URL
https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk
Subversion Repositories dblclockfft
[/] [dblclockfft/] [trunk/] [bench/] [cpp/] [hwbfly_tb.cpp] - Rev 41
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: hwbfly_tb.cpp // // Project: A General Purpose Pipelined FFT Implementation // // Purpose: A test-bench for the hardware butterfly subfile of the generic // pipelined FFT. This file may be run autonomously. If so, // the last line output will either read "SUCCESS" on success, or some // other failure message otherwise. // // This file depends upon verilator to both compile, run, and therefore // test hwbfly.v // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015,2018 Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// #include <stdio.h> #include <stdint.h> #include "verilated.h" #include "verilated_vcd_c.h" #include "Vhwbfly.h" #include "twoc.h" #include "fftsize.h" #ifdef NEW_VERILATOR #define VVAR(A) hwbfly__DOT_ ## A #else #define VVAR(A) v__DOT_ ## A #endif #define IWIDTH TST_BUTTERFLY_IWIDTH #define CWIDTH TST_BUTTERFLY_CWIDTH #define OWIDTH TST_BUTTERFLY_OWIDTH class HWBFLY_TB { public: Vhwbfly *m_bfly; VerilatedVcdC *m_trace; unsigned long m_left[64], m_right[64]; bool m_aux[64]; int m_addr, m_lastaux, m_offset; bool m_syncd; uint64_t m_tickcount; HWBFLY_TB(void) { Verilated::traceEverOn(true); m_trace = NULL; m_bfly = new Vhwbfly; m_addr = 0; m_syncd = 0; m_tickcount = 0; m_bfly->i_reset = 1; m_bfly->i_clk = 0; m_bfly->eval(); m_bfly->i_reset = 0; } void opentrace(const char *vcdname) { if (!m_trace) { m_trace = new VerilatedVcdC; m_bfly->trace(m_trace, 99); m_trace->open(vcdname); } } void closetrace(void) { if (m_trace) { m_trace->close(); delete m_trace; m_trace = NULL; } } void tick(void) { m_tickcount++; m_lastaux = m_bfly->o_aux; m_bfly->i_clk = 0; m_bfly->eval(); if (m_trace) m_trace->dump((vluint64_t)(10ul*m_tickcount-2)); m_bfly->i_clk = 1; m_bfly->eval(); if (m_trace) m_trace->dump((vluint64_t)(10ul*m_tickcount)); m_bfly->i_clk = 0; m_bfly->eval(); if (m_trace) { m_trace->dump((vluint64_t)(10ul*m_tickcount+5)); m_trace->flush(); } if ((!m_syncd)&&(m_bfly->o_aux)) m_offset = m_addr; m_syncd = (m_syncd) || (m_bfly->o_aux); } void cetick(void) { int ce = m_bfly->i_ce, nkce; tick(); nkce = (rand()&1); #ifdef FFT_CKPCE nkce += FFT_CKPCE; #endif if ((ce)&&(nkce > 0)) { m_bfly->i_ce = 0; for(int kce=0; kce<nkce-1; kce++) tick(); } m_bfly->i_ce = ce; } void reset(void) { m_bfly->i_ce = 0; m_bfly->i_reset = 1; m_bfly->i_coef = 0l; m_bfly->i_left = 0; m_bfly->i_right = 0; tick(); m_bfly->i_reset = 0; m_bfly->i_ce = 1; // // Let's run a RESET test here, forcing the whole butterfly // to be filled with aux=1. If the reset works right, // we'll never get an aux=1 output. // m_bfly->i_reset = 1; m_bfly->i_aux = 1; m_bfly->i_ce = 1; for(int i=0; i<200; i++) cetick(); // Now here's the RESET line, so let's see what the test does m_bfly->i_reset = 1; m_bfly->i_ce = 1; m_bfly->i_aux = 1; cetick(); m_bfly->i_reset = 0; m_syncd = 0; } void test(const int n, const int k, const unsigned long cof, const unsigned lft, const unsigned rht, const int aux) { m_bfly->i_coef = ubits(cof, 2*TST_BUTTERFLY_CWIDTH); m_bfly->i_left = ubits(lft, 2*TST_BUTTERFLY_IWIDTH); m_bfly->i_right = ubits(rht, 2*TST_BUTTERFLY_IWIDTH); m_bfly->i_aux = aux & 1; m_bfly->i_ce = 1; cetick(); if ((m_bfly->o_aux)&&(!m_lastaux)) printf("\n"); printf("n,k=%d,%3d: COEF=%010lx, LFT=%08x, RHT=%08x, A=%d, OLFT =%09lx, ORHT=%09lx, AUX=%d", n,k, m_bfly->i_coef & (~(-1l<<40)), m_bfly->i_left, m_bfly->i_right, m_bfly->i_aux, m_bfly->o_left, m_bfly->o_right, m_bfly->o_aux); #if (FFT_CKPCE == 1) printf(", p1 = 0x%08lx p2 = 0x%08lx, p3 = 0x%08lx", #define rp_one VVAR(_CKPCE_ONE__DOT__rp_one) #define rp_two VVAR(_CKPCE_ONE__DOT__rp_two) #define rp_three VVAR(_CKPCE_ONE__DOT__rp_three) m_bfly->rp_one, m_bfly->rp_two, m_bfly->rp_three); #elif (FFT_CKPCE == 2) #define rp_one VVAR(_genblk1__DOT__CKPCE_TWO__DOT__rp2_one) #define rp_two VVAR(_genblk1__DOT__CKPCE_TWO__DOT__rp_two) #define rp_three VVAR(_genblk1__DOT__CKPCE_TWO__DOT__rp_three) printf(", p1 = 0x%08lx p2 = 0x%08lx, p3 = 0x%08lx", m_bfly->rp_one, m_bfly->rp_two, m_bfly->rp_three); #else printf("CKPCE = %d\n", FFT_CKPCE); #endif printf("\n"); if ((m_syncd)&&(m_left[(m_addr-m_offset)&(64-1)] != m_bfly->o_left)) { printf("WRONG O_LEFT! (%lx(exp) != %lx(sut)\n", m_left[(m_addr-m_offset)&(64-1)], m_bfly->o_left); exit(EXIT_FAILURE); } if ((m_syncd)&&(m_right[(m_addr-m_offset)&(64-1)] != m_bfly->o_right)) { printf("WRONG O_RIGHT! (%lx(exp) != %lx(sut))\n", m_right[(m_addr-m_offset)&(64-1)], m_bfly->o_right); exit(EXIT_FAILURE); } if ((m_syncd)&&(m_aux[(m_addr-m_offset)&(64-1)] != m_bfly->o_aux)) { printf("FAILED AUX CHANNEL TEST (i.e. the SYNC)\n"); exit(EXIT_FAILURE); } if ((m_addr > 22)&&(!m_syncd)) { printf("NO SYNC PULSE!\n"); exit(EXIT_FAILURE); } // Now, let's calculate an "expected" result ... long rlft, ilft; // Extract left and right values ... rlft = sbits(m_bfly->i_left >> IWIDTH, IWIDTH); ilft = sbits(m_bfly->i_left , IWIDTH); // Now repeat for the right hand value ... long rrht, irht; // Extract left and right values ... rrht = sbits(m_bfly->i_right >> IWIDTH, IWIDTH); irht = sbits(m_bfly->i_right , IWIDTH); // and again for the coefficients long rcof, icof; // Extract left and right values ... rcof = sbits(m_bfly->i_coef >> CWIDTH, CWIDTH); icof = sbits(m_bfly->i_coef , CWIDTH); // Now, let's do the butterfly ourselves ... long sumi, sumr, difi, difr; sumr = rlft + rrht; sumi = ilft + irht; difr = rlft - rrht; difi = ilft - irht; /* printf("L=%5lx+%5lx,R=%5lx+%5lx,S=%5lx+%5lx,D=%5lx+%5lx, ", rlft & 0x02ffffl, ilft & 0x02ffffl, rrht & 0x02ffffl, irht & 0x02ffffl, sumr & 0x02ffffl, sumi & 0x02ffffl, difr & 0x02ffffl, difi & 0x02ffffl); */ long p1, p2, p3, mpyr, mpyi; p1 = difr * rcof; p2 = difi * icof; p3 = (difr + difi) * (rcof + icof); mpyr = p1-p2; mpyi = p3-p1-p2; mpyr = rndbits(mpyr, (IWIDTH+2)+(CWIDTH+1), OWIDTH+4); mpyi = rndbits(mpyi, (IWIDTH+2)+(CWIDTH+1), OWIDTH+4); /* printf("RC=%lx, IC=%lx, ", rcof, icof); printf("P1=%lx,P2=%lx,P3=%lx, ", p1,p2,p3); printf("MPYr = %lx, ", mpyr); printf("MPYi = %lx, ", mpyi); */ long o_left_r, o_left_i, o_right_r, o_right_i; unsigned long o_left, o_right; o_left_r = rndbits(sumr<<(CWIDTH-2), CWIDTH+IWIDTH+3, OWIDTH+4); o_left_r = ubits(o_left_r, OWIDTH); o_left_i = rndbits(sumi<<(CWIDTH-2), CWIDTH+IWIDTH+3, OWIDTH+4); o_left_i = ubits(o_left_i, OWIDTH); o_left = (o_left_r << OWIDTH) | (o_left_i); o_right_r = ubits(mpyr, OWIDTH); o_right_i = ubits(mpyi, OWIDTH); o_right = (o_right_r << OWIDTH) | (o_right_i); /* printf("oR_r = %lx, ", o_right_r); printf("oR_i = %lx\n", o_right_i); */ m_left[ m_addr&(64-1)] = o_left; m_right[m_addr&(64-1)] = o_right; m_aux[ m_addr&(64-1)] = aux; m_addr++; } }; int main(int argc, char **argv, char **envp) { Verilated::commandArgs(argc, argv); HWBFLY_TB *bfly = new HWBFLY_TB; int16_t ir0, ii0, lstr, lsti; int32_t sumr, sumi, difr, difi; int32_t smr, smi, dfr, dfi; int rnd = 0; const int TESTSZ = 256; // bfly->opentrace("hwbfly.vcd"); bfly->reset(); bfly->test(9,0,0x4000000000l,0x7fff0000,0x7fff0000, 1); bfly->test(9,1,0x4000000000l,0x7fff0000,0x80010000, 0); bfly->test(9,2,0x4000000000l,0x00007fff,0x00008001, 0); bfly->test(9,3,0x4000000000l,0x00007fff,0x00007fff, 0); bfly->test(8,0,0x4000000000l,0x80010000,0x80010000, 1); bfly->test(8,1,0x4000000000l,0x00008001,0x00008001, 0); bfly->test(9,0,0x4000000000l,0x40000000,0xc0000000, 1); bfly->test(9,1,0x4000000000l,0x40000000,0x40000000, 0); bfly->test(9,2,0x4000000000l,0x00004000,0x0000c000, 0); bfly->test(9,3,0x4000000000l,0x00004000,0x00004000, 0); bfly->test(9,0,0x4000000000l,0x20000000,0xe0000000, 1); bfly->test(9,1,0x4000000000l,0x20000000,0x20000000, 0); bfly->test(9,2,0x4000000000l,0x00002000,0x0000e000, 0); bfly->test(9,3,0x4000000000l,0x00002000,0x00002000, 0); bfly->test(9,0,0x4000000000l,0x00080000,0xfff80000, 1); bfly->test(9,1,0x4000000000l,0x00080000,0x00080000, 0); bfly->test(9,2,0x4000000000l,0x00000008,0x0000fff8, 0); bfly->test(9,3,0x4000000000l,0x00000008,0x00000008, 0); bfly->test(7,0,0x3fffbff9b9l,0xfffe0000,0x00000000, 1); bfly->test(7,1,0x3ffd4fed28l,0xfffc0000,0x00020000, 0); bfly->test(7,2,0x3ff85fe098l,0xfff80000,0x00060000, 0); bfly->test(7,3,0x3ff0efd409l,0xfff00000,0x000e0000, 0); bfly->test(7,4,0x3fe70fc77cl,0xffe60000,0x00180000, 0); bfly->test(7,5,0x3fdabfbaf1l,0xffda0000,0x00240000, 0); bfly->test(7,6,0x3fcbefae69l,0xffca0000,0x00340000, 0); bfly->test(7,7,0x3fbaafa1e4l,0xffba0000,0x00440000, 0); /* // Special tests bfly->test(9,0,0x4000000000l,0x00010000,0xffff0000, 1); bfly->test(9,1,0x4000000000l,0x00010000,0x00010000, 0); bfly->test(9,2,0x4000000000l,0x00000001,0x0000ffff, 0); bfly->test(9,3,0x4000000000l,0x00000001,0x00000001, 0); */ for(int n=0; n<4; n++) for(int k=0; k<TESTSZ; k++) { long iv, rv; unsigned long lft, rht, cof; double c, s, W; bool inv = 1; int aux; W = ((inv)?-1:1) * 2.0 * M_PI * (2*k) / TESTSZ * 64; c = cos(W); s = sin(W); rv = (long)((double)(1l<<(16-2-n))*c+0.5); iv = (long)((double)(1l<<(16-2-n))*s+0.5); rv = (rv << 16) | (iv & (~(-1<<16))); lft = rv; W = ((inv)?-1:1) * 2.0 * M_PI * (2*k+1) / TESTSZ * 64; c = cos(W); s = sin(W); rv = (long)((double)(1l<<(16-2-n))*c+0.5); iv = (long)((double)(1l<<(16-2-n))*s+0.5); rv = (rv << 16) | (iv & (~(-1<<16))); rht = rv; // Switch the sign of W W = ((inv)?1:-1) * 2.0 * M_PI * (2*k) / TESTSZ; c = cos(W); s = sin(W); rv = (long)((double)(1l<<(20-2))*c+0.5); // Keep 20-2 bits for iv = (long)((double)(1l<<(20-2))*s+0.5); // coefficients rv = (rv << 20) | (iv & (~(-1<<20))); cof = rv; aux = ((k&(TESTSZ-1))==0); bfly->test(n,k, cof, lft, rht, aux); } delete bfly; printf("SUCCESS!\n"); exit(0); }