URL
https://opencores.org/ocsvn/ethmac/ethmac/trunk
Subversion Repositories ethmac
[/] [ethmac/] [trunk/] [rtl/] [verilog/] [eth_miim.v] - Rev 351
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// eth_miim.v //// //// //// //// This file is part of the Ethernet IP core project //// //// http://www.opencores.org/project,ethmac //// //// //// //// Author(s): //// //// - Igor Mohor (igorM@opencores.org) //// //// //// //// All additional information is avaliable in the Readme.txt //// //// file. //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2001 Authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // Revision 1.6 2005/02/21 12:48:07 igorm // Warning fixes. // // Revision 1.5 2003/05/16 10:08:27 mohor // Busy was set 2 cycles too late. Reported by Dennis Scott. // // Revision 1.4 2002/08/14 18:32:10 mohor // - Busy signal was not set on time when scan status operation was performed // and clock was divided with more than 2. // - Nvalid remains valid two more clocks (was previously cleared too soon). // // Revision 1.3 2002/01/23 10:28:16 mohor // Link in the header changed. // // Revision 1.2 2001/10/19 08:43:51 mohor // eth_timescale.v changed to timescale.v This is done because of the // simulation of the few cores in a one joined project. // // Revision 1.1 2001/08/06 14:44:29 mohor // A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex). // Include files fixed to contain no path. // File names and module names changed ta have a eth_ prologue in the name. // File eth_timescale.v is used to define timescale // All pin names on the top module are changed to contain _I, _O or _OE at the end. // Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O // and Mdo_OE. The bidirectional signal must be created on the top level. This // is done due to the ASIC tools. // // Revision 1.2 2001/08/02 09:25:31 mohor // Unconnected signals are now connected. // // Revision 1.1 2001/07/30 21:23:42 mohor // Directory structure changed. Files checked and joind together. // // Revision 1.3 2001/06/01 22:28:56 mohor // This files (MIIM) are fully working. They were thoroughly tested. The testbench is not updated. // // `include "timescale.v" module eth_miim ( Clk, Reset, Divider, NoPre, CtrlData, Rgad, Fiad, WCtrlData, RStat, ScanStat, Mdi, Mdo, MdoEn, Mdc, Busy, Prsd, LinkFail, Nvalid, WCtrlDataStart, RStatStart, UpdateMIIRX_DATAReg ); input Clk; // Host Clock input Reset; // General Reset input [7:0] Divider; // Divider for the host clock input [15:0] CtrlData; // Control Data (to be written to the PHY reg.) input [4:0] Rgad; // Register Address (within the PHY) input [4:0] Fiad; // PHY Address input NoPre; // No Preamble (no 32-bit preamble) input WCtrlData; // Write Control Data operation input RStat; // Read Status operation input ScanStat; // Scan Status operation input Mdi; // MII Management Data In output Mdc; // MII Management Data Clock output Mdo; // MII Management Data Output output MdoEn; // MII Management Data Output Enable output Busy; // Busy Signal output LinkFail; // Link Integrity Signal output Nvalid; // Invalid Status (qualifier for the valid scan result) output [15:0] Prsd; // Read Status Data (data read from the PHY) output WCtrlDataStart; // This signals resets the WCTRLDATA bit in the MIIM Command register output RStatStart; // This signal resets the RSTAT BIT in the MIIM Command register output UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data parameter Tp = 1; reg Nvalid; reg EndBusy_d; // Pre-end Busy signal reg EndBusy; // End Busy signal (stops the operation in progress) reg WCtrlData_q1; // Write Control Data operation delayed 1 Clk cycle reg WCtrlData_q2; // Write Control Data operation delayed 2 Clk cycles reg WCtrlData_q3; // Write Control Data operation delayed 3 Clk cycles reg WCtrlDataStart; // Start Write Control Data Command (positive edge detected) reg WCtrlDataStart_q; reg WCtrlDataStart_q1; // Start Write Control Data Command delayed 1 Mdc cycle reg WCtrlDataStart_q2; // Start Write Control Data Command delayed 2 Mdc cycles reg RStat_q1; // Read Status operation delayed 1 Clk cycle reg RStat_q2; // Read Status operation delayed 2 Clk cycles reg RStat_q3; // Read Status operation delayed 3 Clk cycles reg RStatStart; // Start Read Status Command (positive edge detected) reg RStatStart_q1; // Start Read Status Command delayed 1 Mdc cycle reg RStatStart_q2; // Start Read Status Command delayed 2 Mdc cycles reg ScanStat_q1; // Scan Status operation delayed 1 cycle reg ScanStat_q2; // Scan Status operation delayed 2 cycles reg SyncStatMdcEn; // Scan Status operation delayed at least cycles and synchronized to MdcEn wire WriteDataOp; // Write Data Operation (positive edge detected) wire ReadStatusOp; // Read Status Operation (positive edge detected) wire ScanStatusOp; // Scan Status Operation (positive edge detected) wire StartOp; // Start Operation (start of any of the preceding operations) wire EndOp; // End of Operation reg InProgress; // Operation in progress reg InProgress_q1; // Operation in progress delayed 1 Mdc cycle reg InProgress_q2; // Operation in progress delayed 2 Mdc cycles reg InProgress_q3; // Operation in progress delayed 3 Mdc cycles reg WriteOp; // Write Operation Latch (When asserted, write operation is in progress) reg [6:0] BitCounter; // Bit Counter wire [3:0] ByteSelect; // Byte Select defines which byte (preamble, data, operation, etc.) is loaded and shifted through the shift register. wire MdcEn; // MII Management Data Clock Enable signal is asserted for one Clk period before Mdc rises. wire ShiftedBit; // This bit is output of the shift register and is connected to the Mdo signal wire MdcEn_n; wire LatchByte1_d2; wire LatchByte0_d2; reg LatchByte1_d; reg LatchByte0_d; reg [1:0] LatchByte; // Latch Byte selects which part of Read Status Data is updated from the shift register reg UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data // Generation of the EndBusy signal. It is used for ending the MII Management operation. always @ (posedge Clk or posedge Reset) begin if(Reset) begin EndBusy_d <= #Tp 1'b0; EndBusy <= #Tp 1'b0; end else begin EndBusy_d <= #Tp ~InProgress_q2 & InProgress_q3; EndBusy <= #Tp EndBusy_d; end end // Update MII RX_DATA register always @ (posedge Clk or posedge Reset) begin if(Reset) UpdateMIIRX_DATAReg <= #Tp 0; else if(EndBusy & ~WCtrlDataStart_q) UpdateMIIRX_DATAReg <= #Tp 1; else UpdateMIIRX_DATAReg <= #Tp 0; end // Generation of the delayed signals used for positive edge triggering. always @ (posedge Clk or posedge Reset) begin if(Reset) begin WCtrlData_q1 <= #Tp 1'b0; WCtrlData_q2 <= #Tp 1'b0; WCtrlData_q3 <= #Tp 1'b0; RStat_q1 <= #Tp 1'b0; RStat_q2 <= #Tp 1'b0; RStat_q3 <= #Tp 1'b0; ScanStat_q1 <= #Tp 1'b0; ScanStat_q2 <= #Tp 1'b0; SyncStatMdcEn <= #Tp 1'b0; end else begin WCtrlData_q1 <= #Tp WCtrlData; WCtrlData_q2 <= #Tp WCtrlData_q1; WCtrlData_q3 <= #Tp WCtrlData_q2; RStat_q1 <= #Tp RStat; RStat_q2 <= #Tp RStat_q1; RStat_q3 <= #Tp RStat_q2; ScanStat_q1 <= #Tp ScanStat; ScanStat_q2 <= #Tp ScanStat_q1; if(MdcEn) SyncStatMdcEn <= #Tp ScanStat_q2; end end // Generation of the Start Commands (Write Control Data or Read Status) always @ (posedge Clk or posedge Reset) begin if(Reset) begin WCtrlDataStart <= #Tp 1'b0; WCtrlDataStart_q <= #Tp 1'b0; RStatStart <= #Tp 1'b0; end else begin if(EndBusy) begin WCtrlDataStart <= #Tp 1'b0; RStatStart <= #Tp 1'b0; end else begin if(WCtrlData_q2 & ~WCtrlData_q3) WCtrlDataStart <= #Tp 1'b1; if(RStat_q2 & ~RStat_q3) RStatStart <= #Tp 1'b1; WCtrlDataStart_q <= #Tp WCtrlDataStart; end end end // Generation of the Nvalid signal (indicates when the status is invalid) always @ (posedge Clk or posedge Reset) begin if(Reset) Nvalid <= #Tp 1'b0; else begin if(~InProgress_q2 & InProgress_q3) begin Nvalid <= #Tp 1'b0; end else begin if(ScanStat_q2 & ~SyncStatMdcEn) Nvalid <= #Tp 1'b1; end end end // Signals used for the generation of the Operation signals (positive edge) always @ (posedge Clk or posedge Reset) begin if(Reset) begin WCtrlDataStart_q1 <= #Tp 1'b0; WCtrlDataStart_q2 <= #Tp 1'b0; RStatStart_q1 <= #Tp 1'b0; RStatStart_q2 <= #Tp 1'b0; InProgress_q1 <= #Tp 1'b0; InProgress_q2 <= #Tp 1'b0; InProgress_q3 <= #Tp 1'b0; LatchByte0_d <= #Tp 1'b0; LatchByte1_d <= #Tp 1'b0; LatchByte <= #Tp 2'b00; end else begin if(MdcEn) begin WCtrlDataStart_q1 <= #Tp WCtrlDataStart; WCtrlDataStart_q2 <= #Tp WCtrlDataStart_q1; RStatStart_q1 <= #Tp RStatStart; RStatStart_q2 <= #Tp RStatStart_q1; LatchByte[0] <= #Tp LatchByte0_d; LatchByte[1] <= #Tp LatchByte1_d; LatchByte0_d <= #Tp LatchByte0_d2; LatchByte1_d <= #Tp LatchByte1_d2; InProgress_q1 <= #Tp InProgress; InProgress_q2 <= #Tp InProgress_q1; InProgress_q3 <= #Tp InProgress_q2; end end end // Generation of the Operation signals assign WriteDataOp = WCtrlDataStart_q1 & ~WCtrlDataStart_q2; assign ReadStatusOp = RStatStart_q1 & ~RStatStart_q2; assign ScanStatusOp = SyncStatMdcEn & ~InProgress & ~InProgress_q1 & ~InProgress_q2; assign StartOp = WriteDataOp | ReadStatusOp | ScanStatusOp; // Busy assign Busy = WCtrlData | WCtrlDataStart | RStat | RStatStart | SyncStatMdcEn | EndBusy | InProgress | InProgress_q3 | Nvalid; // Generation of the InProgress signal (indicates when an operation is in progress) // Generation of the WriteOp signal (indicates when a write is in progress) always @ (posedge Clk or posedge Reset) begin if(Reset) begin InProgress <= #Tp 1'b0; WriteOp <= #Tp 1'b0; end else begin if(MdcEn) begin if(StartOp) begin if(~InProgress) WriteOp <= #Tp WriteDataOp; InProgress <= #Tp 1'b1; end else begin if(EndOp) begin InProgress <= #Tp 1'b0; WriteOp <= #Tp 1'b0; end end end end end // Bit Counter counts from 0 to 63 (from 32 to 63 when NoPre is asserted) always @ (posedge Clk or posedge Reset) begin if(Reset) BitCounter[6:0] <= #Tp 7'h0; else begin if(MdcEn) begin if(InProgress) begin if(NoPre & ( BitCounter == 7'h0 )) BitCounter[6:0] <= #Tp 7'h21; else BitCounter[6:0] <= #Tp BitCounter[6:0] + 1'b1; end else BitCounter[6:0] <= #Tp 7'h0; end end end // Operation ends when the Bit Counter reaches 63 assign EndOp = BitCounter==63; assign ByteSelect[0] = InProgress & ((NoPre & (BitCounter == 7'h0)) | (~NoPre & (BitCounter == 7'h20))); assign ByteSelect[1] = InProgress & (BitCounter == 7'h28); assign ByteSelect[2] = InProgress & WriteOp & (BitCounter == 7'h30); assign ByteSelect[3] = InProgress & WriteOp & (BitCounter == 7'h38); // Latch Byte selects which part of Read Status Data is updated from the shift register assign LatchByte1_d2 = InProgress & ~WriteOp & BitCounter == 7'h37; assign LatchByte0_d2 = InProgress & ~WriteOp & BitCounter == 7'h3F; // Connecting the Clock Generator Module eth_clockgen #(.Tp(Tp)) clkgen(.Clk(Clk), .Reset(Reset), .Divider(Divider[7:0]), .MdcEn(MdcEn), .MdcEn_n(MdcEn_n), .Mdc(Mdc) ); // Connecting the Shift Register Module eth_shiftreg #(.Tp(Tp)) shftrg(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .Mdi(Mdi), .Fiad(Fiad), .Rgad(Rgad), .CtrlData(CtrlData), .WriteOp(WriteOp), .ByteSelect(ByteSelect), .LatchByte(LatchByte), .ShiftedBit(ShiftedBit), .Prsd(Prsd), .LinkFail(LinkFail) ); // Connecting the Output Control Module eth_outputcontrol #(.Tp(Tp)) outctrl(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .InProgress(InProgress), .ShiftedBit(ShiftedBit), .BitCounter(BitCounter), .WriteOp(WriteOp), .NoPre(NoPre), .Mdo(Mdo), .MdoEn(MdoEn) ); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log