft->i_reset = 0; tick(); m_iaddr = m_oaddr = m_logbase = 0; m_syncd = false; m_tickcount = 0l; } long twos_complement(const long val, const int bits) { return sbits(val, bits); } void checkresults(void) { double *dp, *sp; // Complex array double vout[FFTLEN*2]; double isq=0.0, osq = 0.0; ITYP *lp; // Fill up our test array from the log array printf("%3d : CHECK: %8d %5x m_log[-%x=%x]\n", m_ntest, m_iaddr, m_iaddr, m_logbase, (m_iaddr-m_logbase)&((NFTLOG*FFTLEN-1)&(-FFTLEN))); // Convert our logged data into doubles, in an FFT buffer dp = m_fft_buf; lp = &m_log[(m_iaddr-m_logbase)&((NFTLOG*FFTLEN-1)&(-FFTLEN))]; for(int i=0; i<FFTLEN; i++) { ITYP tv = *lp++; dp[0] = sbits((long)tv >> IWIDTH, IWIDTH); dp[1] = sbits((long)tv, IWIDTH); // printf("IN[%4d = %4x] = %9.1f %9.1f\n", // i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))), // i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))), // dp[0], dp[1]); dp += 2; } // Let's measure ... are we the zero vector? If not, how close? dp = m_fft_buf; for(int i=0; i<FFTLEN*2; i++) { isq += (*dp) * (*dp); dp++; } fftw_execute(m_plan); // Let's load up the output we received into double valued // array vout dp = vout; for(int i=0; i<FFTLEN; i++) { *dp = rdata(i); osq += (*dp) * (*dp); dp++; *dp = idata(i); osq += (*dp) * (*dp); dp++; } // Let's figure out if there's a scale factor difference ... double scale = 0.0, wt = 0.0; sp = m_fft_buf; dp = vout; for(int i=0; i<FFTLEN*2; i++) { scale += (*sp) * (*dp++); wt += (*sp) * (*sp); sp++; } scale = scale / wt; if (fabs(scale) <= 1./4./FFTLEN) scale = 2./(FFTLEN); else if (wt == 0.0) scale = 1.0; double xisq = 0.0; sp = m_fft_buf; dp = vout; if ((true)&&(m_dumpfp)) { double tmp[FFTLEN*2], nscl; if (fabs(scale) < 1e-4) nscl = 1.0; else nscl = scale; for(int i=0; i<FFTLEN*2; i++) tmp[i] = m_fft_buf[i] * nscl; fwrite(tmp, sizeof(double), FFTLEN*2, m_dumpfp); } for(int i=0; i<FFTLEN*2; i++) { double vl = (*sp++) * scale - (*dp++); xisq += vl * vl; } printf("%3d : SCALE = %12.6f, WT = %18.1f, ISQ = %15.1f, ", m_ntest, scale, wt, isq); printf("OSQ = %18.1f, ", osq); printf("XISQ = %18.1f, sqrt = %9.2f\n", xisq, sqrt(xisq)); if (xisq > 1.4 * FFTLEN/2) { printf("TEST FAIL!! Result is out of bounds from "); printf("expected result with FFTW3.\n"); // exit(EXIT_FAILURE); } m_ntest++; } #ifdef DBLCLKFFT bool test(ITYP lft, ITYP rht) { m_fft->i_ce = 1; m_fft->i_reset = 0; m_fft->i_left = lft; m_fft->i_right = rht; m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = lft; m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = rht; cetick(); if (m_fft->o_sync) { if (!m_syncd) { m_syncd = true; printf("ORIGINAL SYNC AT 0x%lx, m_oaddr set to 0x%x\n", m_tickcount, m_oaddr); m_logbase = m_iaddr; } else printf("RESYNC AT %lx\n", m_tickcount); m_oaddr &= (-1<<LGWIDTH); } else m_oaddr += 2; printf("%8x,%5d: %08x,%08x -> %011lx,%011lx\t", m_iaddr, m_oaddr, lft, rht, m_fft->o_left, m_fft->o_right); #ifndef APPLY_BITREVERSE_LOCALLY printf(" [%3x]%s", m_fft->revstage_iaddr, (m_fft->br_sync)?"S" :((m_fft->br_started)?".":"x")); #endif printf(" "); #if (FFT_SIZE>=2048) printf("%s", (m_fft->w_s2048)?"S":"-"); #endif #if (FFT_SIZE>1024) printf("%s", (m_fft->w_s1024)?"S":"-"); #endif #if (FFT_SIZE>512) printf("%s", (m_fft->w_s512)?"S":"-"); #endif #if (FFT_SIZE>256) printf("%s", (m_fft->w_s256)?"S":"-"); #endif #if (FFT_SIZE>128) printf("%s", (m_fft->w_s128)?"S":"-"); #endif #if (FFT_SIZE>64) printf("%s", (m_fft->w_s64)?"S":"-"); #endif #if (FFT_SIZE>32) printf("%s", (m_fft->w_s32)?"S":"-"); #endif #if (FFT_SIZE>16) printf("%s", (m_fft->w_s16)?"S":"-"); #endif #if (FFT_SIZE>8) printf("%s", (m_fft->w_s8)?"S":"-"); #endif #if (FFT_SIZE>4) printf("%s", (m_fft->w_s4)?"S":"-"); #endif printf(" %s%s\n", (m_fft->o_sync)?"\t(SYNC!)":"", (m_fft->o_left | m_fft->o_right)?" (NZ)":""); m_data[(m_oaddr )&(FFTLEN-1)] = m_fft->o_left; m_data[(m_oaddr+1)&(FFTLEN-1)] = m_fft->o_right; if ((m_syncd)&&((m_oaddr&(FFTLEN-1)) == FFTLEN-2)) { dumpwrite(); checkresults(); } return (m_fft->o_sync); } #else bool test(ITYP data) { m_fft->i_ce = 1; m_fft->i_reset = 0; m_fft->i_sample = data; m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = data; cetick(); if (m_fft->o_sync) { if (!m_syncd) { m_syncd = true; printf("ORIGINAL SYNC AT 0x%lx, m_oaddr set to 0x%x\n", m_tickcount, m_oaddr); m_logbase = m_iaddr; } else printf("RESYNC AT %lx\n", m_tickcount); m_oaddr &= (-1<<LGWIDTH); } else m_oaddr += 1; printf("%8x,%5d: %08x -> %011lx\t", m_iaddr, m_oaddr, data, m_fft->o_result); #ifndef APPLY_BITREVERSE_LOCALLY printf(" [%3x]%s", m_fft->revstage_iaddr, (m_fft->br_sync)?"S" :((m_fft->br_started)?".":"x")); #endif printf(" "); #if (FFT_SIZE>=2048) printf("%s", (m_fft->w_s2048)?"S":"-"); #endif #if (FFT_SIZE>1024) printf("%s", (m_fft->w_s1024)?"S":"-"); #endif #if (FFT_SIZE>512) printf("%s", (m_fft->w_s512)?"S":"-"); #endif #if (FFT_SIZE>256) printf("%s", (m_fft->w_s256)?"S":"-"); #endif #if (FFT_SIZE>128) printf("%s", (m_fft->w_s128)?"S":"-"); #endif #if (FFT_SIZE>64) printf("%s", (m_fft->w_s64)?"S":"-"); #endif #if (FFT_SIZE>32) printf("%s", (m_fft->w_s32)?"S":"-"); #endif #if (FFT_SIZE>16) printf("%s", (m_fft->w_s16)?"S":"-"); #endif #if (FFT_SIZE>8) printf("%s", (m_fft->w_s8)?"S":"-"); #endif #if (FFT_SIZE>4) printf("%s", (m_fft->w_s4)?"S":"-"); #endif printf(" %s%s\n", (m_fft->o_sync)?"\t(SYNC!)":"", (m_fft->o_result)?" (NZ)":""); m_data[(m_oaddr )&(FFTLEN-1)] = m_fft->o_result; if ((m_syncd)&&((m_oaddr&(FFTLEN-1)) == FFTLEN-1)) { dumpwrite(); checkresults(); } return (m_fft->o_sync); } #endif bool test(double lft_r, double lft_i, double rht_r, double rht_i) { ITYP ilft, irht, ilft_r, ilft_i, irht_r, irht_i; ilft_r = (ITYP)(lft_r) & ((1<<IWIDTH)-1); ilft_i = (ITYP)(lft_i) & ((1<<IWIDTH)-1); irht_r = (ITYP)(rht_r) & ((1<<IWIDTH)-1); irht_i = (ITYP)(rht_i) & ((1<<IWIDTH)-1); ilft = (ilft_r << IWIDTH) | ilft_i; irht = (irht_r << IWIDTH) | irht_i; #ifdef DBLCLKFFT return test(ilft, irht); #else test(ilft); return test(irht); #endif } double rdata(int addr) { int index = addr & (FFTLEN-1); #ifdef APPLY_BITREVERSE_LOCALLY index = bitrev(LGWIDTH, index); #endif return (double)sbits(m_data[index]>>OWIDTH, OWIDTH); } double idata(int addr) { int index = addr & (FFTLEN-1); #ifdef APPLY_BITREVERSE_LOCALLY index = bitrev(LGWIDTH, index); #endif return (double)sbits(m_data[index], OWIDTH); } void dump(FILE *fp) { m_dumpfp = fp; } void dumpwrite(void) { if (!m_dumpfp) return; double *buf; buf = new double[FFTLEN * 2]; for(int i=0; i<FFTLEN; i++) { buf[i*2] = rdata(i); buf[i*2+1] = idata(i); } fwrite(buf, sizeof(double), FFTLEN*2, m_dumpfp); delete[] buf; } }; int main(int argc, char **argv, char **envp) { Verilated::commandArgs(argc, argv); FFT_TB *fft = new FFT_TB; FILE *fpout; fpout = fopen("fft_tb.dbl", "w"); if (NULL == fpout) { fprintf(stderr, "Cannot write output file, fft_tb.dbl\n"); exit(-1); } fft->opentrace("fft.vcd"); fft->reset(); { int ftlen = FFTLEN; fwrite(&ftlen, 1, sizeof(int), fpout); } fft->dump(fpout); // 1. double maxv = ((1l<<(IWIDTH-1))-1l); fft->test(0.0, 0.0, maxv, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 2. Try placing a pulse at the very end location for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * (1); cl = cos(W * (2*k )) * (double)((1l<<(IWIDTH-2))-1l); sl = sin(W * (2*k )) * (double)((1l<<(IWIDTH-2))-1l); cr = cos(W * (2*k+1)) * (double)((1l<<(IWIDTH-2))-1l); sr = sin(W * (2*k+1)) * (double)((1l<<(IWIDTH-2))-1l); fft->test(cl, sl, cr, sr); } // 2. fft->test(maxv, 0.0, maxv, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 3. fft->test(0.0,0.0,0.0,0.0); fft->test(maxv, 0.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 4. for(int k=0; k<8; k++) fft->test(maxv, 0.0, maxv, 0.0); for(int k=8; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); // 5. if (FFTLEN/2 >= 16) { for(int k=0; k<16; k++) fft->test(maxv, 0.0, maxv, 0.0); for(int k=16; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); } // 6. if (FFTLEN/2 >= 32) { for(int k=0; k<32; k++) fft->test(maxv, 0.0, maxv, 0.0); for(int k=32; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); } // 7. if (FFTLEN/2 >= 64) { for(int k=0; k<64; k++) fft->test(maxv, 0.0, maxv, 0.0); for(int k=64; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); } if (FFTLEN/2 >= 128) { for(int k=0; k<128; k++) fft->test(maxv, 0.0, maxv, 0.0); for(int k=128; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); } if (FFTLEN/2 >= 256) { for(int k=0; k<256; k++) fft->test(maxv, 0.0, maxv, 0.0); for(int k=256; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); } if (FFTLEN/2 >= 512) { for(int k=0; k<256+128; k++) fft->test(maxv, 0.0, maxv, 0.0); for(int k=256+128; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); } /* for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,0.0); */ #ifndef NO_JUNK // 7. // 1 -> 0x0001 // 2 -> 0x0002 // 4 -> 0x0004 // 8 -> 0x0008 // 16 -> 0x0010 // 32 -> 0x0020 // 64 -> 0x0040 // 128 -> 0x0080 // 256 -> 0x0100 // 512 -> 0x0200 // 1024 -> 0x0400 // 2048 -> 0x0800 // 4096 -> 0x1000 // 8192 -> 0x2000 // 16384 -> 0x4000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test((double)v,0.0,(double)v,0.0); // 1 -> 0xffff // 2 -> 0xfffe // 4 -> 0xfffc // 8 -> 0xfff8 // 16 -> 0xfff0 // 32 -> 0xffe0 // 64 -> 0xffc0 // 128 -> 0xff80 // 256 -> 0xff00 // 512 -> 0xfe00 // 1024 -> 0xfc00 // 2048 -> 0xf800 // 4096 -> 0xf000 // 8192 -> 0xe000 // 16384 -> 0xc000 // 32768 -> 0x8000 fft->test(0.0,0.0,16384.0,0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); for(int v=1; v<=32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test(-(double)v,0.0,-(double)v,0.0); // 1 -> 0x000040 CORRECT!! // 2 -> 0x000080 // 4 -> 0x000100 // 8 -> 0x000200 // 16 -> 0x000400 // 32 -> 0x000800 // 64 -> 0x001000 // 128 -> 0x002000 // 256 -> 0x004000 // 512 -> 0x008000 // 1024 -> 0x010000 // 2048 -> 0x020000 // 4096 -> 0x040000 // 8192 -> 0x080000 // 16384 -> 0x100000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,(double)v,0.0,(double)v); // 1 -> 0x3fffc0 // 2 -> 0x3fff80 // 4 -> 0x3fff00 // 8 -> 0x3ffe00 // 16 -> 0x3ffc00 // 32 -> 0x3ff800 // 64 -> 0x3ff000 // 128 -> 0x3fe000 // 256 -> 0x3fc000 // 512 -> 0x3f8000 // 1024 -> 0x3f0000 // 2048 -> 0x3e0000 // 4096 -> 0x3c0000 // 8192 -> 0x380000 // 16384 -> 0x300000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,-(double)v,0.0,-(double)v); // 61. Now, how about the smallest alternating real signal for(int k=0; k<FFTLEN/2; k++) fft->test(2.0,0.0,0.0,0.0); // Don't forget to expect a bias! // 62. Now, how about the smallest alternating imaginary signal for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,2.0,0.0,0.0); // Don't forget to expect a bias! // 63. Now, how about the smallest alternating real signal,2nd phase for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,2.0,0.0); // Don't forget to expect a bias! // 64.Now, how about the smallest alternating imaginary signal,2nd phase for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,0.0,0.0,2.0); // Don't forget to expect a bias! // 65. for(int k=0; k<FFTLEN/2; k++) fft->test(maxv,0.0,-maxv,0.0); // 66. for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,-maxv,0.0,maxv); // 67. for(int k=0; k<FFTLEN/2; k++) fft->test(-maxv,-maxv,-maxv,-maxv); // 68. for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,-maxv,0.0,maxv); // 69. for(int k=0; k<FFTLEN/2; k++) fft->test(0.0,maxv,0.0,-maxv); // 70. for(int k=0; k<FFTLEN/2; k++) fft->test(-maxv,-maxv,-maxv,-maxv); // 71. Now let's go for an impulse (SUCCESS) fft->test(16384.0, 0.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 72. And another one on the next clock (FAILS, ugly) fft->test(0.0, 0.0, 16384.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 72. And another one on the next clock (FAILS, ugly) fft->test(0.0, 0.0, 8192.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 72. And another one on the next clock (FAILS, ugly) fft->test(0.0, 0.0, 512.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 73. And an imaginary one on the second clock fft->test(0.0, 0.0, 0.0, 16384.0); for(int k=0; k<FFTLEN/2-1; k++) fft->test(0.0,0.0,0.0,0.0); // 74. Likewise the next clock fft->test(0.0,0.0,0.0,0.0); fft->test(16384.0, 0.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 75. And it's imaginary counterpart fft->test(0.0,0.0,0.0,0.0); fft->test(0.0, 16384.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 76. Likewise the next clock fft->test(0.0,0.0,0.0,0.0); fft->test(0.0, 0.0, 16384.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 77. And it's imaginary counterpart fft->test(0.0,0.0,0.0,0.0); fft->test(0.0, 0.0, 0.0, 16384.0); for(int k=0; k<FFTLEN/2-2; k++) fft->test(0.0,0.0,0.0,0.0); // 78. Now let's try some exponentials for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN; cl = cos(W * (2*k )) * 16383.0; sl = sin(W * (2*k )) * 16383.0; cr = cos(W * (2*k+1)) * 16383.0; sr = sin(W * (2*k+1)) * 16383.0; fft->test(cl, sl, cr, sr); } // 72. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 5; cl = cos(W * (2*k )) * 16383.0; sl = sin(W * (2*k )) * 16383.0; cr = cos(W * (2*k+1)) * 16383.0; sr = sin(W * (2*k+1)) * 16383.0; fft->test(cl, sl, cr, sr); } // 73. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 8; cl = cos(W * (2*k )) * 8190.0; sl = sin(W * (2*k )) * 8190.0; cr = cos(W * (2*k+1)) * 8190.0; sr = sin(W * (2*k+1)) * 8190.0; fft->test(cl, sl, cr, sr); } // 74. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 25; cl = cos(W * (2*k )) * 4.0; sl = sin(W * (2*k )) * 4.0; cr = cos(W * (2*k+1)) * 4.0; sr = sin(W * (2*k+1)) * 4.0; fft->test(cl, sl, cr, sr); } #endif // 19.--24. And finally, let's clear out our results / buffer for(int k=0; k<(FFTLEN/2) * 5; k++) fft->test(0.0,0.0,0.0,0.0); fclose(fpout); if (!fft->m_syncd) { printf("FAIL -- NO SYNC\n"); goto test_failure; } printf("SUCCESS!!\n"); exit(0); test_failure: printf("TEST FAILED!!\n"); exit(0); }