URL
https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk
Subversion Repositories dblclockfft
[/] [dblclockfft/] [trunk/] [bench/] [formal/] [abs_mpy.v] - Rev 40
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: abs_mpy.v // // Project: A General Purpose Pipelined FFT Implementation // // Purpose: This code has been modified from the mpyop.v file so as to // abstract the multiply that formal methods struggle so hard to // deal with. It also simplifies the interface so that (if enabled) // the multiply will return in 1-6 clocks, rather than the specified // number for the given architecture. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2018, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // module abs_mpy(i_a, i_b, o_result); parameter AW = 32, BW=32; parameter [0:0] OPT_SIGNED = 1'b1; input wire [(AW-1):0] i_a; input wire [(BW-1):0] i_b; output wire [(AW+BW-1):0] o_result; wire [(AW+BW-1):0] any_result; assign any_result = $anyseq; reg [AW-1:0] u_a; reg [BW-1:0] u_b; always @(*) begin u_a = ((i_a[AW-1])&&(OPT_SIGNED)) ? -i_a : i_a; u_b = ((i_b[BW-1])&&(OPT_SIGNED)) ? -i_b : i_b; end reg [(AW+BW-1):0] u_result; always @(*) if ((OPT_SIGNED)&&(any_result[AW+BW-1])) u_result = - { 1'b1, any_result }; else u_result = { 1'b0, any_result }; always @(*) begin // Constrain our result among many possibilities if ((i_a == 0)||(i_b == 0)) assume(any_result == 0); else if (OPT_SIGNED) assume(any_result[AW+BW-1] == (i_a[AW-1] ^ i_b[BW-1])); assume(u_result[AW+BW-1:BW] <= u_a); assume(u_result[AW+BW-1:AW] <= u_b); end genvar k; generate begin for(k=0; k<AW-1; k=k+1) begin always @(*) if (u_a == (1<<k)) assume(u_result == (u_b << k)); end for(k=0; k<BW; k=k+1) begin always @(*) if (u_b == (1<<k)) assume(u_result== (u_a << k)); end end endgenerate assign o_result = any_result; /* always @(*) if (i_a == 1) assert(o_result == {{(AW){i_b[BW-1]}}, i_b }); always @(*) if (i_b == 1) assert(o_result == {{(BW){i_a[AW-1]}}, i_a }); */ endmodule