OpenCores
URL https://opencores.org/ocsvn/ethmac/ethmac/trunk

Subversion Repositories ethmac

[/] [ethmac/] [trunk/] [rtl/] [verilog/] [eth_wishbone.v] - Rev 219

Go to most recent revision | Compare with Previous | Blame | View Log

//////////////////////////////////////////////////////////////////////
////                                                              ////
////  eth_wishbone.v                                              ////
////                                                              ////
////  This file is part of the Ethernet IP core project           ////
////  http://www.opencores.org/projects/ethmac/                   ////
////                                                              ////
////  Author(s):                                                  ////
////      - Igor Mohor (igorM@opencores.org)                      ////
////                                                              ////
////  All additional information is available in the Readme.txt   ////
////  file.                                                       ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
////                                                              ////
//// Copyright (C) 2001, 2002 Authors                             ////
////                                                              ////
//// This source file may be used and distributed without         ////
//// restriction provided that this copyright statement is not    ////
//// removed from the file and that any derivative work contains  ////
//// the original copyright notice and the associated disclaimer. ////
////                                                              ////
//// This source file is free software; you can redistribute it   ////
//// and/or modify it under the terms of the GNU Lesser General   ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any   ////
//// later version.                                               ////
////                                                              ////
//// This source is distributed in the hope that it will be       ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied   ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      ////
//// PURPOSE.  See the GNU Lesser General Public License for more ////
//// details.                                                     ////
////                                                              ////
//// You should have received a copy of the GNU Lesser General    ////
//// Public License along with this source; if not, download it   ////
//// from http://www.opencores.org/lgpl.shtml                     ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.38  2002/10/10 16:29:30  mohor
// BIST added.
//
// Revision 1.37  2002/09/11 14:18:46  mohor
// Sometimes both RxB_IRQ and RxE_IRQ were activated. Bug fixed.
//
// Revision 1.36  2002/09/10 13:48:46  mohor
// Reception is possible after RxPointer is read and not after BD is read. For
// that reason RxBDReady is changed to RxReady.
// Busy_IRQ interrupt connected. When there is no RxBD ready and frame
// comes, interrupt is generated.
//
// Revision 1.35  2002/09/10 10:35:23  mohor
// Ethernet debug registers removed.
//
// Revision 1.34  2002/09/08 16:31:49  mohor
// Async reset for WB_ACK_O removed (when core was in reset, it was
// impossible to access BDs).
// RxPointers and TxPointers names changed to be more descriptive.
// TxUnderRun synchronized.
//
// Revision 1.33  2002/09/04 18:47:57  mohor
// Debug registers reg1, 2, 3, 4 connected. Synchronization of many signals
// changed (bugs fixed). Access to un-alligned buffers fixed. RxAbort signal
// was not used OK.
//
// Revision 1.32  2002/08/14 19:31:48  mohor
// Register TX_BD_NUM is changed so it contains value of the Tx buffer descriptors. No
// need to multiply or devide any more.
//
// Revision 1.31  2002/07/25 18:29:01  mohor
// WriteRxDataToMemory signal changed so end of frame (when last word is
// written to fifo) is changed.
//
// Revision 1.30  2002/07/23 15:28:31  mohor
// Ram , used for BDs changed from generic_spram to eth_spram_256x32.
//
// Revision 1.29  2002/07/20 00:41:32  mohor
// ShiftEnded synchronization changed.
//
// Revision 1.28  2002/07/18 16:11:46  mohor
// RxBDAddress takes `ETH_TX_BD_NUM_DEF value after reset.
//
// Revision 1.27  2002/07/11 02:53:20  mohor
// RxPointer bug fixed.
//
// Revision 1.26  2002/07/10 13:12:38  mohor
// Previous bug wasn't succesfully removed. Now fixed.
//
// Revision 1.25  2002/07/09 23:53:24  mohor
// Master state machine had a bug when switching from master write to
// master read.
//
// Revision 1.24  2002/07/09 20:44:41  mohor
// m_wb_cyc_o signal released after every single transfer.
//
// Revision 1.23  2002/05/03 10:15:50  mohor
// Outputs registered. Reset changed for eth_wishbone module.
//
// Revision 1.22  2002/04/24 08:52:19  mohor
// Compiler directives added. Tx and Rx fifo size incremented. A "late collision"
// bug fixed.
//
// Revision 1.21  2002/03/29 16:18:11  lampret
// Small typo fixed.
//
// Revision 1.20  2002/03/25 16:19:12  mohor
// Any address can be used for Tx and Rx BD pointers. Address does not need
// to be aligned.
//
// Revision 1.19  2002/03/19 12:51:50  mohor
// Comments in Slovene language removed.
//
// Revision 1.18  2002/03/19 12:46:52  mohor
// casex changed with case, fifo reset changed.
//
// Revision 1.17  2002/03/09 16:08:45  mohor
// rx_fifo was not always cleared ok. Fixed.
//
// Revision 1.16  2002/03/09 13:51:20  mohor
// Status was not latched correctly sometimes. Fixed.
//
// Revision 1.15  2002/03/08 06:56:46  mohor
// Big Endian problem when sending frames fixed.
//
// Revision 1.14  2002/03/02 19:12:40  mohor
// Byte ordering changed (Big Endian used). casex changed with case because
// Xilinx Foundation had problems. Tested in HW. It WORKS.
//
// Revision 1.13  2002/02/26 16:59:55  mohor
// Small fixes for external/internal DMA missmatches.
//
// Revision 1.12  2002/02/26 16:22:07  mohor
// Interrupts changed
//
// Revision 1.11  2002/02/15 17:07:39  mohor
// Status was not written correctly when frames were discarted because of
// address mismatch.
//
// Revision 1.10  2002/02/15 12:17:39  mohor
// RxStartFrm cleared when abort or retry comes.
//
// Revision 1.9  2002/02/15 11:59:10  mohor
// Changes that were lost when updating from 1.5 to 1.8 fixed.
//
// Revision 1.8  2002/02/14 20:54:33  billditt
// Addition  of new module eth_addrcheck.v
//
// Revision 1.7  2002/02/12 17:03:47  mohor
// RxOverRun added to statuses.
//
// Revision 1.6  2002/02/11 09:18:22  mohor
// Tx status is written back to the BD.
//
// Revision 1.5  2002/02/08 16:21:54  mohor
// Rx status is written back to the BD.
//
// Revision 1.4  2002/02/06 14:10:21  mohor
// non-DMA host interface added. Select the right configutation in eth_defines.
//
// Revision 1.3  2002/02/05 16:44:39  mohor
// Both rx and tx part are finished. Tested with wb_clk_i between 10 and 200
// MHz. Statuses, overrun, control frame transmission and reception still  need
// to be fixed.
//
// Revision 1.2  2002/02/01 12:46:51  mohor
// Tx part finished. TxStatus needs to be fixed. Pause request needs to be
// added.
//
// Revision 1.1  2002/01/23 10:47:59  mohor
// Initial version. Equals to eth_wishbonedma.v at this moment.
//
//
//
 
`include "eth_defines.v"
`include "timescale.v"
 
 
module eth_wishbone
   (
 
    // WISHBONE common
    WB_CLK_I, WB_DAT_I, WB_DAT_O, 
 
    // WISHBONE slave
 		WB_ADR_I, WB_WE_I, WB_ACK_O, 
    BDCs, 
 
    Reset, 
 
    // WISHBONE master
    m_wb_adr_o, m_wb_sel_o, m_wb_we_o, 
    m_wb_dat_o, m_wb_dat_i, m_wb_cyc_o, 
    m_wb_stb_o, m_wb_ack_i, m_wb_err_i, 
 
`ifdef ETH_WISHBONE_B3
    m_wb_cti_o, m_wb_bte_o, 
`endif
 
    //TX
    MTxClk, TxStartFrm, TxEndFrm, TxUsedData, TxData, 
    TxRetry, TxAbort, TxUnderRun, TxDone, PerPacketCrcEn, 
    PerPacketPad, 
 
    //RX
    MRxClk, RxData, RxValid, RxStartFrm, RxEndFrm, RxAbort, 
 
    // Register
    r_TxEn, r_RxEn, r_TxBDNum, TX_BD_NUM_Wr, 
 
    // Interrupts
    TxB_IRQ, TxE_IRQ, RxB_IRQ, RxE_IRQ, Busy_IRQ, 
 
    // Rx Status
    InvalidSymbol, LatchedCrcError, RxLateCollision, ShortFrame, DribbleNibble,
    ReceivedPacketTooBig, RxLength, LoadRxStatus, ReceivedPacketGood, 
 
    // Tx Status
    RetryCntLatched, RetryLimit, LateCollLatched, DeferLatched, CarrierSenseLost
 
    // Bist
`ifdef ETH_BIST
   , trst, SO, SI, shift_DR, capture_DR, extest, tck
`endif
 
 
 
		);
 
 
parameter Tp = 1;
 
 
// WISHBONE common
input           WB_CLK_I;       // WISHBONE clock
input  [31:0]   WB_DAT_I;       // WISHBONE data input
output [31:0]   WB_DAT_O;       // WISHBONE data output
 
// WISHBONE slave
input   [9:2]   WB_ADR_I;       // WISHBONE address input
input           WB_WE_I;        // WISHBONE write enable input
input           BDCs;           // Buffer descriptors are selected
output          WB_ACK_O;       // WISHBONE acknowledge output
 
// WISHBONE master
output  [31:0]  m_wb_adr_o;     // 
output   [3:0]  m_wb_sel_o;     // 
output          m_wb_we_o;      // 
output  [31:0]  m_wb_dat_o;     // 
output          m_wb_cyc_o;     // 
output          m_wb_stb_o;     // 
input   [31:0]  m_wb_dat_i;     // 
input           m_wb_ack_i;     // 
input           m_wb_err_i;     // 
 
`ifdef ETH_WISHBONE_B3
output   [2:0]  m_wb_cti_o;     // Cycle Type Identifier
output   [1:0]  m_wb_bte_o;     // Burst Type Extension
reg      [2:0]  m_wb_cti_o;     // Cycle Type Identifier
`endif
 
input           Reset;       // Reset signal
 
// Rx Status signals
input           InvalidSymbol;    // Invalid symbol was received during reception in 100 Mbps mode
input           LatchedCrcError;  // CRC error
input           RxLateCollision;  // Late collision occured while receiving frame
input           ShortFrame;       // Frame shorter then the minimum size (r_MinFL) was received while small packets are enabled (r_RecSmall)
input           DribbleNibble;    // Extra nibble received
input           ReceivedPacketTooBig;// Received packet is bigger than r_MaxFL
input    [15:0] RxLength;         // Length of the incoming frame
input           LoadRxStatus;     // Rx status was loaded
input           ReceivedPacketGood;// Received packet's length and CRC are good
 
// Tx Status signals
input     [3:0] RetryCntLatched;  // Latched Retry Counter
input           RetryLimit;       // Retry limit reached (Retry Max value + 1 attempts were made)
input           LateCollLatched;  // Late collision occured
input           DeferLatched;     // Defer indication (Frame was defered before sucessfully sent)
input           CarrierSenseLost; // Carrier Sense was lost during the frame transmission
 
// Tx
input           MTxClk;         // Transmit clock (from PHY)
input           TxUsedData;     // Transmit packet used data
input           TxRetry;        // Transmit packet retry
input           TxAbort;        // Transmit packet abort
input           TxDone;         // Transmission ended
output          TxStartFrm;     // Transmit packet start frame
output          TxEndFrm;       // Transmit packet end frame
output  [7:0]   TxData;         // Transmit packet data byte
output          TxUnderRun;     // Transmit packet under-run
output          PerPacketCrcEn; // Per packet crc enable
output          PerPacketPad;   // Per packet pading
 
// Rx
input           MRxClk;         // Receive clock (from PHY)
input   [7:0]   RxData;         // Received data byte (from PHY)
input           RxValid;        // 
input           RxStartFrm;     // 
input           RxEndFrm;       // 
input           RxAbort;        // This signal is set when address doesn't match.
 
//Register
input           r_TxEn;         // Transmit enable
input           r_RxEn;         // Receive enable
input   [7:0]   r_TxBDNum;      // Receive buffer descriptor number
input           TX_BD_NUM_Wr;   // RxBDNumber written
 
// Interrupts
output TxB_IRQ;
output TxE_IRQ;
output RxB_IRQ;
output RxE_IRQ;
output Busy_IRQ;
 
 
// Bist
`ifdef ETH_BIST
input           trst;
input           shift_DR, capture_DR, tck, extest;
input           SI;
output          SO;
`endif
 
reg TxB_IRQ;
reg TxE_IRQ;
reg RxB_IRQ;
reg RxE_IRQ;
 
reg             TxStartFrm;
reg             TxEndFrm;
reg     [7:0]   TxData;
 
reg             TxUnderRun;
reg             TxUnderRun_wb;
 
reg             TxBDRead;
wire            TxStatusWrite;
 
reg     [1:0]   TxValidBytesLatched;
 
reg    [15:0]   TxLength;
reg    [15:0]   LatchedTxLength;
reg   [14:11]   TxStatus;
 
reg   [14:13]   RxStatus;
 
reg             TxStartFrm_wb;
reg             TxRetry_wb;
reg             TxAbort_wb;
reg             TxDone_wb;
 
reg             TxDone_wb_q;
reg             TxAbort_wb_q;
reg             TxRetry_wb_q;
reg             TxRetryPacket;
reg             TxDonePulse_q;
reg             TxAbortPacket;
reg             RxBDReady;
reg             RxReady;
reg             TxBDReady;
 
reg             RxBDRead;
wire            RxStatusWrite;
 
reg    [31:0]   TxDataLatched;
reg     [1:0]   TxByteCnt;
reg             LastWord;
reg             ReadTxDataFromFifo_tck;
 
reg             BlockingTxStatusWrite;
reg             BlockingTxBDRead;
 
reg             Flop;
 
reg     [7:0]   TxBDAddress;
reg     [7:0]   RxBDAddress;
 
reg             TxRetrySync1;
reg             TxAbortSync1;
reg             TxDoneSync1;
 
reg             TxAbort_q;
reg             TxRetry_q;
reg             TxUsedData_q;
 
reg    [31:0]   RxDataLatched2;
 
reg    [31:8]   RxDataLatched1;     // Big Endian Byte Ordering
 
reg     [1:0]   RxValidBytes;
reg     [1:0]   RxByteCnt;
reg             LastByteIn;
reg             ShiftWillEnd;
 
reg             WriteRxDataToFifo;
reg    [15:0]   LatchedRxLength;
reg             RxAbortLatched;
 
reg             ShiftEnded;
reg             RxOverrun;
 
reg             BDWrite;                    // BD Write Enable for access from WISHBONE side
reg             BDRead;                     // BD Read access from WISHBONE side
wire   [31:0]   RxBDDataIn;                 // Rx BD data in
wire   [31:0]   TxBDDataIn;                 // Tx BD data in
 
reg             TxEndFrm_wb;
 
wire            TxRetryPulse;
wire            TxDonePulse;
wire            TxAbortPulse;
 
wire            StartRxBDRead;
 
wire            StartTxBDRead;
 
wire            TxIRQEn;
wire            WrapTxStatusBit;
 
wire            RxIRQEn;
wire            WrapRxStatusBit;
 
wire    [1:0]   TxValidBytes;
 
wire    [7:0]   TempTxBDAddress;
wire    [7:0]   TempRxBDAddress;
 
wire            SetGotData;
wire            GotDataEvaluate;
 
reg             WB_ACK_O;
 
wire    [6:0]   RxStatusIn;
reg     [6:0]   RxStatusInLatched;
 
reg WbEn, WbEn_q;
reg RxEn, RxEn_q;
reg TxEn, TxEn_q;
 
wire ram_ce;
wire ram_we;
wire ram_oe;
reg [7:0]   ram_addr;
reg [31:0]  ram_di;
wire [31:0] ram_do;
 
wire StartTxPointerRead;
reg  TxPointerRead;
reg TxEn_needed;
reg RxEn_needed;
 
wire StartRxPointerRead;
reg RxPointerRead; 
 
`ifdef ETH_WISHBONE_B3
assign m_wb_bte_o = 2'b00;    // Linear burst
`endif
 
 
always @ (posedge WB_CLK_I)
begin
  WB_ACK_O <=#Tp BDWrite & WbEn & WbEn_q | BDRead & WbEn & ~WbEn_q;
end
 
assign WB_DAT_O = ram_do;
 
// Generic synchronous single-port RAM interface
eth_spram_256x32 bd_ram (
  .clk(WB_CLK_I), .rst(Reset), .ce(ram_ce), .we(ram_we), .oe(ram_oe), .addr(ram_addr), .di(ram_di), .do(ram_do)
`ifdef ETH_BIST
  , .trst(trst), .SO(SO), .SI(SI), .shift_DR(shift_DR), .capture_DR(capture_DR), .extest(extest), .tck(tck)
`endif
);
 
assign ram_ce = 1'b1;
assign ram_we = BDWrite & WbEn & WbEn_q | TxStatusWrite | RxStatusWrite;
assign ram_oe = BDRead & WbEn & WbEn_q | TxEn & TxEn_q & (TxBDRead | TxPointerRead) | RxEn & RxEn_q & (RxBDRead | RxPointerRead);
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxEn_needed <=#Tp 1'b0;
  else
  if(~TxBDReady & r_TxEn & WbEn & ~WbEn_q)
    TxEn_needed <=#Tp 1'b1;
  else
  if(TxPointerRead & TxEn & TxEn_q)
    TxEn_needed <=#Tp 1'b0;
end
 
// Enabling access to the RAM for three devices.
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    begin
      WbEn <=#Tp 1'b1;
      RxEn <=#Tp 1'b0;
      TxEn <=#Tp 1'b0;
      ram_addr <=#Tp 8'h0;
      ram_di <=#Tp 32'h0;
      BDRead <=#Tp 1'b0;
      BDWrite <=#Tp 1'b0;
    end
  else
    begin
      // Switching between three stages depends on enable signals
      case ({WbEn_q, RxEn_q, TxEn_q, RxEn_needed, TxEn_needed})  // synopsys parallel_case
        5'b100_10, 5'b100_11 :
          begin
            WbEn <=#Tp 1'b0;
            RxEn <=#Tp 1'b1;  // wb access stage and r_RxEn is enabled
            TxEn <=#Tp 1'b0;
            ram_addr <=#Tp RxBDAddress + RxPointerRead;
            ram_di <=#Tp RxBDDataIn;
          end
        5'b100_01 :
          begin
            WbEn <=#Tp 1'b0;
            RxEn <=#Tp 1'b0;
            TxEn <=#Tp 1'b1;  // wb access stage, r_RxEn is disabled but r_TxEn is enabled
            ram_addr <=#Tp TxBDAddress + TxPointerRead;
            ram_di <=#Tp TxBDDataIn;
          end
        5'b010_00, 5'b010_10 :
          begin
            WbEn <=#Tp 1'b1;  // RxEn access stage and r_TxEn is disabled
            RxEn <=#Tp 1'b0;
            TxEn <=#Tp 1'b0;
            ram_addr <=#Tp WB_ADR_I[9:2];
            ram_di <=#Tp WB_DAT_I;
            BDWrite <=#Tp BDCs & WB_WE_I;
            BDRead <=#Tp BDCs & ~WB_WE_I;
          end
        5'b010_01, 5'b010_11 :
          begin
            WbEn <=#Tp 1'b0;
            RxEn <=#Tp 1'b0;
            TxEn <=#Tp 1'b1;  // RxEn access stage and r_TxEn is enabled
            ram_addr <=#Tp TxBDAddress + TxPointerRead;
            ram_di <=#Tp TxBDDataIn;
          end
        5'b001_00, 5'b001_01, 5'b001_10, 5'b001_11 :
          begin
            WbEn <=#Tp 1'b1;  // TxEn access stage (we always go to wb access stage)
            RxEn <=#Tp 1'b0;
            TxEn <=#Tp 1'b0;
            ram_addr <=#Tp WB_ADR_I[9:2];
            ram_di <=#Tp WB_DAT_I;
            BDWrite <=#Tp BDCs & WB_WE_I;
            BDRead <=#Tp BDCs & ~WB_WE_I;
          end
        5'b100_00 :
          begin
            WbEn <=#Tp 1'b0;  // WbEn access stage and there is no need for other stages. WbEn needs to be switched off for a bit
          end
        5'b000_00 :
          begin
            WbEn <=#Tp 1'b1;  // Idle state. We go to WbEn access stage.
            RxEn <=#Tp 1'b0;
            TxEn <=#Tp 1'b0;
            ram_addr <=#Tp WB_ADR_I[9:2];
            ram_di <=#Tp WB_DAT_I;
            BDWrite <=#Tp BDCs & WB_WE_I;
            BDRead <=#Tp BDCs & ~WB_WE_I;
          end
      endcase
    end
end
 
 
// Delayed stage signals
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    begin
      WbEn_q <=#Tp 1'b0;
      RxEn_q <=#Tp 1'b0;
      TxEn_q <=#Tp 1'b0;
    end
  else
    begin
      WbEn_q <=#Tp WbEn;
      RxEn_q <=#Tp RxEn;
      TxEn_q <=#Tp TxEn;
    end
end
 
// Changes for tx occur every second clock. Flop is used for this manner.
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    Flop <=#Tp 1'b0;
  else
  if(TxDone | TxAbort | TxRetry_q)
    Flop <=#Tp 1'b0;
  else
  if(TxUsedData)
    Flop <=#Tp ~Flop;
end
 
wire ResetTxBDReady;
assign ResetTxBDReady = TxDonePulse | TxAbortPulse | TxRetryPulse;
 
// Latching READY status of the Tx buffer descriptor
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxBDReady <=#Tp 1'b0;
  else
  if(TxEn & TxEn_q & TxBDRead)
    TxBDReady <=#Tp ram_do[15] & (ram_do[31:16] > 4); // TxBDReady is sampled only once at the beginning.
  else                                                // Only packets larger then 4 bytes are transmitted.
  if(ResetTxBDReady)
    TxBDReady <=#Tp 1'b0;
end
 
 
// Reading the Tx buffer descriptor
assign StartTxBDRead = (TxRetry_wb | TxStatusWrite) & ~BlockingTxBDRead & ~TxBDReady;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxBDRead <=#Tp 1'b1;
  else
  if(StartTxBDRead)
    TxBDRead <=#Tp 1'b1;
  else
  if(TxBDReady)
    TxBDRead <=#Tp 1'b0;
end
 
 
// Reading Tx BD pointer
assign StartTxPointerRead = TxBDRead & TxBDReady;
 
// Reading Tx BD Pointer
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxPointerRead <=#Tp 1'b0;
  else
  if(StartTxPointerRead)
    TxPointerRead <=#Tp 1'b1;
  else
  if(TxEn_q)
    TxPointerRead <=#Tp 1'b0;
end
 
 
// Writing status back to the Tx buffer descriptor
assign TxStatusWrite = (TxDone_wb | TxAbort_wb) & TxEn & TxEn_q & ~BlockingTxStatusWrite;
 
 
 
// Status writing must occur only once. Meanwhile it is blocked.
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    BlockingTxStatusWrite <=#Tp 1'b0;
  else
  if(TxStatusWrite)
    BlockingTxStatusWrite <=#Tp 1'b1;
  else
  if(~TxDone_wb & ~TxAbort_wb)
    BlockingTxStatusWrite <=#Tp 1'b0;
end
 
 
reg BlockingTxStatusWrite_sync1;
reg BlockingTxStatusWrite_sync2;
 
// Synchronizing BlockingTxStatusWrite to MTxClk
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    BlockingTxStatusWrite_sync1 <=#Tp 1'b0;
  else
    BlockingTxStatusWrite_sync1 <=#Tp BlockingTxStatusWrite;
end
 
// Synchronizing BlockingTxStatusWrite to MTxClk
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    BlockingTxStatusWrite_sync2 <=#Tp 1'b0;
  else
    BlockingTxStatusWrite_sync2 <=#Tp BlockingTxStatusWrite_sync1;
end
 
 
// TxBDRead state is activated only once. 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    BlockingTxBDRead <=#Tp 1'b0;
  else
  if(StartTxBDRead)
    BlockingTxBDRead <=#Tp 1'b1;
  else
  if(~StartTxBDRead & ~TxBDReady)
    BlockingTxBDRead <=#Tp 1'b0;
end
 
 
// Latching status from the tx buffer descriptor
// Data is avaliable one cycle after the access is started (at that time signal TxEn is not active)
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxStatus <=#Tp 4'h0;
  else
  if(TxEn & TxEn_q & TxBDRead)
    TxStatus <=#Tp ram_do[14:11];
end
 
reg ReadTxDataFromMemory;
wire WriteRxDataToMemory;
 
reg MasterWbTX;
reg MasterWbRX;
 
reg [31:0] m_wb_adr_o;
reg        m_wb_cyc_o;
reg        m_wb_stb_o;
reg  [3:0] m_wb_sel_o;
reg        m_wb_we_o;
 
wire TxLengthEq0;
wire TxLengthLt4;
 
reg BlockingIncrementTxPointer;
reg [31:2] TxPointerMSB;
reg [1:0]  TxPointerLSB;
reg [1:0]  TxPointerLSB_rst;
reg [31:2] RxPointerMSB;
reg [1:0]  RxPointerLSB_rst;
 
wire RxBurstAcc;
wire RxWordAcc;
wire RxHalfAcc;
wire RxByteAcc;
 
//Latching length from the buffer descriptor;
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxLength <=#Tp 16'h0;
  else
  if(TxEn & TxEn_q & TxBDRead)
    TxLength <=#Tp ram_do[31:16];
  else
  if(MasterWbTX & m_wb_ack_i)
    begin
      if(TxLengthLt4)
        TxLength <=#Tp 16'h0;
      else
      if(TxPointerLSB_rst==2'h0)
        TxLength <=#Tp TxLength - 3'h4;    // Length is subtracted at the data request
      else
      if(TxPointerLSB_rst==2'h1)
        TxLength <=#Tp TxLength - 3'h3;    // Length is subtracted at the data request
      else
      if(TxPointerLSB_rst==2'h2)
        TxLength <=#Tp TxLength - 3'h2;    // Length is subtracted at the data request
      else
      if(TxPointerLSB_rst==2'h3)
        TxLength <=#Tp TxLength - 3'h1;    // Length is subtracted at the data request
    end
end
 
 
 
//Latching length from the buffer descriptor;
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    LatchedTxLength <=#Tp 16'h0;
  else
  if(TxEn & TxEn_q & TxBDRead)
    LatchedTxLength <=#Tp ram_do[31:16];
end
 
assign TxLengthEq0 = TxLength == 0;
assign TxLengthLt4 = TxLength < 4;
 
reg cyc_cleared;
reg IncrTxPointer;
 
 
// Latching Tx buffer pointer from buffer descriptor. Only 30 MSB bits are latched
// because TxPointerMSB is only used for word-aligned accesses.
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxPointerMSB <=#Tp 30'h0;
  else
  if(TxEn & TxEn_q & TxPointerRead)
    TxPointerMSB <=#Tp ram_do[31:2];
  else
  if(IncrTxPointer & ~BlockingIncrementTxPointer)
    TxPointerMSB <=#Tp TxPointerMSB + 1'b1;     // TxPointer is word-aligned
end
 
 
// Latching 2 MSB bits of the buffer descriptor. Since word accesses are performed,
// valid data does not necesserly start at byte 0 (could be byte 0, 1, 2 or 3). This
// signals are used for proper selection of the start byte (TxData and TxByteCnt) are
// set by this two bits.
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxPointerLSB[1:0] <=#Tp 0;
  else
  if(TxEn & TxEn_q & TxPointerRead)
    TxPointerLSB[1:0] <=#Tp ram_do[1:0];
end
 
 
// Latching 2 MSB bits of the buffer descriptor. 
// After the read access, TxLength needs to be decremented for the number of the valid
// bytes (1 to 4 bytes are valid in the first word). After the first read all bytes are 
// valid so this two bits are reset to zero. 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxPointerLSB_rst[1:0] <=#Tp 0;
  else
  if(TxEn & TxEn_q & TxPointerRead)
    TxPointerLSB_rst[1:0] <=#Tp ram_do[1:0];
  else
  if(MasterWbTX & m_wb_ack_i)                 // After first access pointer is word alligned
    TxPointerLSB_rst[1:0] <=#Tp 0;
end
 
 
reg  [3:0] RxByteSel;
wire MasterAccessFinished;
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    BlockingIncrementTxPointer <=#Tp 0;
  else
  if(MasterAccessFinished)
    BlockingIncrementTxPointer <=#Tp 0;
  else
  if(IncrTxPointer)
    BlockingIncrementTxPointer <=#Tp 1'b1;
end
 
 
wire TxBufferAlmostFull;
wire TxBufferFull;
wire TxBufferEmpty;
wire TxBufferAlmostEmpty;
wire SetReadTxDataFromMemory;
 
reg BlockReadTxDataFromMemory;
 
assign SetReadTxDataFromMemory = TxEn & TxEn_q & TxPointerRead;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromMemory <=#Tp 1'b0;
  else
  if(TxLengthEq0 | TxAbortPacket | TxRetryPacket)
    ReadTxDataFromMemory <=#Tp 1'b0;
  else
  if(SetReadTxDataFromMemory)
    ReadTxDataFromMemory <=#Tp 1'b1;
end
 
wire ReadTxDataFromMemory_2 = ReadTxDataFromMemory & ~BlockReadTxDataFromMemory;
wire [31:0] TxData_wb;
wire ReadTxDataFromFifo_wb;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    BlockReadTxDataFromMemory <=#Tp 1'b0;
  else
  if((TxBufferAlmostFull | TxLength <= 4)& MasterWbTX)
    BlockReadTxDataFromMemory <=#Tp 1'b1;
  else
  if(ReadTxDataFromFifo_wb | TxDonePulse_q | TxAbortPacket | TxRetryPacket)
    BlockReadTxDataFromMemory <=#Tp 1'b0;
end
 
 
 
assign MasterAccessFinished = m_wb_ack_i | m_wb_err_i;
wire [`ETH_TX_FIFO_CNT_WIDTH-1:0] txfifo_cnt;
wire [`ETH_RX_FIFO_CNT_WIDTH-1:0] rxfifo_cnt;
 
// Enabling master wishbone access to the memory for two devices TX and RX.
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    begin
      MasterWbTX <=#Tp 1'b0;
      MasterWbRX <=#Tp 1'b0;
      m_wb_adr_o <=#Tp 32'h0;
      m_wb_cyc_o <=#Tp 1'b0;
      m_wb_stb_o <=#Tp 1'b0;
      m_wb_we_o  <=#Tp 1'b0;
      m_wb_sel_o <=#Tp 4'h0;
      cyc_cleared<=#Tp 1'b0;
      IncrTxPointer<=#Tp 1'b0;
    end
  else
    begin
      // Switching between two stages depends on enable signals
      casex ({MasterWbTX, MasterWbRX, ReadTxDataFromMemory_2, WriteRxDataToMemory, MasterAccessFinished, cyc_cleared})  // synopsys parallel_case
        6'b00_01_0_x, 6'b00_11_0_x :
          begin
            MasterWbTX <=#Tp 1'b0;  // idle and master write is needed (data write to rx buffer)
            MasterWbRX <=#Tp 1'b1;
            m_wb_adr_o <=#Tp {RxPointerMSB, 2'h0};
            m_wb_cyc_o <=#Tp 1'b1;
            m_wb_stb_o <=#Tp 1'b1;
            m_wb_we_o  <=#Tp 1'b1;
            m_wb_sel_o <=#Tp RxByteSel;
            IncrTxPointer<=#Tp 1'b0;
          end
        6'b00_10_0_x, 6'b00_10_1_x :
          begin
            MasterWbTX <=#Tp 1'b1;  // idle and master read is needed (data read from tx buffer)
            MasterWbRX <=#Tp 1'b0;
            m_wb_adr_o <=#Tp {TxPointerMSB, 2'h0};
            m_wb_cyc_o <=#Tp 1'b1;
            m_wb_stb_o <=#Tp 1'b1;
            m_wb_we_o  <=#Tp 1'b0;
            m_wb_sel_o <=#Tp 4'hf;
            IncrTxPointer<=#Tp 1'b1;
          end
        6'b10_10_0_1 :
          begin
            MasterWbTX <=#Tp 1'b1;  // master read and master read is needed (data read from tx buffer)
            MasterWbRX <=#Tp 1'b0;
            m_wb_adr_o <=#Tp {TxPointerMSB, 2'h0};
            m_wb_cyc_o <=#Tp 1'b1;
            m_wb_stb_o <=#Tp 1'b1;
            m_wb_we_o  <=#Tp 1'b0;
            m_wb_sel_o <=#Tp 4'hf;
            cyc_cleared<=#Tp 1'b0;
            IncrTxPointer<=#Tp 1'b1;
          end
        6'b01_01_0_1 :
          begin
            MasterWbTX <=#Tp 1'b0;  // master write and master write is needed (data write to rx buffer)
            MasterWbRX <=#Tp 1'b1;
            m_wb_adr_o <=#Tp {RxPointerMSB, 2'h0};
            m_wb_cyc_o <=#Tp 1'b1;
            m_wb_stb_o <=#Tp 1'b1;
            m_wb_we_o  <=#Tp 1'b1;
            m_wb_sel_o <=#Tp RxByteSel;
            cyc_cleared<=#Tp 1'b0;
            IncrTxPointer<=#Tp 1'b0;
          end
        6'b10_01_0_1, 6'b10_11_0_1 :
          begin
            MasterWbTX <=#Tp 1'b0;  // master read and master write is needed (data write to rx buffer)
            MasterWbRX <=#Tp 1'b1;
            m_wb_adr_o <=#Tp {RxPointerMSB, 2'h0};
            m_wb_cyc_o <=#Tp 1'b1;
            m_wb_stb_o <=#Tp 1'b1;
            m_wb_we_o  <=#Tp 1'b1;
            m_wb_sel_o <=#Tp RxByteSel;
            cyc_cleared<=#Tp 1'b0;
            IncrTxPointer<=#Tp 1'b0;
          end
        6'b01_10_0_1, 6'b01_11_0_1 :
          begin
            MasterWbTX <=#Tp 1'b1;  // master write and master read is needed (data read from tx buffer)
            MasterWbRX <=#Tp 1'b0;
            m_wb_adr_o <=#Tp {TxPointerMSB, 2'h0};
            m_wb_cyc_o <=#Tp 1'b1;
            m_wb_stb_o <=#Tp 1'b1;
            m_wb_we_o  <=#Tp 1'b0;
            m_wb_sel_o <=#Tp 4'hf;
            cyc_cleared<=#Tp 1'b0;
            IncrTxPointer<=#Tp 1'b1;
          end
        6'b10_10_1_0, 6'b01_01_1_0, 6'b10_01_1_0, 6'b10_11_1_0, 6'b01_10_1_0, 6'b01_11_1_0 :
          begin
            m_wb_cyc_o <=#Tp 1'b0;  // whatever and master read or write is needed. We need to clear m_wb_cyc_o before next access is started
            m_wb_stb_o <=#Tp 1'b0;
            cyc_cleared<=#Tp 1'b1;
            IncrTxPointer<=#Tp 1'b0;
          end
        6'b10_00_1_x, 6'b01_00_1_x :
          begin
            MasterWbTX <=#Tp 1'b0;  // whatever and no master read or write is needed (ack or err comes finishing previous access)
            MasterWbRX <=#Tp 1'b0;
            m_wb_cyc_o <=#Tp 1'b0;
            m_wb_stb_o <=#Tp 1'b0;
            IncrTxPointer<=#Tp 1'b0;
          end
        6'b10_00_0_1, 6'b01_00_0_1 :
          begin
            MasterWbTX <=#Tp 1'b0;  // Between cyc_cleared request was cleared
            MasterWbRX <=#Tp 1'b0;
            m_wb_cyc_o <=#Tp 1'b0;
            m_wb_stb_o <=#Tp 1'b0;
            IncrTxPointer<=#Tp 1'b0;
          end
        default:                            // Don't touch
          begin
            MasterWbTX <=#Tp MasterWbTX;
            MasterWbRX <=#Tp MasterWbRX;
            m_wb_cyc_o <=#Tp m_wb_cyc_o;
            m_wb_stb_o <=#Tp m_wb_stb_o;
            m_wb_sel_o <=#Tp m_wb_sel_o;
            IncrTxPointer<=#Tp IncrTxPointer;
          end
      endcase
    end
end
 
 
wire TxFifoClear;
 
assign TxFifoClear = (TxAbortPacket | TxRetryPacket);
 
eth_fifo #(`ETH_TX_FIFO_DATA_WIDTH, `ETH_TX_FIFO_DEPTH, `ETH_TX_FIFO_CNT_WIDTH)
tx_fifo ( .data_in(m_wb_dat_i),                             .data_out(TxData_wb), 
          .clk(WB_CLK_I),                                   .reset(Reset), 
          .write(MasterWbTX & m_wb_ack_i),                  .read(ReadTxDataFromFifo_wb & ~TxBufferEmpty), 
          .clear(TxFifoClear),                              .full(TxBufferFull), 
          .almost_full(TxBufferAlmostFull),                 .almost_empty(TxBufferAlmostEmpty), 
          .empty(TxBufferEmpty),                            .cnt(txfifo_cnt)
        );
 
 
reg StartOccured;
reg TxStartFrm_sync1;
reg TxStartFrm_sync2;
reg TxStartFrm_syncb1;
reg TxStartFrm_syncb2;
 
 
 
// Start: Generation of the TxStartFrm_wb which is then synchronized to the MTxClk
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxStartFrm_wb <=#Tp 1'b0;
  else
  if(TxBDReady & ~StartOccured & (TxBufferFull | TxLengthEq0))
    TxStartFrm_wb <=#Tp 1'b1;
  else
  if(TxStartFrm_syncb2)
    TxStartFrm_wb <=#Tp 1'b0;
end
 
// StartOccured: TxStartFrm_wb occurs only ones at the beginning. Then it's blocked.
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    StartOccured <=#Tp 1'b0;
  else
  if(TxStartFrm_wb)
    StartOccured <=#Tp 1'b1;
  else
  if(ResetTxBDReady)
    StartOccured <=#Tp 1'b0;
end
 
// Synchronizing TxStartFrm_wb to MTxClk
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxStartFrm_sync1 <=#Tp 1'b0;
  else
    TxStartFrm_sync1 <=#Tp TxStartFrm_wb;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxStartFrm_sync2 <=#Tp 1'b0;
  else
    TxStartFrm_sync2 <=#Tp TxStartFrm_sync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxStartFrm_syncb1 <=#Tp 1'b0;
  else
    TxStartFrm_syncb1 <=#Tp TxStartFrm_sync2;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxStartFrm_syncb2 <=#Tp 1'b0;
  else
    TxStartFrm_syncb2 <=#Tp TxStartFrm_syncb1;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxStartFrm <=#Tp 1'b0;
  else
  if(TxStartFrm_sync2)
    TxStartFrm <=#Tp 1'b1;
  else
  if(TxUsedData_q | ~TxStartFrm_sync2 & (TxRetry | TxAbort))
    TxStartFrm <=#Tp 1'b0;
end
// End: Generation of the TxStartFrm_wb which is then synchronized to the MTxClk
 
 
// TxEndFrm_wb: indicator of the end of frame
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxEndFrm_wb <=#Tp 1'b0;
  else
  if(TxLengthLt4 & TxBufferAlmostEmpty & TxUsedData)
    TxEndFrm_wb <=#Tp 1'b1;
  else
  if(TxRetryPulse | TxDonePulse | TxAbortPulse)
    TxEndFrm_wb <=#Tp 1'b0;
end
 
 
// Marks which bytes are valid within the word.
assign TxValidBytes = TxLengthLt4 ? TxLength[1:0] : 2'b0;
 
reg LatchValidBytes;
reg LatchValidBytes_q;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    LatchValidBytes <=#Tp 1'b0;
  else
  if(TxLengthLt4 & TxBDReady)
    LatchValidBytes <=#Tp 1'b1;
  else
    LatchValidBytes <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    LatchValidBytes_q <=#Tp 1'b0;
  else
    LatchValidBytes_q <=#Tp LatchValidBytes;
end
 
 
// Latching valid bytes
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxValidBytesLatched <=#Tp 2'h0;
  else
  if(LatchValidBytes & ~LatchValidBytes_q)
    TxValidBytesLatched <=#Tp TxValidBytes;
  else
  if(TxRetryPulse | TxDonePulse | TxAbortPulse)
    TxValidBytesLatched <=#Tp 2'h0;
end
 
 
assign TxIRQEn          = TxStatus[14];
assign WrapTxStatusBit  = TxStatus[13];
assign PerPacketPad     = TxStatus[12];
assign PerPacketCrcEn   = TxStatus[11];
 
 
assign RxIRQEn         = RxStatus[14];
assign WrapRxStatusBit = RxStatus[13];
 
 
// Temporary Tx and Rx buffer descriptor address 
assign TempTxBDAddress[7:0] = {8{ TxStatusWrite     & ~WrapTxStatusBit}} & (TxBDAddress + 2'h2) ; // Tx BD increment or wrap (last BD)
assign TempRxBDAddress[7:0] = {8{ WrapRxStatusBit}} & (r_TxBDNum<<1)     | // Using first Rx BD
                              {8{~WrapRxStatusBit}} & (RxBDAddress + 2'h2) ; // Using next Rx BD (incremenrement address)
 
 
// Latching Tx buffer descriptor address
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxBDAddress <=#Tp 8'h0;
  else
  if(TxStatusWrite)
    TxBDAddress <=#Tp TempTxBDAddress;
end
 
 
// Latching Rx buffer descriptor address
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxBDAddress <=#Tp `ETH_TX_BD_NUM_DEF<<1;
  else
  if(TX_BD_NUM_Wr)                        // When r_TxBDNum is updated, RxBDAddress is also
    RxBDAddress <=#Tp WB_DAT_I[7:0]<<1;
  else
  if(RxStatusWrite)
    RxBDAddress <=#Tp TempRxBDAddress;
end
 
wire [8:0] TxStatusInLatched = {TxUnderRun, RetryCntLatched[3:0], RetryLimit, LateCollLatched, DeferLatched, CarrierSenseLost};
 
assign RxBDDataIn = {LatchedRxLength, 1'b0, RxStatus, 6'h0, RxStatusInLatched};
assign TxBDDataIn = {LatchedTxLength, 1'b0, TxStatus, 2'h0, TxStatusInLatched};
 
 
// Signals used for various purposes
assign TxRetryPulse   = TxRetry_wb   & ~TxRetry_wb_q;
assign TxDonePulse    = TxDone_wb    & ~TxDone_wb_q;
assign TxAbortPulse   = TxAbort_wb   & ~TxAbort_wb_q;
 
 
 
// Generating delayed signals
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    begin
      TxAbort_q      <=#Tp 1'b0;
      TxRetry_q      <=#Tp 1'b0;
      TxUsedData_q   <=#Tp 1'b0;
    end
  else
    begin
      TxAbort_q      <=#Tp TxAbort;
      TxRetry_q      <=#Tp TxRetry;
      TxUsedData_q   <=#Tp TxUsedData;
    end
end
 
// Generating delayed signals
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    begin
      TxDone_wb_q   <=#Tp 1'b0;
      TxAbort_wb_q  <=#Tp 1'b0;
      TxRetry_wb_q  <=#Tp 1'b0;
      TxDonePulse_q  <=#Tp 1'b0;
    end
  else
    begin
      TxDone_wb_q   <=#Tp TxDone_wb;
      TxAbort_wb_q  <=#Tp TxAbort_wb;
      TxRetry_wb_q  <=#Tp TxRetry_wb;
      TxDonePulse_q  <=#Tp TxDonePulse;
    end
end
 
 
reg TxAbortPacketBlocked;
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxAbortPacket <=#Tp 1'b0;
  else
  if(TxAbort_wb & (!TxAbortPacketBlocked) & (MasterWbTX & MasterAccessFinished | (!MasterWbTX)))
    TxAbortPacket <=#Tp 1'b1;
  else
    TxAbortPacket <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxAbortPacketBlocked <=#Tp 1'b0;
  else
  if(TxAbortPacket)
    TxAbortPacketBlocked <=#Tp 1'b1;
  else
  if(!TxAbort_wb & TxAbort_wb_q)
    TxAbortPacketBlocked <=#Tp 1'b0;
end
 
 
reg TxRetryPacketBlocked;
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxRetryPacket <=#Tp 1'b0;
  else
  if(TxRetry_wb & (!TxRetryPacketBlocked) & (MasterWbTX & MasterAccessFinished | (!MasterWbTX)))
    TxRetryPacket <=#Tp 1'b1;
  else
    TxRetryPacket <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxRetryPacketBlocked <=#Tp 1'b0;
  else
  if(TxRetryPacket)
    TxRetryPacketBlocked <=#Tp 1'b1;
  else
  if(!TxRetry_wb & TxRetry_wb_q)
    TxRetryPacketBlocked <=#Tp 1'b0;
end
 
 
// Sinchronizing and evaluating tx data
//assign SetGotData = (TxStartFrm_wb | NewTxDataAvaliable_wb & ~TxAbort_wb & ~TxRetry_wb) & ~WB_CLK_I;
assign SetGotData = (TxStartFrm_wb);
 
// Evaluating data. If abort or retry occured meanwhile than data is ignored.
//assign GotDataEvaluate = GotDataSync3 & ~GotData & (~TxRetry & ~TxAbort | (TxRetry | TxAbort) & (TxStartFrm));
assign GotDataEvaluate = (~TxRetry & ~TxAbort | (TxRetry | TxAbort) & (TxStartFrm));
 
 
// Indication of the last word
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    LastWord <=#Tp 1'b0;
  else
  if((TxEndFrm | TxAbort | TxRetry) & Flop)
    LastWord <=#Tp 1'b0;
  else
  if(TxUsedData & Flop & TxByteCnt == 2'h3)
    LastWord <=#Tp TxEndFrm_wb;
end
 
 
// Tx end frame generation
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxEndFrm <=#Tp 1'b0;
  else
  if(Flop & TxEndFrm | TxAbort | TxRetry_q)
    TxEndFrm <=#Tp 1'b0;        
  else
  if(Flop & LastWord)
    begin
      case (TxValidBytesLatched)  // synopsys parallel_case
        1 : TxEndFrm <=#Tp TxByteCnt == 2'h0;
        2 : TxEndFrm <=#Tp TxByteCnt == 2'h1;
        3 : TxEndFrm <=#Tp TxByteCnt == 2'h2;
        0 : TxEndFrm <=#Tp TxByteCnt == 2'h3;
        default : TxEndFrm <=#Tp 1'b0;
      endcase
    end
end
 
 
// Tx data selection (latching)
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxData <=#Tp 0;
  else
  if(TxStartFrm_sync2 & ~TxStartFrm)
    case(TxPointerLSB)  // synopsys parallel_case
      2'h0 : TxData <=#Tp TxData_wb[31:24];                  // Big Endian Byte Ordering
      2'h1 : TxData <=#Tp TxData_wb[23:16];                  // Big Endian Byte Ordering
      2'h2 : TxData <=#Tp TxData_wb[15:08];                  // Big Endian Byte Ordering
      2'h3 : TxData <=#Tp TxData_wb[07:00];                  // Big Endian Byte Ordering
    endcase
  else
  if(TxStartFrm & TxUsedData & TxPointerLSB==2'h3)
    TxData <=#Tp TxData_wb[31:24];                           // Big Endian Byte Ordering
  else
  if(TxUsedData & Flop)
    begin
      case(TxByteCnt)  // synopsys parallel_case
        0 : TxData <=#Tp TxDataLatched[31:24];      // Big Endian Byte Ordering
        1 : TxData <=#Tp TxDataLatched[23:16];
        2 : TxData <=#Tp TxDataLatched[15:8];
        3 : TxData <=#Tp TxDataLatched[7:0];
      endcase
    end
end
 
 
// Latching tx data
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxDataLatched[31:0] <=#Tp 32'h0;
  else
 if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 | TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0)
    TxDataLatched[31:0] <=#Tp TxData_wb[31:0];
end
 
 
// Tx under run
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxUnderRun_wb <=#Tp 1'b0;
  else
  if(TxAbortPulse)
    TxUnderRun_wb <=#Tp 1'b0;
  else
  if(TxBufferEmpty & ReadTxDataFromFifo_wb)
    TxUnderRun_wb <=#Tp 1'b1;
end
 
 
reg TxUnderRun_sync1;
 
// Tx under run
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxUnderRun_sync1 <=#Tp 1'b0;
  else
  if(TxUnderRun_wb)
    TxUnderRun_sync1 <=#Tp 1'b1;
  else
  if(BlockingTxStatusWrite_sync2)
    TxUnderRun_sync1 <=#Tp 1'b0;
end
 
// Tx under run
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxUnderRun <=#Tp 1'b0;
  else
  if(BlockingTxStatusWrite_sync2)
    TxUnderRun <=#Tp 1'b0;
  else
  if(TxUnderRun_sync1)
    TxUnderRun <=#Tp 1'b1;
end
 
 
// Tx Byte counter
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    TxByteCnt <=#Tp 2'h0;
  else
  if(TxAbort_q | TxRetry_q)
    TxByteCnt <=#Tp 2'h0;
  else
  if(TxStartFrm & ~TxUsedData)
    case(TxPointerLSB)  // synopsys parallel_case
      2'h0 : TxByteCnt <=#Tp 2'h1;
      2'h1 : TxByteCnt <=#Tp 2'h2;
      2'h2 : TxByteCnt <=#Tp 2'h3;
      2'h3 : TxByteCnt <=#Tp 2'h0;
    endcase
  else
  if(TxUsedData & Flop)
    TxByteCnt <=#Tp TxByteCnt + 1'b1;
end
 
 
// Start: Generation of the ReadTxDataFromFifo_tck signal and synchronization to the WB_CLK_I
reg ReadTxDataFromFifo_sync1;
reg ReadTxDataFromFifo_sync2;
reg ReadTxDataFromFifo_sync3;
reg ReadTxDataFromFifo_syncb1;
reg ReadTxDataFromFifo_syncb2;
reg ReadTxDataFromFifo_syncb3;
 
 
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromFifo_tck <=#Tp 1'b0;
  else
  if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 & ~LastWord | TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0)
     ReadTxDataFromFifo_tck <=#Tp 1'b1;
  else
  if(ReadTxDataFromFifo_syncb2 & ~ReadTxDataFromFifo_syncb3)
    ReadTxDataFromFifo_tck <=#Tp 1'b0;
end
 
// Synchronizing TxStartFrm_wb to MTxClk
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromFifo_sync1 <=#Tp 1'b0;
  else
    ReadTxDataFromFifo_sync1 <=#Tp ReadTxDataFromFifo_tck;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromFifo_sync2 <=#Tp 1'b0;
  else
    ReadTxDataFromFifo_sync2 <=#Tp ReadTxDataFromFifo_sync1;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromFifo_syncb1 <=#Tp 1'b0;
  else
    ReadTxDataFromFifo_syncb1 <=#Tp ReadTxDataFromFifo_sync2;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromFifo_syncb2 <=#Tp 1'b0;
  else
    ReadTxDataFromFifo_syncb2 <=#Tp ReadTxDataFromFifo_syncb1;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromFifo_syncb3 <=#Tp 1'b0;
  else
    ReadTxDataFromFifo_syncb3 <=#Tp ReadTxDataFromFifo_syncb2;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ReadTxDataFromFifo_sync3 <=#Tp 1'b0;
  else
    ReadTxDataFromFifo_sync3 <=#Tp ReadTxDataFromFifo_sync2;
end
 
assign ReadTxDataFromFifo_wb = ReadTxDataFromFifo_sync2 & ~ReadTxDataFromFifo_sync3;
// End: Generation of the ReadTxDataFromFifo_tck signal and synchronization to the WB_CLK_I
 
 
// Synchronizing TxRetry signal (synchronized to WISHBONE clock)
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxRetrySync1 <=#Tp 1'b0;
  else
    TxRetrySync1 <=#Tp TxRetry;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxRetry_wb <=#Tp 1'b0;
  else
    TxRetry_wb <=#Tp TxRetrySync1;
end
 
 
// Synchronized TxDone_wb signal (synchronized to WISHBONE clock)
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxDoneSync1 <=#Tp 1'b0;
  else
    TxDoneSync1 <=#Tp TxDone;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxDone_wb <=#Tp 1'b0;
  else
    TxDone_wb <=#Tp TxDoneSync1;
end
 
// Synchronizing TxAbort signal (synchronized to WISHBONE clock)
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxAbortSync1 <=#Tp 1'b0;
  else
    TxAbortSync1 <=#Tp TxAbort;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxAbort_wb <=#Tp 1'b0;
  else
    TxAbort_wb <=#Tp TxAbortSync1;
end
 
 
reg RxAbortSync1;
reg RxAbortSync2;
reg RxAbortSync3;
reg RxAbortSync4;
reg RxAbortSyncb1;
reg RxAbortSyncb2;
 
//assign StartRxBDRead = RxStatusWrite | RxAbortLatched;
assign StartRxBDRead = RxStatusWrite | RxAbortSync3 & ~RxAbortSync4;
 
// Reading the Rx buffer descriptor
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxBDRead <=#Tp 1'b1;
  else
  if(StartRxBDRead & ~RxReady)
    RxBDRead <=#Tp 1'b1;
  else
  if(RxBDReady)
    RxBDRead <=#Tp 1'b0;
end
 
 
// Reading of the next receive buffer descriptor starts after reception status is
// written to the previous one.
 
// Latching READY status of the Rx buffer descriptor
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxBDReady <=#Tp 1'b0;
  else
  if(RxPointerRead)
    RxBDReady <=#Tp 1'b0;
  else
  if(RxEn & RxEn_q & RxBDRead)
    RxBDReady <=#Tp ram_do[15]; // RxBDReady is sampled only once at the beginning
end
 
// Latching Rx buffer descriptor status
// Data is avaliable one cycle after the access is started (at that time signal RxEn is not active)
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxStatus <=#Tp 2'h0;
  else
  if(RxEn & RxEn_q & RxBDRead)
    RxStatus <=#Tp ram_do[14:13];
end
 
 
// RxReady generation
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxReady <=#Tp 1'b0;
  else
  if(ShiftEnded | RxAbortSync2 & ~RxAbortSync3)
    RxReady <=#Tp 1'b0;
  else
  if(RxEn & RxEn_q & RxPointerRead)
    RxReady <=#Tp 1'b1;
end
 
 
// Reading Rx BD pointer
 
 
assign StartRxPointerRead = RxBDRead & RxBDReady;
 
// Reading Tx BD Pointer
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxPointerRead <=#Tp 1'b0;
  else
  if(StartRxPointerRead)
    RxPointerRead <=#Tp 1'b1;
  else
  if(RxEn & RxEn_q)
    RxPointerRead <=#Tp 1'b0;
end
 
 
//Latching Rx buffer pointer from buffer descriptor;
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxPointerMSB <=#Tp 30'h0;
  else
  if(RxEn & RxEn_q & RxPointerRead)
    RxPointerMSB <=#Tp ram_do[31:2];
  else
  if(MasterWbRX & m_wb_ack_i)
      RxPointerMSB <=#Tp RxPointerMSB + 1; // Word access  (always word access. m_wb_sel_o are used for selecting bytes)
end
 
 
//Latching last addresses from buffer descriptor (used as byte-half-word indicator);
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxPointerLSB_rst[1:0] <=#Tp 0;
  else
  if(MasterWbRX & m_wb_ack_i)                 // After first write all RxByteSel are active
    RxPointerLSB_rst[1:0] <=#Tp 0;
  else
  if(RxEn & RxEn_q & RxPointerRead)
    RxPointerLSB_rst[1:0] <=#Tp ram_do[1:0];
end
 
 
always @ (RxPointerLSB_rst)
begin
  case(RxPointerLSB_rst[1:0])  // synopsys parallel_case
    2'h0 : RxByteSel[3:0] = 4'hf;
    2'h1 : RxByteSel[3:0] = 4'h7;
    2'h2 : RxByteSel[3:0] = 4'h3;
    2'h3 : RxByteSel[3:0] = 4'h1;
  endcase
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxEn_needed <=#Tp 1'b0;
  else
  if(~RxReady & r_RxEn & WbEn & ~WbEn_q)
    RxEn_needed <=#Tp 1'b1;
  else
  if(RxPointerRead & RxEn & RxEn_q)
    RxEn_needed <=#Tp 1'b0;
end
 
 
// Reception status is written back to the buffer descriptor after the end of frame is detected.
assign RxStatusWrite = ShiftEnded & RxEn & RxEn_q;
 
reg RxStatusWriteLatched;
reg RxStatusWrite_rck;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxStatusWriteLatched <=#Tp 1'b0;
  else
  if(RxStatusWrite & ~RxStatusWrite_rck)
    RxStatusWriteLatched <=#Tp 1'b1;
  else
  if(RxStatusWrite_rck)
    RxStatusWriteLatched <=#Tp 1'b0;
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxStatusWrite_rck <=#Tp 1'b0;
  else
  if(RxStatusWriteLatched)
    RxStatusWrite_rck <=#Tp 1'b1;
  else
    RxStatusWrite_rck <=#Tp 1'b0;
end
 
 
reg RxEnableWindow;
 
// Indicating that last byte is being reveived
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    LastByteIn <=#Tp 1'b0;
  else
  if(ShiftWillEnd & (&RxByteCnt) | RxAbort)
    LastByteIn <=#Tp 1'b0;
  else
  if(RxValid & RxReady & RxEndFrm & ~(&RxByteCnt) & RxEnableWindow)
    LastByteIn <=#Tp 1'b1;
end
 
reg ShiftEnded_rck;
reg ShiftEndedSync1;
reg ShiftEndedSync2;
reg ShiftEndedSync3;
reg ShiftEndedSync_c1;
reg ShiftEndedSync_c2;
 
wire StartShiftWillEnd;
assign StartShiftWillEnd = LastByteIn  | RxValid & RxEndFrm & (&RxByteCnt) & RxEnableWindow;
 
// Indicating that data reception will end
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    ShiftWillEnd <=#Tp 1'b0;
  else
  if(ShiftEnded_rck | RxAbort)
    ShiftWillEnd <=#Tp 1'b0;
  else
  if(StartShiftWillEnd)
    ShiftWillEnd <=#Tp 1'b1;
end
 
 
 
// Receive byte counter
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxByteCnt <=#Tp 2'h0;
  else
  if(ShiftEnded_rck | RxAbort)
    RxByteCnt <=#Tp 2'h0;
  else
  if(RxValid & RxStartFrm & RxReady)
    case(RxPointerLSB_rst)  // synopsys parallel_case
      2'h0 : RxByteCnt <=#Tp 2'h1;
      2'h1 : RxByteCnt <=#Tp 2'h2;
      2'h2 : RxByteCnt <=#Tp 2'h3;
      2'h3 : RxByteCnt <=#Tp 2'h0;
    endcase
  else
  if(RxValid & RxEnableWindow & RxReady | LastByteIn)
    RxByteCnt <=#Tp RxByteCnt + 1'b1;
end
 
 
// Indicates how many bytes are valid within the last word
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxValidBytes <=#Tp 2'h1;
  else
  if(RxValid & RxStartFrm)
    case(RxPointerLSB_rst)  // synopsys parallel_case
      2'h0 : RxValidBytes <=#Tp 2'h1;
      2'h1 : RxValidBytes <=#Tp 2'h2;
      2'h2 : RxValidBytes <=#Tp 2'h3;
      2'h3 : RxValidBytes <=#Tp 2'h0;
    endcase
  else
  if(RxValid & ~LastByteIn & ~RxStartFrm & RxEnableWindow)
    RxValidBytes <=#Tp RxValidBytes + 1;
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxDataLatched1       <=#Tp 24'h0;
  else
  if(RxValid & RxReady & ~LastByteIn)
    if(RxStartFrm)
    begin
      case(RxPointerLSB_rst)     // synopsys parallel_case
        2'h0:        RxDataLatched1[31:24] <=#Tp RxData;            // Big Endian Byte Ordering
        2'h1:        RxDataLatched1[23:16] <=#Tp RxData;
        2'h2:        RxDataLatched1[15:8]  <=#Tp RxData;
        2'h3:        RxDataLatched1        <=#Tp RxDataLatched1;
      endcase
    end
    else if (RxEnableWindow)
    begin
      case(RxByteCnt)     // synopsys parallel_case
        2'h0:        RxDataLatched1[31:24] <=#Tp RxData;            // Big Endian Byte Ordering
        2'h1:        RxDataLatched1[23:16] <=#Tp RxData;
        2'h2:        RxDataLatched1[15:8]  <=#Tp RxData;
        2'h3:        RxDataLatched1        <=#Tp RxDataLatched1;
      endcase
    end
end
 
wire SetWriteRxDataToFifo;
 
// Assembling data that will be written to the rx_fifo
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxDataLatched2 <=#Tp 32'h0;
  else
  if(SetWriteRxDataToFifo & ~ShiftWillEnd)
    RxDataLatched2 <=#Tp {RxDataLatched1[31:8], RxData};              // Big Endian Byte Ordering
  else
  if(SetWriteRxDataToFifo & ShiftWillEnd)
    case(RxValidBytes)  // synopsys parallel_case
      0 : RxDataLatched2 <=#Tp {RxDataLatched1[31:8],  RxData};       // Big Endian Byte Ordering
      1 : RxDataLatched2 <=#Tp {RxDataLatched1[31:24], 24'h0};
      2 : RxDataLatched2 <=#Tp {RxDataLatched1[31:16], 16'h0};
      3 : RxDataLatched2 <=#Tp {RxDataLatched1[31:8],   8'h0};
    endcase
end
 
 
reg WriteRxDataToFifoSync1;
reg WriteRxDataToFifoSync2;
reg WriteRxDataToFifoSync3;
 
 
// Indicating start of the reception process
assign SetWriteRxDataToFifo = (RxValid & RxReady & ~RxStartFrm & RxEnableWindow & (&RxByteCnt)) | 
                              (RxValid & RxReady &  RxStartFrm & (&RxPointerLSB_rst))           | 
                              (ShiftWillEnd & LastByteIn & (&RxByteCnt));
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    WriteRxDataToFifo <=#Tp 1'b0;
  else
  if(SetWriteRxDataToFifo & ~RxAbort)
    WriteRxDataToFifo <=#Tp 1'b1;
  else
  if(WriteRxDataToFifoSync2 | RxAbort)
    WriteRxDataToFifo <=#Tp 1'b0;
end
 
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    WriteRxDataToFifoSync1 <=#Tp 1'b0;
  else
  if(WriteRxDataToFifo)
    WriteRxDataToFifoSync1 <=#Tp 1'b1;
  else
    WriteRxDataToFifoSync1 <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    WriteRxDataToFifoSync2 <=#Tp 1'b0;
  else
    WriteRxDataToFifoSync2 <=#Tp WriteRxDataToFifoSync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    WriteRxDataToFifoSync3 <=#Tp 1'b0;
  else
    WriteRxDataToFifoSync3 <=#Tp WriteRxDataToFifoSync2;
end
 
wire WriteRxDataToFifo_wb;
assign WriteRxDataToFifo_wb = WriteRxDataToFifoSync2 & ~WriteRxDataToFifoSync3;
 
 
reg LatchedRxStartFrm;
reg SyncRxStartFrm;
reg SyncRxStartFrm_q;
reg SyncRxStartFrm_q2;
wire RxFifoReset;
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    LatchedRxStartFrm <=#Tp 0;
  else
  if(RxStartFrm & ~SyncRxStartFrm_q)
    LatchedRxStartFrm <=#Tp 1;
  else
  if(SyncRxStartFrm_q)
    LatchedRxStartFrm <=#Tp 0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    SyncRxStartFrm <=#Tp 0;
  else
  if(LatchedRxStartFrm)
    SyncRxStartFrm <=#Tp 1;
  else
    SyncRxStartFrm <=#Tp 0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    SyncRxStartFrm_q <=#Tp 0;
  else
    SyncRxStartFrm_q <=#Tp SyncRxStartFrm;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    SyncRxStartFrm_q2 <=#Tp 0;
  else
    SyncRxStartFrm_q2 <=#Tp SyncRxStartFrm_q;
end
 
 
assign RxFifoReset = SyncRxStartFrm_q & ~SyncRxStartFrm_q2;
 
 
eth_fifo #(`ETH_RX_FIFO_DATA_WIDTH, `ETH_RX_FIFO_DEPTH, `ETH_RX_FIFO_CNT_WIDTH)
rx_fifo (.data_in(RxDataLatched2),                      .data_out(m_wb_dat_o), 
         .clk(WB_CLK_I),                                .reset(Reset), 
         .write(WriteRxDataToFifo_wb & ~RxBufferFull),  .read(MasterWbRX & m_wb_ack_i), 
         .clear(RxFifoReset),                           .full(RxBufferFull), 
         .almost_full(),                                .almost_empty(RxBufferAlmostEmpty), 
         .empty(RxBufferEmpty),                         .cnt(rxfifo_cnt)
        );
 
assign WriteRxDataToMemory = ~RxBufferEmpty;
 
 
 
// Generation of the end-of-frame signal
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    ShiftEnded_rck <=#Tp 1'b0;
  else
  if(~RxAbort & SetWriteRxDataToFifo & StartShiftWillEnd)
    ShiftEnded_rck <=#Tp 1'b1;
  else
  if(RxAbort | ShiftEndedSync_c1 & ShiftEndedSync_c2)
    ShiftEnded_rck <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ShiftEndedSync1 <=#Tp 1'b0;
  else
    ShiftEndedSync1 <=#Tp ShiftEnded_rck;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ShiftEndedSync2 <=#Tp 1'b0;
  else
    ShiftEndedSync2 <=#Tp ShiftEndedSync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ShiftEndedSync3 <=#Tp 1'b0;
  else
  if(ShiftEndedSync1 & ~ShiftEndedSync2)
    ShiftEndedSync3 <=#Tp 1'b1;
  else
  if(ShiftEnded)
    ShiftEndedSync3 <=#Tp 1'b0;
end
 
// Generation of the end-of-frame signal
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    ShiftEnded <=#Tp 1'b0;
  else
  if(ShiftEndedSync3 & MasterWbRX & m_wb_ack_i & RxBufferAlmostEmpty & ~ShiftEnded)
    ShiftEnded <=#Tp 1'b1;
  else
  if(RxStatusWrite)
    ShiftEnded <=#Tp 1'b0;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    ShiftEndedSync_c1 <=#Tp 1'b0;
  else
    ShiftEndedSync_c1 <=#Tp ShiftEndedSync2;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    ShiftEndedSync_c2 <=#Tp 1'b0;
  else
    ShiftEndedSync_c2 <=#Tp ShiftEndedSync_c1;
end
 
// Generation of the end-of-frame signal
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxEnableWindow <=#Tp 1'b0;
  else
  if(RxStartFrm)
    RxEnableWindow <=#Tp 1'b1;
  else
  if(RxEndFrm | RxAbort)
    RxEnableWindow <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxAbortSync1 <=#Tp 1'b0;
  else
    RxAbortSync1 <=#Tp RxAbortLatched;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxAbortSync2 <=#Tp 1'b0;
  else
    RxAbortSync2 <=#Tp RxAbortSync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxAbortSync3 <=#Tp 1'b0;
  else
    RxAbortSync3 <=#Tp RxAbortSync2;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxAbortSync4 <=#Tp 1'b0;
  else
    RxAbortSync4 <=#Tp RxAbortSync3;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxAbortSyncb1 <=#Tp 1'b0;
  else
    RxAbortSyncb1 <=#Tp RxAbortSync2;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxAbortSyncb2 <=#Tp 1'b0;
  else
    RxAbortSyncb2 <=#Tp RxAbortSyncb1;
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxAbortLatched <=#Tp 1'b0;
  else
  if(RxAbortSyncb2)
    RxAbortLatched <=#Tp 1'b0;
  else
  if(RxAbort)
    RxAbortLatched <=#Tp 1'b1;
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    LatchedRxLength[15:0] <=#Tp 16'h0;
  else
  if(LoadRxStatus)
    LatchedRxLength[15:0] <=#Tp RxLength[15:0];
end
 
 
assign RxStatusIn = {RxOverrun, InvalidSymbol, DribbleNibble, ReceivedPacketTooBig, ShortFrame, LatchedCrcError, RxLateCollision};
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    RxStatusInLatched <=#Tp 'h0;
  else
  if(LoadRxStatus)
    RxStatusInLatched <=#Tp RxStatusIn;
end
 
 
// Rx overrun
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxOverrun <=#Tp 1'b0;
  else
  if(RxStatusWrite)
    RxOverrun <=#Tp 1'b0;
  else
  if(RxBufferFull & WriteRxDataToFifo_wb)
    RxOverrun <=#Tp 1'b1;
end
 
 
 
wire TxError;
assign TxError = TxUnderRun | RetryLimit | LateCollLatched | CarrierSenseLost;
 
wire RxError;
assign RxError = |RxStatusInLatched[6:0];
 
// Tx Done Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxB_IRQ <=#Tp 1'b0;
  else
  if(TxStatusWrite & TxIRQEn)
    TxB_IRQ <=#Tp ~TxError;
  else
    TxB_IRQ <=#Tp 1'b0;
end
 
 
// Tx Error Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    TxE_IRQ <=#Tp 1'b0;
  else
  if(TxStatusWrite & TxIRQEn)
    TxE_IRQ <=#Tp TxError;
  else
    TxE_IRQ <=#Tp 1'b0;
end
 
 
// Rx Done Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxB_IRQ <=#Tp 1'b0;
  else
  if(RxStatusWrite & RxIRQEn)
    RxB_IRQ <=#Tp ReceivedPacketGood & ~RxError;
  else
    RxB_IRQ <=#Tp 1'b0;
end
 
 
// Rx Error Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
  if(Reset)
    RxE_IRQ <=#Tp 1'b0;
  else
  if(RxStatusWrite & RxIRQEn)
    RxE_IRQ <=#Tp RxError;
  else
    RxE_IRQ <=#Tp 1'b0;
end
 
 
// Busy Interrupt
 
reg Busy_IRQ_rck;
reg Busy_IRQ_sync1;
reg Busy_IRQ_sync2;
reg Busy_IRQ_sync3;
reg Busy_IRQ_syncb1;
reg Busy_IRQ_syncb2;
 
 
always @ (posedge MRxClk or posedge Reset)
begin
  if(Reset)
    Busy_IRQ_rck <=#Tp 1'b0;
  else
  if(RxValid & RxStartFrm & ~RxReady)
    Busy_IRQ_rck <=#Tp 1'b1;
  else
  if(Busy_IRQ_syncb2)
    Busy_IRQ_rck <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I)
begin
    Busy_IRQ_sync1 <=#Tp Busy_IRQ_rck;
    Busy_IRQ_sync2 <=#Tp Busy_IRQ_sync1;
    Busy_IRQ_sync3 <=#Tp Busy_IRQ_sync2;
end
 
always @ (posedge MRxClk)
begin
    Busy_IRQ_syncb1 <=#Tp Busy_IRQ_sync2;
    Busy_IRQ_syncb2 <=#Tp Busy_IRQ_syncb1;
end
 
assign Busy_IRQ = Busy_IRQ_sync2 & ~Busy_IRQ_sync3;
 
 
 
// TX
// bit 15 ready
// bit 14 interrupt
// bit 13 wrap
// bit 12 pad
// bit 11 crc
// bit 10 last
// bit 9  pause request (control frame)
// bit 8  TxUnderRun          
// bit 7-4 RetryCntLatched    
// bit 3  retransmittion limit
// bit 2  LateCollLatched        
// bit 1  DeferLatched        
// bit 0  CarrierSenseLost    
 
 
// RX
// bit 15 od rx je empty
// bit 14 od rx je interrupt
// bit 13 od rx je wrap
// bit 12 od rx je reserved
// bit 11 od rx je reserved
// bit 10 od rx je reserved
// bit 9  od rx je reserved
// bit 8  od rx je reserved
// bit 7  od rx je Miss
// bit 6  od rx je RxOverrun
// bit 5  od rx je InvalidSymbol
// bit 4  od rx je DribbleNibble
// bit 3  od rx je ReceivedPacketTooBig
// bit 2  od rx je ShortFrame
// bit 1  od rx je LatchedCrcError
// bit 0  od rx je RxLateCollision
 
 
endmodule
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.