URL
https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk
Subversion Repositories dblclockfft
[/] [dblclockfft/] [trunk/] [sw/] [fftgen.cpp] - Rev 9
Go to most recent revision | Compare with Previous | Blame | View Log
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/stat.h> #include <string.h> #include <math.h> #include <ctype.h> #include <assert.h> #define COREDIR "fft-core" const char cpyleft[] = "///////////////////////////////////////////////////////////////////////////\n" "//\n" "// Copyright (C) 2015, Gisselquist Technology, LLC\n" "//\n" "// This program is free software (firmware): you can redistribute it and/or\n" "// modify it under the terms of the GNU General Public License as published\n" "// by the Free Software Foundation, either version 3 of the License, or (at\n" "// your option) any later version.\n" "//\n" "// This program is distributed in the hope that it will be useful, but WITHOUT\n" "// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or\n" "// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License\n" "// for more details.\n" "//\n" "// You should have received a copy of the GNU General Public License along\n" "// with this program. (It's in the $(ROOT)/doc directory, run make with no\n" "// target there if the PDF file isn\'t present.) If not, see\n" "// <http://www.gnu.org/licenses/> for a copy.\n" "//\n" "// License: GPL, v3, as defined and found on www.gnu.org,\n" "// http://www.gnu.org/licenses/gpl.html\n" "//\n" "//\n" "///////////////////////////////////////////////////////////////////////////\n"; const char prjname[] = "A Doubletime Pipelined FFT\n"; const char creator[] = "// Creator: Dan Gisselquist, Ph.D.\n" "// Gisselquist Tecnology, LLC\n"; int lgval(int vl) { int lg; for(lg=1; (1<<lg) < vl; lg++) ; return lg; } int nextlg(int vl) { int r; for(r=1; r<vl; r<<=1) ; return r; } int lgdelay(int nbits, int xtra) { int cbits = nbits + xtra; int delay = nbits + 2; if (nbits+1<cbits) delay = nbits+4; else delay = cbits+3; return lgval(delay); } void build_quarters(const char *fname) { FILE *fp = fopen(fname, "w"); if (NULL == fp) { fprintf(stderr, "Could not open \'%s\' for writing\n", fname); perror("O/S Err was:"); return; } fprintf(fp, "///////////////////////////////////////////////////////////////////////////\n" "//\n" "// Filename: qtrstage.v\n" "// \n" "// Project: %s\n" "//\n" "// Purpose: This file encapsulates the 4 point stage of a decimation in\n" "// frequency FFT. This particular implementation is optimized\n" "// so that all of the multiplies are accomplished by additions\n" "// and multiplexers only.\n" "//\n" "//\n%s" "//\n", prjname, creator); fprintf(fp, "%s", cpyleft); fprintf(fp, "module\tqtrstage(i_clk, i_rst, i_ce, i_sync, i_data, o_data, o_sync);\n" "\tparameter IWIDTH=16, OWIDTH=IWIDTH+1;\n" "\t// Parameters specific to the core that should be changed when this\n" "\t// core is built ... Note that the minimum LGSPAN is 2. Smaller \n" "\t// spans must use the fftdoubles stage.\n" "\tparameter\tLGWIDTH=8, ODD=0, INVERSE=0,SHIFT=0,ROUND=0;\n" "\tinput\t i_clk, i_rst, i_ce, i_sync;\n" "\tinput\t [(2*IWIDTH-1):0] i_data;\n" "\toutput\treg [(2*OWIDTH-1):0] o_data;\n" "\toutput\treg o_sync;\n" "\t\n" "\treg\t wait_for_sync;\n" "\treg\t[2:0] pipeline;\n" "\n" "\treg\t[(IWIDTH):0] sum_r, sum_i, diff_r, diff_i;\n" "\twire\t[(IWIDTH):0] n_diff_i;\n" "\tassign n_diff_i = -diff_i;\n" "\n" "\treg\t[(2*OWIDTH-1):0] ob_a;\n" "\twire\t[(2*OWIDTH-1):0] ob_b;\n" "\treg\t[(OWIDTH-1):0] ob_b_r, ob_b_i;\n" "\tassign ob_b = { ob_b_r, ob_b_i };\n" "\n" "\treg\t[(LGWIDTH-1):0] iaddr;\n" "\treg\t[(2*IWIDTH-1):0] imem;\n" "\n" "\twire\tsigned\t[(IWIDTH-1):0]\timem_r, imem_i;\n" "\tassign\timem_r = imem[(2*IWIDTH-1):(IWIDTH)];\n" "\tassign\timem_i = imem[(IWIDTH-1):0];\n" "\n" "\twire\tsigned\t[(IWIDTH-1):0]\ti_data_r, i_data_i;\n" "\tassign\ti_data_r = i_data[(2*IWIDTH-1):(IWIDTH)];\n" "\tassign\ti_data_i = i_data[(IWIDTH-1):0];\n" "\n" "\treg [(2*OWIDTH-1):0] omem;\n" "\n" "\twire [(IWIDTH-1):0] rnd;\n" "\tgenerate\n" "\tif ((ROUND)&&((IWIDTH+1-OWIDTH-SHIFT)>0))\n" "\t\tassign rnd = { {(IWIDTH-1){1'b0}}, 1'b1 };\n" "\telse\n" "\t\tassign rnd = { {(IWIDTH){1'b0}}};\n" "\tendgenerate\n" "\n" "\talways @(posedge i_clk)\n" "\t\tif (i_rst)\n" "\t\tbegin\n" "\t\t\twait_for_sync <= 1'b1;\n" "\t\t\tiaddr <= 0;\n" "\t\t\tpipeline <= 3'b000;\n" "\t\tend\n" "\t\telse if ((i_ce)&&((~wait_for_sync)||(i_sync)))\n" "\t\tbegin\n" "\t\t\t// Always\n" "\t\t\timem <= i_data;\n" "\t\t\tiaddr <= iaddr + 1;\n" "\t\t\twait_for_sync <= 1'b0;\n" "\n" "\t\t\t// In sequence, clock = 0\n" "\t\t\tif (iaddr[0])\n" "\t\t\tbegin\n" "\t\t\t\tsum_r <= imem_r + i_data_r + rnd;\n" "\t\t\t\tsum_i <= imem_i + i_data_i + rnd;\n" "\t\t\t\tdiff_r <= imem_r - i_data_r + rnd;\n" "\t\t\t\tdiff_i <= imem_i - i_data_i + rnd;\n" "\n" "\t\t\t\tpipeline[2:0] <= { pipeline[1:0], 1'b1 };\n" "\t\t\tend else\n" "\t\t\t\tpipeline[2:0] <= { pipeline[1:0], 1'b0 };\n" "\n" "\t\t\t// In sequence, clock = 1\n" "\t\t\tif (pipeline[1])\n" "\t\t\tbegin\n" "\t\t\t\tob_a <= { sum_r[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)],\n" "\t\t\t\t\t\tsum_i[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)] };\n" "\t\t\t\t// on Even, W = e^{-j2pi 1/4 0} = 1\n" "\t\t\t\tif (ODD == 0)\n" "\t\t\t\tbegin\n" "\t\t\t\t\tob_b_r <= diff_r[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" "\t\t\t\t\tob_b_i <= diff_i[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" // "\t\t\t\t\tob_b_r <= { (OWIDTH) {1'b0} };\n" // "\t\t\t\t\tob_b_i <= { (OWIDTH) {1'b0} };\n" "\t\t\t\tend else if (~INVERSE) begin\n" "\t\t\t\t\t// on Odd, W = e^{-j2pi 1/4} = -j\n" "\t\t\t\t\tob_b_r <= diff_i[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" "\t\t\t\t\tob_b_i <= diff_r[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" // "\t\t\t\t\tob_b_r <= { (OWIDTH) {1'b0} };\n" // "\t\t\t\t\tob_b_i <= { (OWIDTH) {1'b0} };\n" "\t\t\t\tend else begin\n" "\t\t\t\t\t// on Odd, W = e^{j2pi 1/4} = j\n" "\t\t\t\t\tob_b_r <= n_diff_i[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" "\t\t\t\t\tob_b_i <= diff_r[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" // "\t\t\t\t\tob_b_r <= { (OWIDTH) {1'b0} };\n" // "\t\t\t\t\tob_b_i <= { (OWIDTH) {1'b0} };\n" "\t\t\t\tend\n" "\t\t\t\t// (wire) ob_b <= { ob_b_r, ob_b_i };\n" "\t\t\tend\n" "\t\t\t// In sequence, clock = 2\n" "\t\t\tif (pipeline[2])\n" "\t\t\tbegin\n" "\t\t\t\tomem <= ob_b;\n" "\t\t\t\to_data <= ob_a;\n" "\t\t\tend else\n" "\t\t\t\to_data <= omem;\n" "\t\t\t// Don\'t forget in the sync check that we are running\n" "\t\t\t// at two clocks per sample. Thus we need to\n" "\t\t\t// produce a sync every 2^(LGWIDTH-1) clocks.\n" "\t\t\to_sync <= &(~iaddr[(LGWIDTH-2):3]) && (iaddr[2:0] == 3'b100);\n" "\t\tend\n" "endmodule\n"); } void build_dblstage(const char *fname) { FILE *fp = fopen(fname, "w"); if (NULL == fp) { fprintf(stderr, "Could not open \'%s\' for writing\n", fname); perror("O/S Err was:"); return; } fprintf(fp, "///////////////////////////////////////////////////////////////////////////\n" "//\n" "// Filename: dblstage.v\n" "//\n" "// Project: %s\n" "//\n" "// Purpose: This is part of an FPGA implementation that will process\n" "// the final stage of a decimate-in-frequency FFT, running\n" "// through the data at two samples per clock. If you notice\n" "// from the derivation of an FFT, the only time both even and\n" "// odd samples are used at the same time is in this stage.\n" "// Therefore, other than this stage and these twiddles, all of\n" "// the other stages can run two stages at a time at one sample\n" "// per clock.\n" "//\n" "// In this implementation, the output is valid one clock after\n" "// the input is valid. The output also accumulates one bit\n" "// above and beyond the number of bits in the input.\n" "// \n" "// i_clk A system clock\n" "// i_rst A synchronous reset\n" "// i_ce Circuit enable--nothing happens unless this line is high\n" "// i_sync A synchronization signal, high once per FFT at the start\n" "// i_left The first (even) complex sample input. The higher order\n" "// bits contain the real portion, low order bits the\n" "// imaginary portion, all in two\'s complement.\n" "// i_right The next (odd) complex sample input, same format as\n" "// i_left.\n" "// o_left The first (even) complex output.\n" "// o_right The next (odd) complex output.\n" "// o_sync Output synchronization signal.\n" "//\n%s" "//\n", prjname, creator); fprintf(fp, "%s", cpyleft); fprintf(fp, "module\tdblstage(i_clk, i_rst, i_ce, i_sync, i_left, i_right, o_left, o_right, o_sync);\n" "\tparameter\tIWIDTH=16,OWIDTH=IWIDTH+1, SHIFT=0;\n" "\tinput\t\ti_clk, i_rst, i_ce, i_sync;\n" "\tinput\t\t[(2*IWIDTH-1):0]\ti_left, i_right;\n" "\toutput\twire\t[(2*OWIDTH-1):0]\to_left, o_right;\n" "\toutput\treg\t\t\to_sync;\n" "\n" "\twire\tsigned\t[(IWIDTH-1):0]\ti_in_0r, i_in_0i, i_in_1r, i_in_1i;\n" "\tassign\ti_in_0r = i_left[(2*IWIDTH-1):(IWIDTH)]; \n" "\tassign\ti_in_0i = i_left[(IWIDTH-1):0]; \n" "\tassign\ti_in_1r = i_right[(2*IWIDTH-1):(IWIDTH)]; \n" "\tassign\ti_in_1i = i_right[(IWIDTH-1):0]; \n" "\twire\t[(OWIDTH-1):0]\t\to_out_0r, o_out_0i,\n" "\t\t\t\t\to_out_1r, o_out_1i;\n" "\n" "\t// Don't forget that we accumulate a bit by adding two values\n" "\t// together. Therefore our intermediate value must have one more\n" "\t// bit than the two originals.\n" "\treg\t[IWIDTH:0]\tout_0r, out_0i, out_1r, out_1i;\n" "\n" "\treg\twait_for_sync;\n" "\n" "\talways @(posedge i_clk)\n" "\t\tif (i_rst)\n" "\t\t\twait_for_sync <= 1'b1;\n" "\t\telse if ((i_ce)&&((~wait_for_sync)||(i_sync)))\n" "\t\tbegin\n" "\t\t\twait_for_sync <= 1'b0;\n" "\t\t\t//\n" "\t\t\tout_0r <= i_in_0r + i_in_1r;\n" "\t\t\tout_0i <= i_in_0i + i_in_1i;\n" "\t\t\t//\n" "\t\t\tout_1r <= i_in_0r - i_in_1r;\n" "\t\t\tout_1i <= i_in_0i - i_in_1i;\n" "\t\t\t//\n" "\t\t\to_sync <= i_sync;\n" "\t\tend\n" "\n" "\t// Now, if the master control program doesn't want to keep all of\n" "\t// our bits, we can shift down to OWIDTH bits here.\n" "\tassign\to_out_0r = out_0r[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" "\tassign\to_out_0i = out_0i[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" "\tassign\to_out_1r = out_1r[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" "\tassign\to_out_1i = out_1i[(IWIDTH-SHIFT):(IWIDTH+1-OWIDTH-SHIFT)];\n" "\n" "\tassign\to_left = { o_out_0r, o_out_0i };\n" "\tassign\to_right = { o_out_1r, o_out_1i };\n" "\n" "endmodule\n"); fclose(fp); } void build_multiply(const char *fname) { FILE *fp = fopen(fname, "w"); if (NULL == fp) { fprintf(stderr, "Could not open \'%s\' for writing\n", fname); perror("O/S Err was:"); return; } fprintf(fp, "///////////////////////////////////////////////////////////////////////////\n" "//\n" "// Filename: shiftaddmpy.v\n" "//\n" "// Project: %s\n" "//\n" "// Purpose: A portable shift and add multiply.\n" "//\n" "// While both Xilinx and Altera will offer single clock \n" "// multiplies, this simple approach will multiply two numbers\n" "// on any architecture. The result maintains the full width\n" "// of the multiply, there are no extra stuff bits, no rounding,\n" "// no shifted bits, etc.\n" "//\n" "// Further, for those applications that can support it, this\n" "// multiply is pipelined and will produce one answer per clock.\n" "//\n" "// For minimal processing delay, make the first parameter\n" "// the one with the least bits, so that AWIDTH <= BWIDTH.\n" "//\n" "// The processing delay in this multiply is (AWIDTH+1) cycles.\n" "// That is, if the data is present on the input at clock t=0,\n" "// the result will be present on the output at time t=AWIDTH+1;\n" "//\n" "//\n%s" "//\n", prjname, creator); fprintf(fp, "%s", cpyleft); fprintf(fp, "module shiftaddmpy(i_clk, i_ce, i_a, i_b, o_r);\n" "\tparameter\tAWIDTH=16,BWIDTH=AWIDTH;\n" "\tinput\t\t\t\t\ti_clk, i_ce;\n" "\tinput\t\t[(AWIDTH-1):0]\t\ti_a;\n" "\tinput\t\t[(BWIDTH-1):0]\t\ti_b;\n" "\toutput\treg\t[(AWIDTH+BWIDTH-1):0]\to_r;\n" "\n" "\treg\t[(AWIDTH-1):0]\tu_a;\n" "\treg\t[(BWIDTH-1):0]\tu_b;\n" "\treg\t\t\tsgn;\n" "\n" "\treg\t[(AWIDTH-2):0]\t\tr_a[0:(AWIDTH-1)];\n" "\treg\t[(AWIDTH+BWIDTH-2):0]\tr_b[0:(AWIDTH-1)];\n" "\treg\t\t\t\tr_s[0:(AWIDTH-1)];\n" "\treg\t[(AWIDTH+BWIDTH-1):0]\tacc[0:(AWIDTH-1)];\n" "\tgenvar k;\n" "\n" "\t// If we were forced to stay within two\'s complement arithmetic,\n" "\t// taking the absolute value here would require an additional bit.\n" "\t// However, because our results are now unsigned, we can stay\n" "\t// within the number of bits given (for now).\n" "\talways @(posedge i_clk)\n" "\t\tif (i_ce)\n" "\t\tbegin\n" "\t\t\tu_a <= (i_a[AWIDTH-1])?(-i_a):(i_a);\n" "\t\t\tu_b <= (i_b[BWIDTH-1])?(-i_b):(i_b);\n" "\t\t\tsgn <= i_a[AWIDTH-1] ^ i_b[BWIDTH-1];\n" "\t\tend\n" "\n" "\talways @(posedge i_clk)\n" "\t\tif (i_ce)\n" "\t\tbegin\n" "\t\t\tacc[0] <= (u_a[0]) ? { {(AWIDTH){1'b0}}, u_b }\n" "\t\t\t\t\t: {(AWIDTH+BWIDTH){1'b0}};\n" "\t\t\tr_a[0] <= { u_a[(AWIDTH-1):1] };\n" "\t\t\tr_b[0] <= { {(AWIDTH-1){1'b0}}, u_b };\n" "\t\t\tr_s[0] <= sgn; // The final sign, needs to be preserved\n" "\t\tend\n" "\n" "\tgenerate\n" "\talways @(posedge i_clk)\n" "\tif (i_ce)\n" "\tbegin\n" "\t\tfor(k=0; k<AWIDTH-1; k++)\n" "\t\tbegin\n" "\t\t\tacc[k+1] <= acc[k] + ((r_a[k][0]) ? {r_b[k],1'b0}:0);\n" "\t\t\tr_a[k+1] <= { 1'b0, r_a[k][(AWIDTH-2):1] };\n" "\t\t\tr_b[k+1] <= { r_b[k][(AWIDTH+BWIDTH-3):0], 1'b0};\n" "\t\t\tr_s[k+1] <= r_s[k];\n" "\t\tend\n" "\tend\n" "\tendgenerate\n" "\n" "\talways @(posedge i_clk)\n" "\t\tif (i_ce)\n" "\t\t\to_r <= (r_s[AWIDTH-1]) ? (-acc[AWIDTH-1]) : acc[AWIDTH-1];\n" "\n" "endmodule\n"); fclose(fp); } void build_dblreverse(const char *fname) { FILE *fp = fopen(fname, "w"); if (NULL == fp) { fprintf(stderr, "Could not open \'%s\' for writing\n", fname); perror("O/S Err was:"); return; } fprintf(fp, "///////////////////////////////////////////////////////////////////////////\n" "//\n" "// Filename: dblreverse.v\n" "//\n" "// Project: %s\n" "//\n" "// Purpose: This module bitreverses a pipelined FFT input. Operation is\n" "// expected as follows:\n" "//\n" "// i_clk A running clock at whatever system speed is offered.\n" "// i_rst A synchronous reset signal, that resets all internals\n" "// i_ce If this is one, one input is consumed and an output\n" "// is produced.\n" "// i_in_0, i_in_1\n" "// Two inputs to be consumed, each of width WIDTH.\n" "// o_out_0, o_out_1\n" "// Two of the bitreversed outputs, also of the same\n" "// width, WIDTH. Of course, there is a delay from the\n" "// first input to the first output. For this purpose,\n" "// o_sync is present.\n" "// o_sync This will be a 1'b1 for the first value in any block.\n" "// Following a reset, this will only become 1'b1 once\n" "// the data has been loaded and is now valid. After that,\n" "// all outputs will be valid.\n" "//\n%s" "//\n", prjname, creator); fprintf(fp, "%s", cpyleft); fprintf(fp, "\n\n" "//\n" "// How do we do bit reversing at two smples per clock? Can we separate out\n" "// our work into eight memory banks, writing two banks at once and reading\n" "// another two banks in the same clock?\n" "//\n" "// mem[00xxx0] = s_0[n]\n" "// mem[00xxx1] = s_1[n]\n" "// o_0[n] = mem[10xxx0]\n" "// o_1[n] = mem[11xxx0]\n" "// ...\n" "// mem[01xxx0] = s_0[m]\n" "// mem[01xxx1] = s_1[m]\n" "// o_0[m] = mem[10xxx1]\n" "// o_1[m] = mem[11xxx1]\n" "// ...\n" "// mem[10xxx0] = s_0[n]\n" "// mem[10xxx1] = s_1[n]\n" "// o_0[n] = mem[00xxx0]\n" "// o_1[n] = mem[01xxx0]\n" "// ...\n" "// mem[11xxx0] = s_0[m]\n" "// mem[11xxx1] = s_1[m]\n" "// o_0[m] = mem[00xxx1]\n" "// o_1[m] = mem[01xxx1]\n" "// ...\n" "//\n" "// The answer is that, yes we can but: we need to use four memory banks\n" "// to do it properly. These four banks are defined by the two bits\n" "// that determine the top and bottom of the correct address. Larger\n" "// FFT\'s would require more memories.\n" "//\n" "//\n"); fprintf(fp, "module dblreverse(i_clk, i_rst, i_ce, i_in_0, i_in_1,\n" "\t\to_out_0, o_out_1, o_sync);\n" "\tparameter\t\t\tLGSIZE=4, WIDTH=24;\n" "\tinput\t\t\t\ti_clk, i_rst, i_ce;\n" "\tinput\t\t[(2*WIDTH-1):0]\ti_in_0, i_in_1;\n" "\toutput\treg\t[(2*WIDTH-1):0]\to_out_0, o_out_1;\n" "\toutput\treg\t\t\to_sync;\n" "\n" "\treg\tin_reset;\n" "\treg\t[(LGSIZE):0]\tiaddr;\n" "\treg\t[(2*WIDTH-1):0]\tmem_0e [0:((1<<(LGSIZE-1))-1)];\n" "\treg\t[(2*WIDTH-1):0]\tmem_0o [0:((1<<(LGSIZE-1))-1)];\n" "\treg\t[(2*WIDTH-1):0]\tmem_1e [0:((1<<(LGSIZE-1))-1)];\n" "\treg\t[(2*WIDTH-1):0]\tmem_1o [0:((1<<(LGSIZE-1))-1)];\n" "\n" "\twire\t[(2*LGSIZE-1):0] braddr;\n" "\tgenvar\tk;\n" "\tgenerate for(k=0; k<LGSIZE; k++)\n" "\t\tassign braddr[k] = iaddr[LGSIZE-1-k];\n" "\tendgenerate\n" "\n" "\talways @(posedge i_clk)\n" "\t\tif (i_rst)\n" "\t\tbegin\n" "\t\t\tiaddr <= 0;\n" "\t\t\tin_reset <= 1'b1;\n" "\t\tend else if (i_ce)\n" "\t\tbegin\n" "\t\t\tif (iaddr[(LGSIZE-1)])\n" "\t\t\tbegin\n" "\t\t\t\tmem_1e[{iaddr[LGSIZE],iaddr[(LGSIZE-2):1]}] <= i_in_0;\n" "\t\t\t\tmem_1o[{iaddr[LGSIZE],iaddr[(LGSIZE-2):1]}] <= i_in_1;\n" "\t\t\tend else begin\n" "\t\t\t\tmem_0e[{iaddr[LGSIZE],iaddr[(LGSIZE-2):1]}] <= i_in_0;\n" "\t\t\t\tmem_0o[{iaddr[LGSIZE],iaddr[(LGSIZE-2):1]}] <= i_in_1;\n" "\t\t\tend\n" "\t\t\tiaddr <= iaddr + 2;\n" "\t\t\tif (&iaddr[(LGSIZE-1):1])\n" "\t\t\t\tin_reset <= 1'b0;\n" "\t\t\tif (in_reset)\n" "\t\t\tbegin\n" "\t\t\t\to_out_0 <= {(2*WIDTH){1'b0}};\n" "\t\t\t\to_out_1 <= {(2*WIDTH){1'b0}};\n" "\t\t\t\to_sync <= 1'b0;\n" "\t\t\tend else\n" "\t\t\tbegin\n" "\t\t\t\tif (braddr[0])\n" "\t\t\t\tbegin\n" "\t\t\t\t\to_out_0 <= mem_0o[{~iaddr[LGSIZE],braddr[(LGSIZE-2):1]}];\n" "\t\t\t\t\to_out_1 <= mem_1o[{~iaddr[LGSIZE],braddr[(LGSIZE-2):1]}];\n" "\t\t\t\tend else begin\n" "\t\t\t\t\to_out_0 <= mem_0e[{~iaddr[LGSIZE],braddr[(LGSIZE-2):1]}];\n" "\t\t\t\t\to_out_1 <= mem_1e[{~iaddr[LGSIZE],braddr[(LGSIZE-2):1]}];\n" "\t\t\t\tend\n" "\t\t\t\to_sync <= ~(|iaddr[(LGSIZE-1):0]);\n" "\t\t\tend\n" "\t\tend\n" "\n" "endmodule;\n"); fclose(fp); } void build_butterfly(const char *fname) { FILE *fp = fopen(fname, "w"); if (NULL == fp) { fprintf(stderr, "Could not open \'%s\' for writing\n", fname); perror("O/S Err was:"); return; } fprintf(fp, "///////////////////////////////////////////////////////////////////////////\n" "//\n" "// Filename: butterfly.v\n" "//\n" "// Project: %s\n" "//\n" "// Purpose: This routine caculates a butterfly for a decimation\n" "// in frequency version of an FFT. Specifically, given\n" "// complex Left and Right values together with a \n" "// coefficient, the output of this routine is given\n" "// by:\n" "//\n" "// L' = L + R\n" "// R' = (L - R)*C\n" "//\n" "// The rest of the junk below handles timing (mostly),\n" "// to make certain that L' and R' reach the output at\n" "// the same clock. Further, just to make certain\n" "// that is the case, an 'aux' input exists. This\n" "// aux value will come out of this routine synchronized\n" "// to the values it came in with. (i.e., both L', R',\n" "// and aux all have the same delay.) Hence, a caller\n" "// of this routine may set aux on the first input with\n" "// valid data, and then wait to see aux set on the output\n" "// to know when to find the first output with valid data.\n" "//\n" "// All bits are preserved until the very last clock,\n" "// where any more bits than OWIDTH will be quietly\n" "// discarded.\n" "//\n" "// This design features no overflow checking.\n" "// \n" "// Notes:\n" "// CORDIC:\n" "// Much as we would like, we can't use a cordic here.\n" "// The goal is to accomplish an FFT, as defined, and a\n" "// CORDIC places a scale factor onto the data. Removing\n" "// the scale factor would cost a two multiplies, which\n" "// is precisely what we are trying to avoid.\n" "//\n" "//\n" "// 3-MULTIPLIES:\n" "// It should also be possible to do this with three \n" "// multiplies and an extra two addition cycles. \n" "//\n" "// We want\n" "// R+I = (a + jb) * (c + jd)\n" "// R+I = (ac-bd) + j(ad+bc)\n" "// We multiply\n" "// P1 = ac\n" "// P2 = bd\n" "// P3 = (a+b)(c+d)\n" "// Then \n" "// R+I=(P1-P2)+j(P3-P2-P1)\n" "//\n" "// WIDTHS:\n" "// On multiplying an X width number by an\n" "// Y width number, X>Y, the result should be (X+Y)\n" "// bits, right?\n" "// -2^(X-1) <= a <= 2^(X-1) - 1\n" "// -2^(Y-1) <= b <= 2^(Y-1) - 1\n" "// (2^(Y-1)-1)*(-2^(X-1)) <= ab <= 2^(X-1)2^(Y-1)\n" "// -2^(X+Y-2)+2^(X-1) <= ab <= 2^(X+Y-2) <= 2^(X+Y-1) - 1\n" "// -2^(X+Y-1) <= ab <= 2^(X+Y-1)-1\n" "// YUP! But just barely. Do this and you'll really want\n" "// to drop a bit, although you will risk overflow in so\n" "// doing.\n" "//\n%s" "//\n", prjname, creator); fprintf(fp, "%s", cpyleft); fprintf(fp, "module\tbutterfly(i_clk, i_rst, i_ce, i_coef, i_left, i_right, i_aux,\n" "\t\to_left, o_right, o_aux);\n" "\t// Public changeable parameters ...\n" "\tparameter IWIDTH=16,CWIDTH=IWIDTH+4,OWIDTH=IWIDTH+1;\n" "\t// Parameters specific to the core that should not be changed.\n" "\tparameter MPYDELAY=5'd20, // (IWIDTH+1 < CWIDTH)?(IWIDTH+4):(CWIDTH+3),\n" "\t\t\tSHIFT=0, ROUND=0;\n" "\t// The LGDELAY should be the base two log of the MPYDELAY. If\n" "\t// this value is fractional, then round up to the nearest\n" "\t// integer: LGDELAY=ceil(log(MPYDELAY)/log(2));\n" "\tparameter\tLGDELAY=5;\n" "\tinput\t\ti_clk, i_rst, i_ce;\n" "\tinput\t\t[(2*CWIDTH-1):0] i_coef;\n" "\tinput\t\t[(2*IWIDTH-1):0] i_left, i_right;\n" "\tinput\t\ti_aux;\n" "\toutput\twire [(2*OWIDTH-1):0] o_left, o_right;\n" "\toutput\twire o_aux;\n" "\n" "\twire\t[(OWIDTH-1):0] o_left_r, o_left_i, o_right_r, o_right_i;\n" "\n" "\treg\t[(2*IWIDTH-1):0]\tr_left, r_right;\n" "\treg\t\t\t\tr_aux, r_aux_2;\n" "\treg\t[(2*CWIDTH-1):0]\tr_coef, r_coef_2;\n" "\twire\tsigned\t[(CWIDTH-1):0]\tr_coef_r, r_coef_i;\n" "\tassign\tr_coef_r = r_coef_2[ (2*CWIDTH-1):(CWIDTH)];\n" "\tassign\tr_coef_i = r_coef_2[ ( CWIDTH-1):0];\n" "\twire\tsigned\t[(IWIDTH-1):0]\tr_left_r, r_left_i, r_right_r, r_right_i;\n" "\tassign\tr_left_r = r_left[ (2*IWIDTH-1):(IWIDTH)];\n" "\tassign\tr_left_i = r_left[ (IWIDTH-1):0];\n" "\tassign\tr_right_r = r_right[(2*IWIDTH-1):(IWIDTH)];\n" "\tassign\tr_right_i = r_right[(IWIDTH-1):0];\n" "\n" "\treg\tsigned\t[(IWIDTH):0]\tr_sum_r, r_sum_i, r_dif_r, r_dif_i;\n" "\n" "\treg [(LGDELAY-1):0] fifo_addr;\n" "\twire [(LGDELAY-1):0] fifo_read_addr;\n" "\tassign\tfifo_read_addr = fifo_addr - MPYDELAY;\n" "\treg [(2*IWIDTH+2):0] fifo_left [ 0:((1<<LGDELAY)-1)];\n" "\treg\t\t\t\tovalid;\n" "\n"); fprintf(fp, "\t// Set up the input to the multiply\n" "\talways @(posedge i_clk)\n" "\t\tif (i_ce)\n" "\t\tbegin\n" "\t\t\t// One clock just latches the inputs\n" "\t\t\tr_left <= i_left; // No change in # of bits\n" "\t\t\tr_right <= i_right;\n" "\t\t\tr_aux <= i_aux;\n" "\t\t\tr_coef <= i_coef;\n" "\t\t\t// Next clock adds/subtracts\n" "\t\t\tr_sum_r <= r_left_r + r_right_r; // Now IWIDTH+1 bits\n" "\t\t\tr_sum_i <= r_left_i + r_right_i;\n" "\t\t\tr_dif_r <= r_left_r - r_right_r;\n" "\t\t\tr_dif_i <= r_left_i - r_right_i;\n" "\t\t\t// Other inputs are simply delayed on second clock\n" "\t\t\tr_aux_2 <= r_aux;\n" "\t\t\tr_coef_2<= r_coef;\n" "\t\tend\n" "\n"); fprintf(fp, "\t// Don\'t forget to record the even side, since it doesn\'t need\n" "\t// to be multiplied, but yet we still need the results in sync\n" "\t// with the answer when it is ready.\n" "\talways @(posedge i_clk)\n" "\t\tif (i_rst)\n" "\t\tbegin\n" "\t\t\tfifo_addr <= 0;\n" "\t\t\tovalid <= 1'b0;\n" "\t\tend else if (i_ce)\n" "\t\tbegin\n" "\t\t\t// Need to delay the sum side--nothing else happens\n" "\t\t\t// to it, but it needs to stay synchronized with the\n" "\t\t\t// right side.\n" "\t\t\tfifo_left[fifo_addr] <= { r_aux_2, r_sum_r, r_sum_i };\n" "\t\t\tfifo_addr <= fifo_addr + 1;\n" "\t\t\tovalid <= (ovalid) || (fifo_addr > MPYDELAY+1);\n" "\t\tend\n" "\n" "\twire\tsigned\t[(CWIDTH-1):0] ir_coef_r, ir_coef_i;\n" "\tassign\tir_coef_r = r_coef_2[(2*CWIDTH-1):CWIDTH];\n" "\tassign\tir_coef_i = r_coef_2[(CWIDTH-1):0];\n" "\twire\tsigned\t[((IWIDTH+2)+(CWIDTH+1)-1):0]\tp_one, p_two, p_three;\n" "\n" "\n"); fprintf(fp, "\t// Multiply output is always a width of the sum of the widths of\n" "\t// the two inputs. ALWAYS. This is independent of the number of\n" "\t// bits in p_one, p_two, or p_three. These values needed to \n" "\t// accumulate a bit (or two) each. However, this approach to a\n" "\t// three multiply complex multiply cannot increase the total\n" "\t// number of bits in our final output. We\'ll take care of\n" "\t// dropping back down to the proper width, OWIDTH, in our routine\n" "\t// below.\n" "\n" "\n"); fprintf(fp, "\t// We accomplish here \"Karatsuba\" multiplication. That is,\n" "\t// by doing three multiplies we accomplish the work of four.\n" "\t// Let\'s prove to ourselves that this works ... We wish to\n" "\t// multiply: (a+jb) * (c+jd), where a+jb is given by\n" "\t//\ta + jb = r_dif_r + j r_dif_i, and\n" "\t//\tc + jd = ir_coef_r + j ir_coef_i.\n" "\t// We do this by calculating the intermediate products P1, P2,\n" "\t// and P3 as\n" "\t//\tP1 = ac\n" "\t//\tP2 = bd\n" "\t//\tP3 = (a + b) * (c + d)\n" "\t// and then complete our final answer with\n" "\t//\tac - bd = P1 - P2 (this checks)\n" "\t//\tad + bc = P3 - P2 - P1\n" "\t//\t = (ac + bc + ad + bd) - bd - ac\n" "\t//\t = bc + ad (this checks)\n" "\n" "\n"); fprintf(fp, "\t// This should really be based upon an IF, such as in\n" "\t// if (IWIDTH < CWIDTH) then ...\n" "\t// However, this is the only (other) way I know to do it.\n" "\tgenerate\n" "\tif (CWIDTH < IWIDTH+1)\n" "\tbegin\n" "\t\t// We need to pad these first two multiplies by an extra\n" "\t\t// bit just to keep them aligned with the third,\n" "\t\t// simpler, multiply.\n" "\t\tshiftaddmpy #(CWIDTH+1,IWIDTH+2) p1(i_clk, i_ce,\n" "\t\t\t\t{ir_coef_r[CWIDTH-1],ir_coef_r},\n" "\t\t\t\t{r_dif_r[IWIDTH],r_dif_r}, p_one);\n" "\t\tshiftaddmpy #(CWIDTH+1,IWIDTH+2) p2(i_clk, i_ce,\n" "\t\t\t\t{ir_coef_i[CWIDTH-1],ir_coef_i},\n" "\t\t\t\t{r_dif_i[IWIDTH],r_dif_i}, p_two);\n" "\t\tshiftaddmpy #(CWIDTH+1,IWIDTH+2) p3(i_clk, i_ce,\n" "\t\t\t\tir_coef_i+ir_coef_r,\n" "\t\t\t\tr_dif_r + r_dif_i,\n" "\t\t\t\tp_three);\n" "\tend else begin\n" "\t\tshiftaddmpy #(IWIDTH+2,CWIDTH+1) p1a(i_clk, i_ce,\n" "\t\t\t\t{r_dif_r[IWIDTH],r_dif_r},\n" "\t\t\t\t{ir_coef_r[CWIDTH-1],ir_coef_r}, p_one);\n" "\t\tshiftaddmpy #(IWIDTH+2,CWIDTH+1) p2a(i_clk, i_ce,\n" "\t\t\t\t{r_dif_i[IWIDTH], r_dif_i},\n" "\t\t\t\t{ir_coef_i[CWIDTH-1],ir_coef_i}, p_two);\n" "\t\tshiftaddmpy #(IWIDTH+2,CWIDTH+1) p3a(i_clk, i_ce,\n" "\t\t\t\tr_dif_r+r_dif_i,\n" "\t\t\t\tir_coef_i+ir_coef_r,\n" "\t\t\t\tp_three);\n" "\tend\n" "\tendgenerate\n" "\n"); fprintf(fp, "\t// These values are held in memory and delayed during the\n" "\t// multiply. Here, we recover them. During the multiply,\n" "\t// values were multiplied by 2^(CWIDTH-2)*exp{-j*2*pi*...},\n" "\t// therefore, the left_x values need to be right shifted by\n" "\t// CWIDTH-2 as well. The additional bits come from a sign\n" "\t// extension.\n" "\twire aux;\n" "\twire\tsigned\t[(IWIDTH+CWIDTH):0] fifo_i, fifo_r;\n" "\treg\t\t[(2*IWIDTH+2):0] fifo_read;\n" "\tassign\tfifo_r = { {2{fifo_read[2*(IWIDTH+1)-1]}}, fifo_read[(2*(IWIDTH+1)-1):(IWIDTH+1)], {(CWIDTH-2){1'b0}} };\n" "\tassign\tfifo_i = { {2{fifo_read[(IWIDTH+1)-1]}}, fifo_read[((IWIDTH+1)-1):0], {(CWIDTH-2){1'b0}} };\n" "\tassign\taux = fifo_read[2*IWIDTH+2];\n" "\n" "\n" "\treg\tsigned\t[(CWIDTH+IWIDTH+3-1):0] b_left_r, b_left_i,\n" "\t\t\t\t\t\tb_right_r, b_right_i;\n" "\treg\tsigned\t[(CWIDTH+IWIDTH+3-1):0] mpy_r, mpy_i;\n" "\treg\tsigned\t[(CWIDTH+IWIDTH+3-1):0] rnd;\n" "\tgenerate\n" "\tif ((~ROUND)||(CWIDTH+IWIDTH-OWIDTH-SHIFT<1))\n" "\t\tassign rnd = ({(CWIDTH+IWIDTH+3){1'b0}});\n" "\telse\n" "\t\tassign rnd = ({ {(OWIDTH+3+SHIFT){1'b0}},1'b1,\n" "\t\t\t\t{(CWIDTH+IWIDTH-OWIDTH-SHIFT-1){1'b0}} });\n" "\tendgenerate\n" "\n"); fprintf(fp, "\talways @(posedge i_clk)\n" "\t\tif (i_ce)\n" "\t\tbegin\n" "\t\t\t// First clock, recover all values\n" "\t\t\tfifo_read <= fifo_left[fifo_read_addr];\n" "\t\t\t// These values are IWIDTH+CWIDTH+3 bits wide\n" "\t\t\t// although they only need to be (IWIDTH+1)\n" "\t\t\t// + (CWIDTH) bits wide. (We\'ve got two\n" "\t\t\t// extra bits we need to get rid of.)\n" "\t\t\tmpy_r <= p_one - p_two;\n" "\t\t\tmpy_i <= p_three - p_one - p_two;\n" "\n" "\t\t\t// Second clock, round and latch for final clock\n" "\t\t\tb_right_r <= mpy_r + rnd;\n" "\t\t\tb_right_i <= mpy_i + rnd;\n" "\t\t\tb_left_r <= { {2{fifo_r[(IWIDTH+CWIDTH)]}},fifo_r } + rnd;\n" "\t\t\tb_left_i <= { {2{fifo_i[(IWIDTH+CWIDTH)]}},fifo_i } + rnd;\n" "\t\t\to_aux <= aux & ovalid;\n" "\t\tend\n" "\n"); fprintf(fp, "\t// Final clock--clock and remove unnecessary bits.\n" "\t// We have (IWIDTH+CWIDTH+3) bits here, we need to drop down to\n" "\t// OWIDTH, and SHIFT by SHIFT bits in the process. The trick is\n" "\t// that we don\'t need (IWIDTH+CWIDTH+3) bits. We\'ve accumulated\n" "\t// them, but the actual values will never fill all these bits.\n" "\t// In particular, we only need:\n" "\t//\t IWIDTH bits for the input\n" "\t//\t +1 bit for the add/subtract\n" "\t//\t+CWIDTH bits for the coefficient multiply\n" "\t//\t +1 bit for the add/subtract in the complex multiply\n" "\t//\t ------\n" "\t//\t (IWIDTH+CWIDTH+2) bits at full precision.\n" "\t//\n" "\t// However, the coefficient multiply multiplied by a maximum value\n" "\t// of 2^(CWIDTH-2). Thus, we only have\n" "\t//\t IWIDTH bits for the input\n" "\t//\t +1 bit for the add/subtract\n" "\t//\t+CWIDTH-2 bits for the coefficient multiply\n" "\t//\t +1 (optional) bit for the add/subtract in the cpx mpy.\n" "\t//\t -------- ... multiply. (This last bit may be shifted out.)\n" "\t//\t (IWIDTH+CWIDTH) valid output bits. \n" "\t// Now, if the user wants to keep any extras of these (via OWIDTH),\n" "\t// or if he wishes to arbitrarily shift some of these off (via\n" "\t// SHIFT) we accomplish that here.\n" "\tassign o_left_r = b_left_r[ (CWIDTH+IWIDTH-1-SHIFT-1):(CWIDTH+IWIDTH-OWIDTH-SHIFT-1)];\n" "\tassign o_left_i = b_left_i[ (CWIDTH+IWIDTH-1-SHIFT-1):(CWIDTH+IWIDTH-OWIDTH-SHIFT-1)];\n" "\tassign o_right_r = b_right_r[(CWIDTH+IWIDTH-1-SHIFT-1):(CWIDTH+IWIDTH-OWIDTH-SHIFT-1)];\n" "\tassign o_right_i = b_right_i[(CWIDTH+IWIDTH-1-SHIFT-1):(CWIDTH+IWIDTH-OWIDTH-SHIFT-1)];\n" "\n" "\t// As a final step, we pack our outputs into two packed two\'s\n" "\t// complement numbers per output word, so that each output word\n" "\t// has (2*OWIDTH) bits in it, with the top half being the real\n" "\t// portion and the bottom half being the imaginary portion.\n" "\tassign o_left = { o_left_r, o_left_i };\n" "\tassign o_right= { o_right_r,o_right_i};\n" "\n" "endmodule\n"); fclose(fp); } void build_stage(const char *fname, int stage, bool odd, int nbits, bool inv, int xtra) { FILE *fstage = fopen(fname, "w"); int cbits = nbits + xtra; if ((cbits * 2) >= sizeof(long long)*8) { fprintf(stderr, "ERROR: CMEM Coefficient precision requested overflows long long data type.\n"); exit(-1); } if (fstage == NULL) { fprintf(stderr, "ERROR: Could not open %s for writing!\n", fname); perror("O/S Err was:"); fprintf(stderr, "Attempting to continue, but this file will be missing.\n"); return; } fprintf(fstage, "////////////////////////////////////////////////////////////////////////////\n" "//\n" "// Filename: %sfftstage_%c%d.v\n" "//\n" "// Project: %s\n" "//\n" "// Purpose: This file is (almost) a Verilog source file. It is meant to\n" "// be used by a FFT core compiler to generate FFTs which may be\n" "// used as part of an FFT core. Specifically, this file \n" "// encapsulates the options of an FFT-stage. For any 2^N length\n" "// FFT, there shall be (N-1) of these stages. \n" "//\n%s" "//\n", (inv)?"i":"", (odd)?'o':'e', stage*2, prjname, creator); fprintf(fstage, "%s", cpyleft); fprintf(fstage, "module\t%sfftstage_%c%d(i_clk, i_rst, i_ce, i_sync, i_data, o_data, o_sync);\n", (inv)?"i":"", (odd)?'o':'e', stage*2); // These parameter values are useless at this point--they are to be // replaced by the parameter values in the calling program. Only // problem is, the CWIDTH needs to match exactly! fprintf(fstage, "\tparameter\tIWIDTH=%d,CWIDTH=%d,OWIDTH=%d;\n", nbits, cbits, nbits+1); fprintf(fstage, "\t// Parameters specific to the core that should be changed when this\n" "\t// core is built ... Note that the minimum LGSPAN (the base two log\n" "\t// of the span, or the base two log of the current FFT size) is 3.\n" "\t// Smaller spans (i.e. the span of 2) must use the dblstage module.\n" "\tparameter\tLGWIDTH=11, LGSPAN=9, LGBDLY=5, BFLYSHIFT=0;\n"); fprintf(fstage, "\tinput i_clk, i_rst, i_ce, i_sync;\n" "\tinput [(2*IWIDTH-1):0] i_data;\n" "\toutput reg [(2*OWIDTH-1):0] o_data;\n" "\toutput reg o_sync;\n" "\n" "\treg wait_for_sync;\n" "\treg [(2*IWIDTH-1):0] ib_a, ib_b;\n" "\treg [(2*CWIDTH-1):0] ib_c;\n" "\treg ib_sync;\n" "\n" "\treg b_started;\n" "\twire ob_sync;\n" "\twire [(2*OWIDTH-1):0] ob_a, ob_b;\n"); fprintf(fstage, "\n" "\t// %scmem is defined as an array of real and complex values,\n" "\t// where the top CWIDTH bits are the real value and the bottom\n" "\t// CWIDTH bits are the imaginary value.\n" "\t//\n" "\t// cmem[i] = { (2^(CWIDTH-2)) * cos(2*pi*i/(2^LGWIDTH)),\n" "\t// (2^(CWIDTH-2)) * sin(2*pi*i/(2^LGWIDTH)) };\n" "\t//\n" "\treg [(2*CWIDTH-1):0] %scmem [0:((1<<LGSPAN)-1)];\n" "\tinitial\t$readmemh(\"%scmem_%c%d.hex\",%scmem);\n\n", (inv)?"i":"", (inv)?"i":"", (inv)?"i":"", (odd)?'o':'e',stage<<1, (inv)?"i":""); { FILE *cmem; char memfile[128], *ptr; strncpy(memfile, fname, 125); if ((NULL != (ptr = strrchr(memfile, '/')))&&(ptr>memfile)) { ptr++; sprintf(ptr, "%scmem_%c%d.hex", (inv)?"i":"", (odd)?'o':'e', stage*2); } else { sprintf(memfile, "%s/%scmem_%c%d.hex", COREDIR, (inv)?"i":"", (odd)?'o':'e', stage*2); } // strcpy(&memfile[strlen(memfile)-2], ".hex"); cmem = fopen(memfile, "w"); // fprintf(cmem, "// CBITS = %d, inv = %s\n", cbits, (inv)?"true":"false"); for(int i=0; i<stage/2; i++) { int k = 2*i+odd; double W = ((inv)?1:-1)*2.0*M_PI*k/(double)(2*stage); double c, s; long long ic, is, vl; c = cos(W); s = sin(W); ic = (long long)((double)((1ll<<(cbits-2)) * c + 0.5)); is = (long long)((double)((1ll<<(cbits-2)) * s + 0.5)); vl = (ic & (~(-1ll << (cbits)))); vl <<= (cbits); vl |= (is & (~(-1ll << (cbits)))); fprintf(cmem, "%0*llx\n", ((cbits*2+3)/4), vl); /* fprintf(cmem, "%0*llx\t\t// %f+j%f -> %llx +j%llx\n", ((cbits*2+3)/4), vl, c, s, ic & (~(-1ll<<(((cbits+3)/4)*4))), is & (~(-1ll<<(((cbits+3)/4)*4)))); */ } fclose(cmem); } fprintf(fstage, "\treg [(LGWIDTH-2):0] iaddr;\n" "\treg [(2*IWIDTH-1):0] imem [0:((1<<LGSPAN)-1)];\n" "\n" "\treg [LGSPAN:0] oB;\n" "\treg [(2*OWIDTH-1):0] omem [0:((1<<LGSPAN)-1)];\n" "\n" "\talways @(posedge i_clk)\n" "\t\tif (i_rst)\n" "\t\tbegin\n" "\t\t\twait_for_sync <= 1'b1;\n" "\t\t\tiaddr <= 0;\n" "\t\t\toB <= 0;\n" "\t\t\tib_sync <= 1'b0;\n" "\t\t\to_sync <= 1'b0;\n" "\t\t\tb_started <= 1'b0;\n" "\t\tend\n" "\t\telse if ((i_ce)&&((~wait_for_sync)||(i_sync)))\n" "\t\tbegin\n" "\t\t\t//\n" "\t\t\t// First step: Record what we\'re not ready to use yet\n" "\t\t\t//\n" "\t\t\timem[iaddr[(LGSPAN-1):0]] <= i_data;\n" "\t\t\tiaddr <= iaddr + 1;\n" "\t\t\twait_for_sync <= 1'b0;\n" "\n" "\t\t\t//\n" "\t\t\t// Now, we have all the inputs, so let\'s feed the\n" "\t\t\t// butterfly\n" "\t\t\t//\n" "\t\t\tif (iaddr[LGSPAN])\n" "\t\t\tbegin\n" "\t\t\t\t// One input from memory, ...\n" "\t\t\t\tib_a <= imem[iaddr[(LGSPAN-1):0]];\n" "\t\t\t\t// One input clocked in from the top\n" "\t\t\t\tib_b <= i_data;\n" "\t\t\t\t// Set the sync to true on the very first\n" "\t\t\t\t// valid input in, and hence on the very\n" "\t\t\t\t// first valid data out per FFT.\n" "\t\t\t\tib_sync <= (iaddr==(1<<(LGSPAN)));\n" "\t\t\t\tib_c <= %scmem[iaddr[(LGSPAN-1):0]];\n" "\t\t\tend else begin\n" "\t\t\t\t// Just to make debugging easier, let\'s\n" "\t\t\t\t// clear these registers. That\'ll make\n" "\t\t\t\t// the transition easier to watch.\n" "\t\t\t\tib_a <= {(2*IWIDTH){1'b0}};\n" "\t\t\t\tib_b <= {(2*IWIDTH){1'b0}};\n" "\t\t\t\tib_sync <= 1'b0;\n" "\t\t\tend\n" "\n" "\t\t\t//\n" "\t\t\t// Next step: recover the outputs from the butterfly\n" "\t\t\t//\n" "\t\t\tif ((ob_sync||b_started)&&(~oB[LGSPAN]))\n" "\t\t\tbegin // A butterfly output is available\n" "\t\t\t\tb_started <= 1'b1;\n" "\t\t\t\tomem[oB[(LGSPAN-1):0]] <= ob_b;\n" "\t\t\t\toB <= oB+1;\n" "\n" "\t\t\t\to_sync <= (ob_sync);\n" "\t\t\t\to_data <= ob_a;\n" "\t\t\tend else if (b_started)\n" "\t\t\tbegin // and keep outputting once you start--at a rate\n" "\t\t\t// of one guaranteed output per clock that has i_ce set.\n" "\t\t\t\to_data <= omem[oB[(LGSPAN-1):0]];\n" "\t\t\t\toB <= oB + 1;\n" "\t\t\t\to_sync <= 1'b0;\n" "\t\t\tend else\n" "\t\t\t\to_sync <= 1'b0;\n" "\t\tend\n" "\n", (inv)?"i":""); fprintf(fstage, "\tbutterfly #(.IWIDTH(IWIDTH),.CWIDTH(CWIDTH),.OWIDTH(OWIDTH),\n" "\t\t\t.MPYDELAY(%d\'d%d),.LGDELAY(LGBDLY),.SHIFT(BFLYSHIFT))\n" "\t\tbfly(i_clk, i_rst, i_ce, ib_c,\n" "\t\t\tib_a, ib_b, ib_sync, ob_a, ob_b, ob_sync);\n" "endmodule;\n", lgdelay(nbits, xtra), (1<xtra)?(nbits+4):(nbits+xtra+3)); } void usage(void) { fprintf(stderr, "USAGE:\tfftgen [-f <size>] [-d dir] [-c cbits] [-n nbits] [-m mxbits] [-s01]\n" // "\tfftgen -i\n" "\t-c <cbits>\tCauses all internal complex coefficients to be\n" "\t\tlonger than the corresponding data bits, to help avoid\n" "\t\tcoefficient truncation errors.\n" "\t-d <dir>\tPlaces all of the generated verilog files into <dir>.\n" "\t-f <size>\tSets the size of the FFT as the number of complex\n" "\t\tsamples input to the transform.\n" "\t-n <nbits>\tSets the number of bits in the twos complement input\n" "\t\tto the FFT routine.\n" "\t-m <mxbits>\tSets the maximum bit width that the FFT should ever\n" "\t\tproduce. Internal values greater than this value will be\n" "\t\ttruncated to this value.\n" "\t-s\tSkip the final bit reversal stage. This is useful in\n" "\t\talgorithms that need to apply a filter without needing to do\n" "\t\tbin shifting, as these algorithms can, with this option, just\n" "\t\tmultiply by a bit reversed correlation sequence and then\n" "\t\tinverse FFT the (still bit reversed) result.\n" "\t-S\tInclude the final bit reversal stage (default).\n" "\t-0\tA forward FFT (default), meaning that the coefficients are\n" "\t\tgiven by e^{-j 2 pi k/N n }.\n" "\t-1\tAn inverse FFT, meaning that the coefficients are\n" "\t\tgiven by e^{ j 2 pi k/N n }.\n"); } // Features still needed: // Interactivity. // Some number of maximum bits, beyond which we won't accumulate any more. // Obviously, the build_stage above. // Copying the files of interest into the fft-core directory, from // whatever directory this file is run out of. int main(int argc, char **argv) { int fftsize = -1, lgsize = -1; int nbitsin = 16, xtracbits = 4; int nbitsout, maxbitsout = -1; bool bitreverse = true, inverse=false, interactive = false, verbose_flag = false; FILE *vmain; char fname[128], coredir[1024] = "fft-core"; if (argc <= 1) usage(); for(int argn=1; argn<argc; argn++) { if ('-' == argv[argn][0]) { for(int j=1; (argv[argn][j])&&(j<100); j++) { switch(argv[argn][j]) { case '0': inverse = false; break; case '1': inverse = true; break; case 'c': if (argn+1 >= argc) { printf("No extra number of coefficient bits given\n"); usage(); exit(-1); } xtracbits = atoi(argv[++argn]); j+= 200; break; case 'd': if (argn+1 >= argc) { printf("No extra number of coefficient bits given\n"); usage(); exit(-1); } strcpy(coredir, argv[++argn]); j += 200; break; case 'f': if (argn+1 >= argc) { printf("No FFT Size given\n"); usage(); exit(-1); } fftsize = atoi(argv[++argn]); { int sln = strlen(argv[argn]); if (!isdigit(argv[argn][sln-1])){ switch(argv[argn][sln-1]) { case 'k': case 'K': fftsize <<= 10; break; case 'm': case 'M': fftsize <<= 20; break; case 'g': case 'G': fftsize <<= 30; break; default: printf("Unknown FFT size, %s\n", argv[argn]); exit(-1); } }} j += 200; break; case 'h': usage(); exit(0); break; case 'i': interactive = true; break; case 'm': if (argn+1 >= argc) { printf("No maximum output bit value given\n"); exit(-1); } maxbitsout = atoi(argv[++argn]); j += 200; break; case 'n': if (argn+1 >= argc) { printf("No input bit size given\n"); exit(-1); } nbitsin = atoi(argv[++argn]); j += 200; break; case 'S': bitreverse = true; break; case 's': bitreverse = false; break; case 'v': verbose_flag = true; break; default: printf("Unknown argument, -%c\n", argv[argn][j]); usage(); exit(-1); } } } else { printf("Unrecognized argument, %s\n", argv[argn]); usage(); exit(-1); } } if ((lgsize < 0)&&(fftsize > 1)) { for(lgsize=1; (1<<lgsize) < fftsize; lgsize++) ; } if ((fftsize <= 0)||(nbitsin < 1)||(nbitsin>48)) { printf("INVALID PARAMETERS!!!!\n"); exit(-1); } if (nextlg(fftsize) != fftsize) { fprintf(stderr, "ERR: FFTSize (%d) *must* be a power of two\n", fftsize); exit(-1); } else if (fftsize < 2) { fprintf(stderr, "ERR: Minimum FFTSize is 2, not %d\n", fftsize); if (fftsize == 1) { fprintf(stderr, "You do realize that a 1 point FFT makes very little sense\n"); fprintf(stderr, "in an FFT operation that handles two samples per clock?\n"); fprintf(stderr, "If you really need to do an FFT of this size, the output\n"); fprintf(stderr, "can be connected straight to the input.\n"); } else { fprintf(stderr, "Indeed, a size of %d doesn\'t make much sense to me at all.\n", fftsize); fprintf(stderr, "Is such an operation even defined?\n"); } exit(-1); } // Calculate how many output bits we'll have, and what the log // based two size of our FFT is. { int tmp_size = fftsize; // The first stage always accumulates one bit, regardless // of whether you need to or not. nbitsout = nbitsin + 1; tmp_size >>= 1; while(tmp_size > 4) { nbitsout += 1; tmp_size >>= 2; } if (tmp_size > 1) nbitsout ++; if (fftsize <= 2) bitreverse = false; } if ((maxbitsout > 0)&&(nbitsout > maxbitsout)) nbitsout = maxbitsout; { struct stat sbuf; if (lstat(coredir, &sbuf)==0) { if (!S_ISDIR(sbuf.st_mode)) { fprintf(stderr, "\'%s\' already exists, and is not a directory!\n", coredir); fprintf(stderr, "I will stop now, lest I overwrite something you care about.\n"); fprintf(stderr, "To try again, please remove this file.\n"); exit(-1); } } else mkdir(coredir, 0755); if (access(coredir, X_OK|W_OK) != 0) { fprintf(stderr, "I have no access to the directory \'%s\'.\n", coredir); exit(-1); } } sprintf(fname, "%s/%sfftmain.v", coredir, (inverse)?"i":""); vmain = fopen(fname, "w"); if (NULL == vmain) { fprintf(stderr, "Could not open \'%s\' for writing\n", fname); perror("Err from O/S:"); exit(-1); } fprintf(vmain, "/////////////////////////////////////////////////////////////////////////////\n"); fprintf(vmain, "//\n"); fprintf(vmain, "// Filename: %sfftmain.v\n", (inverse)?"i":""); fprintf(vmain, "//\n"); fprintf(vmain, "// Project: %s\n", prjname); fprintf(vmain, "//\n"); fprintf(vmain, "// Purpose: This is the main module in the Doubletime FPGA FFT project.\n"); fprintf(vmain, "// As such, all other modules are subordinate to this one.\n"); fprintf(vmain, "// (I have been reading too much legalese this week ...)\n"); fprintf(vmain, "// This module accomplish a fixed size Complex FFT on %d data\n", fftsize); fprintf(vmain, "// points. The FFT is fully pipelined, and accepts as inputs\n"); fprintf(vmain, "// two complex two\'s complement samples per clock.\n"); fprintf(vmain, "//\n"); fprintf(vmain, "// Parameters:\n"); fprintf(vmain, "// i_clk\tThe clock. All operations are synchronous with this clock.\n"); fprintf(vmain, "//\ti_rst\tSynchronous reset, active high. Setting this line will\n"); fprintf(vmain, "//\t\t\tforce the reset of all of the internals to this routine.\n"); fprintf(vmain, "//\t\t\tFurther, following a reset, the o_sync line will go\n"); fprintf(vmain, "//\t\t\thigh the same time the first output sample is valid.\n"); fprintf(vmain, "// i_ce\tA clock enable line. If this line is set, this module\n"); fprintf(vmain, "//\t\t\twill accept two complex values as inputs, and produce\n"); fprintf(vmain, "//\t\t\ttwo (possibly empty) complex values as outputs.\n"); fprintf(vmain, "//\t\ti_left\tThe first of two complex input samples. This value\n"); fprintf(vmain, "//\t\t\tis split into two two\'s complement numbers, of \n"); fprintf(vmain, "//\t\t\t%d bits each, with the real portion in the high\n", nbitsin); fprintf(vmain, "//\t\t\torder bits, and the imaginary portion taking the\n"); fprintf(vmain, "//\t\t\tbottom %d bits.\n", nbitsin); fprintf(vmain, "//\t\ti_right\tThis is the same thing as i_left, only this is the\n"); fprintf(vmain, "//\t\t\tsecond of two such samples. Hence, i_left would\n"); fprintf(vmain, "//\t\t\tcontain input sample zero, i_right would contain\n"); fprintf(vmain, "//\t\t\tsample one. On the next clock i_left would contain\n"); fprintf(vmain, "//\t\t\tinput sample two, i_right number three and so forth.\n"); fprintf(vmain, "//\t\to_left\tThe first of two output samples, of the same\n"); fprintf(vmain, "//\t\t\tformat as i_left, only having %d bits for each of\n", nbitsout); fprintf(vmain, "//\t\t\tthe real and imaginary components, leading to %d\n", nbitsout*2); fprintf(vmain, "//\t\t\tbits total.\n"); fprintf(vmain, "//\t\to_right\tThe second of two output samples produced each clock.\n"); fprintf(vmain, "//\t\t\tThis has the same format as o_left.\n"); fprintf(vmain, "//\t\to_sync\tA one bit output indicating the first valid sample\n"); fprintf(vmain, "//\t\t\tproduced by this FFT following a reset. Ever after,\n"); fprintf(vmain, "//\t\t\tthis will indicate the first sample of an FFT frame.\n"); fprintf(vmain, "//\n"); fprintf(vmain, "%s", creator); fprintf(vmain, "//\n"); fprintf(vmain, "%s", cpyleft); fprintf(vmain, "//\n"); fprintf(vmain, "//\n"); fprintf(vmain, "module %sfftmain(i_clk, i_rst, i_ce,\n", (inverse)?"i":""); fprintf(vmain, "\t\ti_left, i_right,\n"); fprintf(vmain, "\t\to_left, o_right, o_sync);\n"); fprintf(vmain, "\tparameter\tIWIDTH=%d, OWIDTH=%d, LGWIDTH=%d;\n", nbitsin, nbitsout, lgsize); assert(lgsize > 0); fprintf(vmain, "\tinput\t\ti_clk, i_rst, i_ce;\n"); fprintf(vmain, "\tinput\t\t[(2*IWIDTH-1):0]\ti_left, i_right;\n"); fprintf(vmain, "\toutput\treg\t[(2*OWIDTH-1):0]\to_left, o_right;\n"); fprintf(vmain, "\toutput\treg\t\t\to_sync;\n"); fprintf(vmain, "\n\n"); fprintf(vmain, "\t// Outputs of the FFT, ready for bit reversal.\n"); fprintf(vmain, "\twire\t[(2*OWIDTH-1):0]\tbr_left, br_right;\n"); fprintf(vmain, "\n\n"); int tmp_size = fftsize, lgtmp = lgsize; if (fftsize == 2) { if (bitreverse) { fprintf(vmain, "\treg\tbr_start;\n"); fprintf(vmain, "\talways @(posedge i_clk)\n"); fprintf(vmain, "\t\tif (i_rst)\n"); fprintf(vmain, "\t\t\tbr_start <= 1'b0;\n"); fprintf(vmain, "\t\telse if (i_ce)\n"); fprintf(vmain, "\t\t\tbr_start <= 1'b1;\n"); } fprintf(vmain, "\n\n"); fprintf(vmain, "\tdblstage\t#(IWIDTH)\tstage_2(i_clk, i_rst, i_ce,\n"); fprintf(vmain, "\t\t\t(~i_rst), i_left, i_right, br_left, br_right);\n"); fprintf(vmain, "\n\n"); } else { int nbits = nbitsin, dropbit=0; // Always do a first stage fprintf(vmain, "\n\n"); fprintf(vmain, "\twire\t\tw_s%d, w_os%d;\n", fftsize, fftsize); fprintf(vmain, "\twire\t[(2*IWIDTH+1):0]\tw_e%d, w_o%d;\n", fftsize, fftsize); fprintf(vmain, "\t%sfftstage_e%d\t#(IWIDTH,IWIDTH+%d,IWIDTH+1,%d,%d,%d,0)\tstage_e%d(i_clk, i_rst, i_ce,\n", (inverse)?"i":"", fftsize, xtracbits, lgsize, lgtmp-2, lgdelay(nbits,xtracbits), fftsize); fprintf(vmain, "\t\t\t(~i_rst), i_left, w_e%d, w_s%d);\n", fftsize, fftsize); fprintf(vmain, "\t%sfftstage_o%d\t#(IWIDTH,IWIDTH+%d,IWIDTH+1,%d,%d,%d,0)\tstage_o%d(i_clk, i_rst, i_ce,\n", (inverse)?"i":"", fftsize, xtracbits, lgsize, lgtmp-2, lgdelay(nbits,xtracbits), fftsize); fprintf(vmain, "\t\t\t(~i_rst), i_right, w_o%d, w_os%d);\n", fftsize, fftsize); fprintf(vmain, "\n\n"); sprintf(fname, "%s/%sfftstage_e%d.v", coredir, (inverse)?"i":"", fftsize); build_stage(fname, fftsize/2, 0, nbits, inverse, xtracbits); // Even stage sprintf(fname, "%s/%sfftstage_o%d.v", coredir, (inverse)?"i":"", fftsize); build_stage(fname, fftsize/2, 1, nbits, inverse, xtracbits); // Odd stage nbits += 1; // New number of input bits tmp_size >>= 1; lgtmp--; dropbit = 0; fprintf(vmain, "\n\n"); while(tmp_size >= 8) { int obits = nbits+((dropbit)?0:1); if ((maxbitsout > 0)&&(obits > maxbitsout)) obits = maxbitsout; fprintf(vmain, "\twire\t\tw_s%d, w_os%d;\n", tmp_size, tmp_size); fprintf(vmain, "\twire\t[%d:0]\tw_e%d, w_o%d;\n", 2*obits-1, tmp_size, tmp_size); fprintf(vmain, "\t%sfftstage_e%d\t#(%d,%d,%d,%d,%d,%d,%d)\tstage_e%d(i_clk, i_rst, i_ce,\n", (inverse)?"i":"", tmp_size, nbits, nbits+xtracbits, obits, lgsize, lgtmp-2, lgdelay(nbits,xtracbits), (dropbit)?0:0, tmp_size); fprintf(vmain, "\t\t\t\t\t\tw_s%d, w_e%d, w_e%d, w_s%d);\n", tmp_size<<1, tmp_size<<1, tmp_size, tmp_size); fprintf(vmain, "\t%sfftstage_o%d\t#(%d,%d,%d,%d,%d,%d,%d)\tstage_o%d(i_clk, i_rst, i_ce,\n", (inverse)?"i":"", tmp_size, nbits, nbits+xtracbits, obits, lgsize, lgtmp-2, lgdelay(nbits,xtracbits), (dropbit)?0:0, tmp_size); fprintf(vmain, "\t\t\t\t\t\tw_s%d, w_o%d, w_o%d, w_os%d);\n", tmp_size<<1, tmp_size<<1, tmp_size, tmp_size); fprintf(vmain, "\n\n"); sprintf(fname, "%s/%sfftstage_e%d.v", coredir, (inverse)?"i":"", tmp_size); build_stage(fname, tmp_size/2, 0, nbits, inverse, xtracbits); // Even stage sprintf(fname, "%s/%sfftstage_o%d.v", coredir, (inverse)?"i":"", tmp_size); build_stage(fname, tmp_size/2, 1, nbits, inverse, xtracbits); // Odd stage dropbit ^= 1; nbits = obits; tmp_size >>= 1; lgtmp--; } if (tmp_size == 4) { int obits = nbits+((dropbit)?0:1); if ((maxbitsout > 0)&&(obits > maxbitsout)) obits = maxbitsout; fprintf(vmain, "\twire\t\tw_s4, w_os4;\n"); fprintf(vmain, "\twire\t[%d:0]\tw_e4, w_o4;\n", 2*obits-1); fprintf(vmain, "\tqtrstage\t#(%d,%d,%d,0,%d,%d)\tstage_e4(i_clk, i_rst, i_ce,\n", nbits, obits, lgsize, (inverse)?1:0, (dropbit)?0:0); fprintf(vmain, "\t\t\t\t\t\tw_s8, w_e8, w_e4, w_s4);\n"); fprintf(vmain, "\tqtrstage\t#(%d,%d,%d,1,%d,%d)\tstage_o4(i_clk, i_rst, i_ce,\n", nbits, obits, lgsize, (inverse)?1:0, (dropbit)?0:0); fprintf(vmain, "\t\t\t\t\t\tw_s8, w_o8, w_o4, w_os4);\n"); dropbit ^= 1; nbits = obits; tmp_size >>= 1; lgtmp--; } { int obits = nbits+((dropbit)?0:1); if (obits > nbitsout) obits = nbitsout; if ((maxbitsout>0)&&(obits > maxbitsout)) obits = maxbitsout; fprintf(vmain, "\twire\t\tw_s2;\n"); fprintf(vmain, "\twire\t[%d:0]\tw_e2, w_o2;\n", 2*obits-1); fprintf(vmain, "\tdblstage\t#(%d,%d,%d)\tstage_2(i_clk, i_rst, i_ce,\n", nbits, obits,(dropbit)?0:1); fprintf(vmain, "\t\t\t\t\tw_s4, w_e4, w_o4, w_e2, w_o2, w_s2);\n"); fprintf(vmain, "\n\n"); nbits = obits; } fprintf(vmain, "\t// Prepare for a (potential) bit-reverse stage.\n"); fprintf(vmain, "\tassign\tbr_left = w_e2;\n"); fprintf(vmain, "\tassign\tbr_right = w_o2;\n"); fprintf(vmain, "\n"); if (bitreverse) { fprintf(vmain, "\twire\tbr_start;\n"); fprintf(vmain, "\treg\tr_br_started;\n"); fprintf(vmain, "\t// A delay of one clock here is perfect, as it matches the delay in\n"); fprintf(vmain, "\t// our dblstage.\n"); fprintf(vmain, "\talways @(posedge i_clk)\n"); fprintf(vmain, "\t\tif (i_rst)\n"); fprintf(vmain, "\t\t\tr_br_started <= 1'b0;\n"); fprintf(vmain, "\t\telse\n"); fprintf(vmain, "\t\t\tr_br_started <= r_br_started || w_s4;\n"); fprintf(vmain, "\tassign\tbr_start = r_br_started;\n"); } } fprintf(vmain, "\n"); fprintf(vmain, "\t// Now for the bit-reversal stage.\n"); fprintf(vmain, "\twire\tbr_sync;\n"); fprintf(vmain, "\twire\t[(2*OWIDTH-1):0]\tbr_o_left, br_o_right;\n"); if (bitreverse) { fprintf(vmain, "\tdblreverse\t#(%d,%d)\trevstage(i_clk, i_rst,\n", lgsize, nbitsout); fprintf(vmain, "\t\t\t(i_ce & br_start), br_left, br_right,\n"); fprintf(vmain, "\t\t\tbr_o_left, br_o_right, br_sync);\n"); } else { fprintf(vmain, "\tassign\tbr_o_left = br_left;\n"); fprintf(vmain, "\tassign\tbr_o_right = br_right;\n"); fprintf(vmain, "\tassign\tbr_sync = w_s2;\n"); } fprintf(vmain, "\n\n"); fprintf(vmain, "\t// Last clock: Register our outputs, we\'re done.\n"); fprintf(vmain, "\talways @(posedge i_clk)\n"); fprintf(vmain, "\t\tbegin\n"); fprintf(vmain, "\t\t\to_left <= br_o_left;\n"); fprintf(vmain, "\t\t\to_right <= br_o_right;\n"); fprintf(vmain, "\t\t\to_sync <= br_sync;\n"); fprintf(vmain, "\t\tend\n"); fprintf(vmain, "\n\n"); fprintf(vmain, "endmodule\n"); fclose(vmain); sprintf(fname, "%s/butterfly.v", coredir); build_butterfly(fname); sprintf(fname, "%s/shiftaddmpy.v", coredir); build_multiply(fname); sprintf(fname, "%s/qtrstage.v", coredir); build_quarters(fname); sprintf(fname, "%s/dblstage.v", coredir); build_dblstage(fname); if (bitreverse) { sprintf(fname, "%s/dblreverse.v", coredir); build_dblreverse(fname); } }
Go to most recent revision | Compare with Previous | Blame | View Log