URL
https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk
Subversion Repositories dblclockfft
[/] [dblclockfft/] [trunk/] [rtl/] [laststage.v] - Rev 39
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: laststage.v // // Project: A General Purpose Pipelined FFT Implementation // // Purpose: This is part of an FPGA implementation that will process // the final stage of a decimate-in-frequency FFT, running // through the data at one sample per clock. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2018, Gisselquist Technology, LLC // // This file is part of the general purpose pipelined FFT project. // // The pipelined FFT project is free software (firmware): you can redistribute // it and/or modify it under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // The pipelined FFT project is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser // General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. (It's in the $(ROOT)/doc directory. Run make // with no target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: LGPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/lgpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // module laststage(i_clk, i_reset, i_ce, i_sync, i_val, o_val, o_sync); parameter IWIDTH=16,OWIDTH=IWIDTH+1, SHIFT=0; input wire i_clk, i_reset, i_ce, i_sync; input wire [(2*IWIDTH-1):0] i_val; output wire [(2*OWIDTH-1):0] o_val; output reg o_sync; reg signed [(IWIDTH-1):0] m_r, m_i; wire signed [(IWIDTH-1):0] i_r, i_i; assign i_r = i_val[(2*IWIDTH-1):(IWIDTH)]; assign i_i = i_val[(IWIDTH-1):0]; // Don't forget that we accumulate a bit by adding two values // together. Therefore our intermediate value must have one more // bit than the two originals. reg signed [(IWIDTH):0] rnd_r, rnd_i, sto_r, sto_i; reg wait_for_sync, stage; reg [1:0] sync_pipe; initial wait_for_sync = 1'b1; initial stage = 1'b0; always @(posedge i_clk) if (i_reset) begin wait_for_sync <= 1'b1; stage <= 1'b0; end else if ((i_ce)&&((!wait_for_sync)||(i_sync))&&(!stage)) begin wait_for_sync <= 1'b0; // stage <= 1'b1; // end else if (i_ce) stage <= 1'b0; initial sync_pipe = 0; always @(posedge i_clk) if (i_reset) sync_pipe <= 0; else if (i_ce) sync_pipe <= { sync_pipe[0], i_sync }; initial o_sync = 1'b0; always @(posedge i_clk) if (i_reset) o_sync <= 1'b0; else if (i_ce) o_sync <= sync_pipe[1]; always @(posedge i_clk) if (i_ce) begin if (!stage) begin // Clock 1 m_r <= i_r; m_i <= i_i; // Clock 3 rnd_r <= sto_r; rnd_i <= sto_i; // end else begin // Clock 2 rnd_r <= m_r + i_r; rnd_i <= m_i + i_i; // sto_r <= m_r - i_r; sto_i <= m_i - i_i; // end end // Now that we have our results, let's round them and report them wire signed [(OWIDTH-1):0] o_r, o_i; convround #(IWIDTH+1,OWIDTH,SHIFT) do_rnd_r(i_clk, i_ce, rnd_r, o_r); convround #(IWIDTH+1,OWIDTH,SHIFT) do_rnd_i(i_clk, i_ce, rnd_i, o_i); assign o_val = { o_r, o_i }; `ifdef FORMAL reg f_past_valid; initial f_past_valid = 1'b0; always @(posedge i_clk) f_past_valid <= 1'b1; `ifdef LASTSTAGE always @(posedge i_clk) assume((i_ce)||($past(i_ce))||($past(i_ce,2))); `endif initial assert(IWIDTH+1 == OWIDTH); reg signed [IWIDTH-1:0] f_piped_real [0:3]; reg signed [IWIDTH-1:0] f_piped_imag [0:3]; always @(posedge i_clk) if (i_ce) begin f_piped_real[0] <= i_val[2*IWIDTH-1:IWIDTH]; f_piped_imag[0] <= i_val[ IWIDTH-1:0]; f_piped_real[1] <= f_piped_real[0]; f_piped_imag[1] <= f_piped_imag[0]; f_piped_real[2] <= f_piped_real[1]; f_piped_imag[2] <= f_piped_imag[1]; f_piped_real[3] <= f_piped_real[2]; f_piped_imag[3] <= f_piped_imag[2]; end wire f_syncd; reg f_rsyncd; initial f_rsyncd = 0; always @(posedge i_clk) if (i_reset) f_rsyncd <= 1'b0; else if (!f_rsyncd) f_rsyncd <= o_sync; assign f_syncd = (f_rsyncd)||(o_sync); reg f_state; initial f_state = 0; always @(posedge i_clk) if (i_reset) f_state <= 0; else if ((i_ce)&&((!wait_for_sync)||(i_sync))) f_state <= f_state + 1; always @(*) if (f_state != 0) assume(!i_sync); always @(*) assert(stage == f_state[0]); always @(posedge i_clk) if ((f_state == 1'b1)&&(f_syncd)) begin assert(o_r == f_piped_real[2] + f_piped_real[1]); assert(o_i == f_piped_imag[2] + f_piped_imag[1]); end always @(posedge i_clk) if ((f_state == 1'b0)&&(f_syncd)) begin assert(!o_sync); assert(o_r == f_piped_real[3] - f_piped_real[2]); assert(o_i == f_piped_imag[3] - f_piped_imag[2]); end always @(*) if (wait_for_sync) begin assert(!f_rsyncd); assert(!o_sync); assert(f_state == 0); end `endif // FORMAL endmodule