URL
https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk
Subversion Repositories dblclockfft
[/] [dblclockfft/] [trunk/] [bench/] [cpp/] [ifft_tb.cpp] - Rev 14
Go to most recent revision | Compare with Previous | Blame | View Log
// // Filename: ifft_tb.cpp // // Project: A Doubletime Pipelined FFT // // Purpose: A test-bench for the combined work of both fftmain.v and // ifftmain.v. If they work together, in concert like they should, // then the operation of both in series should yield an identity. // This program attempts to check that identity with various // inputs given to it. // // This file has a variety of dependencies, not the least of which // are verilator, ifftmain.v and fftmain.v (both produced by // fftgen), but also on the ifft_tb.v verilog test bench found // within this directory. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Tecnology, LLC // /////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////// #include <stdio.h> #include <math.h> #include <assert.h> #include "verilated.h" #include "Vifft_tb.h" #define LGWIDTH 11 #define IWIDTH 16 #define MWIDTH 22 #define OWIDTH 28 #define FFTLEN (1<<LGWIDTH) class IFFT_TB { public: Vifft_tb *m_tb; unsigned int m_log[8*FFTLEN]; long m_data[2*FFTLEN]; int m_iaddr, m_oaddr, m_offset; FILE *m_dumpfp; // double *m_tb_buf; // int m_ntest; bool m_syncd; IFFT_TB(void) { m_tb = new Vifft_tb; m_iaddr = m_oaddr = 0; m_dumpfp = NULL; m_syncd = false; // m_ntest = 0; } void tick(void) { m_tb->i_clk = 0; m_tb->eval(); m_tb->i_clk = 1; m_tb->eval(); } void reset(void) { m_tb->i_ce = 0; m_tb->i_rst = 1; tick(); m_tb->i_rst = 0; tick(); m_iaddr = m_oaddr = 0; m_syncd = false; } long twos_complement(const long val, const int bits) { long r; r = val & ((1l<<bits)-1); if (r & (1l << (bits-1))) r |= (-1l << bits); return r; } void checkresults(void) { /* double *dp, *sp; // Complex array double vout[FFTLEN*2]; double isq=0.0, osq = 0.0; long *lp; // Fill up our test array from the log array printf("%3d : CHECK: %8d %5x\n", m_ntest, m_iaddr, m_iaddr); dp = m_tb_buf; lp = &m_log[(m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))]; for(int i=0; i<FFTLEN; i++) { long tv = *lp++; dp[0] = twos_complement(tv >> IWIDTH, IWIDTH); dp[1] = twos_complement(tv, IWIDTH); printf("IN[%4d = %4x] = %9.1f %9.1f\n", i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))), i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))), dp[0], dp[1]); dp += 2; } // Let's measure ... are we the zero vector? If not, how close? dp = m_tb_buf; for(int i=0; i<FFTLEN; i++) isq += (*dp) * (*dp); fftw_execute(m_plan); // Let's load up the output we received into vout dp = vout; for(int i=0; i<FFTLEN; i++) { long tv = m_data[i]; printf("OUT[%4d = %4x] = ", i, i); printf("%16lx = ", tv); *dp = twos_complement(tv >> OWIDTH, OWIDTH); printf("%12.1f + ", *dp); osq += (*dp) * (*dp); dp++; *dp = twos_complement(tv, OWIDTH); printf("%12.1f j", *dp); osq += (*dp) * (*dp); dp++; printf(" <-> %12.1f %12.1f\n", m_tb_buf[2*i], m_fft_buf[2*i+1]); } // Let's figure out if there's a scale factor difference ... double scale = 0.0, wt = 0.0; sp = m_tb_buf; dp = vout; for(int i=0; i<FFTLEN*2; i++) { scale += (*sp) * (*dp++); wt += (*sp) * (*sp); sp++; } scale = scale / wt; if (wt == 0.0) scale = 1.0; double xisq = 0.0; sp = m_tb_buf; dp = vout; for(int i=0; i<FFTLEN*2; i++) { double vl = (*sp++) * scale - (*dp++); xisq += vl * vl; } printf("%3d : SCALE = %12.6f, WT = %18.1f, ISQ = %15.1f, ", m_ntest, scale, wt, isq); printf("OSQ = %18.1f, ", osq); printf("XISQ = %18.1f\n", xisq); m_ntest++; */ } bool test(int lft, int rht) { m_tb->i_ce = 1; m_tb->i_rst = 0; m_tb->i_left = lft; m_tb->i_right = rht; m_log[(m_iaddr++)&(8*FFTLEN-1)] = lft; m_log[(m_iaddr++)&(8*FFTLEN-1)] = rht; tick(); if ((m_tb->o_sync)&&(!m_syncd)) { m_offset = m_iaddr; m_oaddr = 0; m_syncd = true; } m_data[(m_oaddr++)&(FFTLEN-1)] = m_tb->o_left; m_data[(m_oaddr++)&(FFTLEN-1)] = m_tb->o_right; if ((m_syncd)&&((m_oaddr&(FFTLEN-1)) == 0)) { dumpwrite(); // checkresults(); } return (m_tb->o_sync); } bool test(double lft_r, double lft_i, double rht_r, double rht_i) { int ilft, irht, ilft_r, ilft_i, irht_r, irht_i; assert(2*IWIDTH <= 32); ilft_r = (int)(lft_r) & ((1<<IWIDTH)-1); ilft_i = (int)(lft_i) & ((1<<IWIDTH)-1); irht_r = (int)(rht_r) & ((1<<IWIDTH)-1); irht_i = (int)(rht_i) & ((1<<IWIDTH)-1); ilft = (ilft_r << IWIDTH) | ilft_i; irht = (irht_r << IWIDTH) | irht_i; return test(ilft, irht); } double rdata(int addr) { long ivl = m_data[addr & (FFTLEN-1)]; ivl = twos_complement(ivl >> OWIDTH, OWIDTH); return (double)ivl; } double idata(int addr) { long ivl = m_data[addr & (FFTLEN-1)]; ivl = twos_complement(ivl, OWIDTH); return (double)ivl; } void dump(FILE *fp) { m_dumpfp = fp; } void dumpwrite(void) { if (!m_dumpfp) return; double *buf; buf = new double[FFTLEN * 2]; for(int i=0; i<FFTLEN; i++) { buf[i*2] = rdata(i); buf[i*2+1] = idata(i); } fwrite(buf, sizeof(double), FFTLEN*2, m_dumpfp); delete[] buf; } }; int main(int argc, char **argv, char **envp) { Verilated::commandArgs(argc, argv); IFFT_TB *tb = new IFFT_TB; FILE *fpout; fpout = fopen("ifft_tb.dbl", "w"); if (NULL == fpout) { fprintf(stderr, "Cannot write output file, fft_tb.dbl\n"); exit(-1); } tb->reset(); tb->dump(fpout); // 1 -> 0x0001 // 2 -> 0x0002 // 4 -> 0x0004 // 8 -> 0x0008 // 16 -> 0x0010 // 32 -> 0x0020 // 64 -> 0x0040 // 128 -> 0x0080 // 256 -> 0x0100 // 512 -> 0x0200 // 1024 -> 0x0400 // 2048 -> 0x0800 // 4096 -> 0x1000 // 8192 -> 0x2000 // 16384 -> 0x4000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) tb->test((double)v,0.0,(double)v,0.0); // 1 -> 0xffff // 2 -> 0xfffe // 4 -> 0xfffc // 8 -> 0xfff8 // 16 -> 0xfff0 // 32 -> 0xffe0 // 64 -> 0xffc0 // 128 -> 0xff80 // 256 -> 0xff00 // 512 -> 0xfe00 // 1024 -> 0xfc00 // 2048 -> 0xf800 // 4096 -> 0xf000 // 8192 -> 0xe000 // 16384 -> 0xc000 // 32768 -> 0x8000 for(int v=1; v<=32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) tb->test(-(double)v,0.0,-(double)v,0.0); // 1 -> 0x000040 CORRECT!! // 2 -> 0x000080 // 4 -> 0x000100 // 8 -> 0x000200 // 16 -> 0x000400 // 32 -> 0x000800 // 64 -> 0x001000 // 128 -> 0x002000 // 256 -> 0x004000 // 512 -> 0x008000 // 1024 -> 0x010000 // 2048 -> 0x020000 // 4096 -> 0x040000 // 8192 -> 0x080000 // 16384 -> 0x100000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,(double)v,0.0,(double)v); // 1 -> 0x3fffc0 // 2 -> 0x3fff80 // 4 -> 0x3fff00 // 8 -> 0x3ffe00 // 16 -> 0x3ffc00 // 32 -> 0x3ff800 // 64 -> 0x3ff000 // 128 -> 0x3fe000 // 256 -> 0x3fc000 // 512 -> 0x3f8000 // 1024 -> 0x3f0000 // 2048 -> 0x3e0000 // 4096 -> 0x3c0000 // 8192 -> 0x380000 // 16384 -> 0x300000 for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,-(double)v,0.0,-(double)v); // 61. Now, how about the smallest alternating real signal for(int k=0; k<FFTLEN/2; k++) tb->test(2.0,0.0,0.0,0.0); // Don't forget to expect a bias! // 62. Now, how about the smallest alternating imaginary signal for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,2.0,0.0,0.0); // Don't forget to expect a bias! // 63. Now, how about the smallest alternating real signal,2nd phase for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,0.0,2.0,0.0); // Don't forget to expect a bias! // 64.Now, how about the smallest alternating imaginary signal,2nd phase for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,0.0,0.0,2.0); // Don't forget to expect a bias! // 65. for(int k=0; k<FFTLEN/2; k++) tb->test(32767.0,0.0,-32767.0,0.0); // 66. for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,-32767.0,0.0,32767.0); // 67. for(int k=0; k<FFTLEN/2; k++) tb->test(-32768.0,-32768.0,-32768.0,-32768.0); // 68. for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,-32767.0,0.0,32767.0); // 69. for(int k=0; k<FFTLEN/2; k++) tb->test(0.0,32767.0,0.0,-32767.0); // 70. for(int k=0; k<FFTLEN/2; k++) tb->test(-32768.0,-32768.0,-32768.0,-32768.0); // 71. Now let's go for an impulse (SUCCESS) tb->test(16384.0, 0.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) tb->test(0.0,0.0,0.0,0.0); // 72. And another one on the next clock (FAILS, ugly) // Lot's of roundoff error, or some error in small bits tb->test(0.0, 0.0, 16384.0, 0.0); for(int k=0; k<FFTLEN/2-1; k++) tb->test(0.0,0.0,0.0,0.0); // 73. And an imaginary one on the second clock // Much roundoff error, as in last test tb->test(0.0, 0.0, 0.0, 16384.0); for(int k=0; k<FFTLEN/2-1; k++) tb->test(0.0,0.0,0.0,0.0); // 74. Likewise the next clock // Much roundoff error, as in last test tb->test(0.0,0.0,0.0,0.0); tb->test(16384.0, 0.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) tb->test(0.0,0.0,0.0,0.0); // 75. And it's imaginary counterpart // Much roundoff error, as in last test tb->test(0.0,0.0,0.0,0.0); tb->test(0.0, 16384.0, 0.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) tb->test(0.0,0.0,0.0,0.0); // 76. Likewise the next clock // Much roundoff error, as in last test tb->test(0.0,0.0,0.0,0.0); tb->test(0.0, 0.0, 16384.0, 0.0); for(int k=0; k<FFTLEN/2-2; k++) tb->test(0.0,0.0,0.0,0.0); // 77. And it's imaginary counterpart // Much roundoff error, as in last test tb->test(0.0,0.0,0.0,0.0); tb->test(0.0, 0.0, 0.0, 16384.0); for(int k=0; k<FFTLEN/2-2; k++) tb->test(0.0,0.0,0.0,0.0); // 78. Now let's try some exponentials for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN; cl = cos(W * (2*k )) * 16383.0; sl = sin(W * (2*k )) * 16383.0; cr = cos(W * (2*k+1)) * 16383.0; sr = sin(W * (2*k+1)) * 16383.0; tb->test(cl, sl, cr, sr); } // 79. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 5; cl = cos(W * (2*k )) * 16383.0; sl = sin(W * (2*k )) * 16383.0; cr = cos(W * (2*k+1)) * 16383.0; sr = sin(W * (2*k+1)) * 16383.0; tb->test(cl, sl, cr, sr); } // 80. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 8; cl = cos(W * (2*k )) * 8190.0; sl = sin(W * (2*k )) * 8190.0; cr = cos(W * (2*k+1)) * 8190.0; sr = sin(W * (2*k+1)) * 8190.0; tb->test(cl, sl, cr, sr); } // 81. for(int k=0; k<FFTLEN/2; k++) { double cl, cr, sl, sr, W; W = - 2.0 * M_PI / FFTLEN * 25; cl = cos(W * (2*k )) * 4.0; sl = sin(W * (2*k )) * 4.0; cr = cos(W * (2*k+1)) * 4.0; sr = sin(W * (2*k+1)) * 4.0; tb->test(cl, sl, cr, sr); } // 19.--24. And finally, let's clear out our results / buffer for(int k=0; k<(FFTLEN/2) * 5; k++) tb->test(0.0,0.0,0.0,0.0); fclose(fpout); }
Go to most recent revision | Compare with Previous | Blame | View Log