URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [bintools/] [disasm1.cpp] - Rev 98
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************** disasm1.cpp ******************************** * Author: Agner Fog * Date created: 2017-04-26 * Last modified: 2021-03-30 * Version: 1.11 * Project: Binary tools for ForwardCom instruction set * Module: disassem.h * Description: Disassembler * Disassembler for ForwardCom * * Copyright 2007-2021 GNU General Public License http://www.gnu.org/licenses *****************************************************************************/ #include "stdafx.h" uint64_t interpretTemplateVariants(const char * s) { // Interpret template variants in instruction record // The return value is a combination of bits for each variant option // These bits are defined as constants VARIANT_D0, etc., in disassem.h uint64_t v = 0; for (int i = 0; i < 8; i++) { // Loop through string char c = toupper(s[i]), d = toupper(s[i+1]); switch (c) { case 0: return v; // End of string case 'D': if (d == '0') v |= VARIANT_D0; // D0 if (d == '1') v |= VARIANT_D1; // D1 if (d == '2') v |= VARIANT_D2; // D2 if (d == '3') v |= VARIANT_D3; // D3 continue; case 'F': if (d == '0') v |= VARIANT_F0; // F0 if (d == '1') v |= VARIANT_F1; // F1 continue; case 'M': if (d == '0') v |= VARIANT_M0; // M0 //if (d == '1') v |= VARIANT_M1; // M1. No longer used continue; case 'R': if (d == '0') v |= VARIANT_R0; // R0 if (d == '1') v |= VARIANT_R1; // R1 if (d == '2') v |= VARIANT_R2; // R2 if (d == '3') v |= VARIANT_R3; // R3 if (d == 'L') v |= VARIANT_RL; // RL i++; continue; case 'I': if (d == '2') v |= VARIANT_I2; // I2 continue; case 'O': if (d > '0' && d < '7') v |= (d - '0') << 24; // O1 - O6 continue; case 'U': if (d == '0') v |= VARIANT_U0; // U0 if (d == '3') v |= VARIANT_U3; // U3 continue; case 'H': if (d == '0') v |= VARIANT_H0; // H0 continue; case 'X': v |= uint64_t(((d-'0') & 0xF) | 0x10) << 32; // X0 - X9 continue; case 'Y': v |= uint64_t(((d-'0') & 0xF) | 0x20) << 32; // Y0 - Y9 continue; } } return v; } void CDisassembler::sortSymbolsAndRelocations() { // Sort symbols by address. This is useful when symbol labels are written out uint32_t i; // loop counter // The values of st_reguse1 and st_reguse2 are no longer needed after these values have been written out. // Save old index in st_reguse1. // Set st_reguse2 to zero, it is used later for data type for (i = 0; i < symbols.numEntries(); i++) { symbols[i].st_reguse1 = i; symbols[i].st_reguse2 = 0; // symbols are grouped by section in object files, by base pointer in executable files if (isExecutable) symbolExeAddress(symbols[i]); } // Sort symbols by address symbols.sort(); // Add dummy empty symbol number 0 ElfFwcSym nulsymbol = {0,0,0,0,0,0,0,0,0}; symbols.addUnique(nulsymbol); // Update all relocations to the new symbol indexes // Translate old to new symbol index in all relocation records // Allocate array for translating old to new symbol index CDynamicArray<uint32_t> old2newSymbolIndex; old2newSymbolIndex.setNum(symbols.numEntries()); // Make translation table for (i = 0; i < symbols.numEntries(); i++) { uint32_t oldindex = symbols[i].st_reguse1; if (oldindex < symbols.numEntries()) { old2newSymbolIndex[oldindex] = i; } } // Translate all symbol indices in relocation records for (i = 0; i < relocations.numEntries(); i++) { if (relocations[i].r_sym < old2newSymbolIndex.numEntries()) { relocations[i].r_sym = old2newSymbolIndex[relocations[i].r_sym]; } else relocations[i].r_sym = 0; // index out of range! if ((relocations[i].r_type & R_FORW_RELTYPEMASK) == R_FORW_REFP) { // relocation record has an additional reference point // bit 30 indicates relocation used OK uint32_t refsym = relocations[i].r_refsym & ~0x40000000; if (refsym < old2newSymbolIndex.numEntries()) { relocations[i].r_refsym = old2newSymbolIndex[refsym] | (relocations[i].r_refsym & 0x40000000); } else relocations[i].r_refsym = 0; // index out of range } } // Sort relocations by address relocations.sort(); } // Translate symbol address from section:offset to pointerbase:address void CDisassembler::symbolExeAddress(ElfFwcSym & sym) { // use this translation only when disassembling executable files if (!isExecutable) return; // section uint32_t sec = sym.st_section; if (sec && sec < sectionHeaders.numEntries()) { uint32_t flags = (uint32_t)sectionHeaders[sec].sh_flags; // get base pointer switch (flags & SHF_BASEPOINTER) { case SHF_IP: sym.st_section = 1; break; case SHF_DATAP: sym.st_section = 2; break; case SHF_THREADP: sym.st_section = 3; break; default: sym.st_section = 0; break; } sym.st_value += sectionHeaders[sec].sh_addr; } } // Join the tables: symbols and newSymbols void CDisassembler::joinSymbolTables() { /* There are two symbol tables: 'symbols' and 'newSymbols'. 'symbols' contains the symbols that were in the original file. This table is sorted by address in sortSymbolsAndRelocations() in order to make it easy to find a symbol at a given address. 'newSymbols' contains new symbols that were created during pass 1. It is not sorted. The reason why we have two symbol tables is that the symbol indexes would change if we add to the 'symbols' table during pass 1 and keep it sorted. We need to have consistent indexes during pass 1 in order to access symbols by their index. Likewise, 'newSymbols' is not sorted because indexes would change when new symbols are added to it. 'newSymbols' may contain dublets because it is not sorted so dublets are not detected when new symbols are added. 'joinSymbolTables()' is called after pass 1 when we are finished making new symbols. This function joins the two tables together, removes any dublets, updates symbol indexes in all relocation records, and tranfers data type information from relocation records to symbol records. */ uint32_t r; // Relocation index uint32_t s; // Symbol index uint32_t newsymi; // Symbol index in newSymbols uint32_t newsymi2; // Index of new symbol after transfer to symbols table uint32_t symTempIndex = symbols.numEntries(); // Temporary index of symbol after transfer // Remember index of each symbol before adding new symbols and reordering for (s = 0; s < symbols.numEntries(); s++) { symbols[s].st_reguse1 = s; } // Loop through relocations to find references to new symbols for (r = 0; r < relocations.numEntries(); r++) { if (relocations[r].r_sym & 0x80000000) { // Refers to newSymbols table newsymi = relocations[r].r_sym & ~0x80000000; if (newsymi < newSymbols.numEntries()) { // Put symbol into old table if no equivalent symbol exists here newsymi2 = symbols.addUnique(newSymbols[newsymi]); // Give it a temporary index if it doesn't have one if (symbols[newsymi2].st_reguse1 == 0) symbols[newsymi2].st_reguse1 = symTempIndex++; // update reference in relocation record to temporary index relocations[r].r_sym = symbols[newsymi2].st_reguse1; } } // Do the same with any reference point if ((relocations[r].r_type & R_FORW_RELTYPEMASK) == R_FORW_REFP && relocations[r].r_refsym & 0x80000000) { newsymi = relocations[r].r_refsym & ~0xC0000000; if (newsymi < newSymbols.numEntries()) { // Put symbol into old table if no equivalent symbol exists here newsymi2 = symbols.addUnique(newSymbols[newsymi]); // Give it a temporary index if it doesn't have one if (symbols[newsymi2].st_reguse1 == 0) symbols[newsymi2].st_reguse1 = symTempIndex++; // update reference in relocation record to temporary index relocations[r].r_refsym = symbols[newsymi2].st_reguse1 | (relocations[r].r_refsym & 0x40000000); } } } // Make symbol index translation table CDynamicArray<uint32_t> old2newSymbolIndex; old2newSymbolIndex.setNum(symbols.numEntries()); for (s = 0; s < symbols.numEntries(); s++) { uint32_t oldsymi = symbols[s].st_reguse1; if (oldsymi < old2newSymbolIndex.numEntries()) { old2newSymbolIndex[oldsymi] = s; } } // Update indexes in relocation records for (r = 0; r < relocations.numEntries(); r++) { if (relocations[r].r_sym < old2newSymbolIndex.numEntries()) { // Refers to newSymbols table relocations[r].r_sym = old2newSymbolIndex[relocations[r].r_sym]; // Give the symbol a data type from relocation record if it doesn't have one if (symbols[relocations[r].r_sym].st_reguse2 == 0) { symbols[relocations[r].r_sym].st_reguse2 = relocations[r].r_type >> 8; } } // Do the same with any reference point uint32_t refsym = relocations[r].r_refsym & ~0xC0000000; if ((relocations[r].r_type & R_FORW_RELTYPEMASK) == R_FORW_REFP && refsym < old2newSymbolIndex.numEntries()) { relocations[r].r_refsym = old2newSymbolIndex[refsym] | (relocations[r].r_refsym & 0x40000000); } } } void CDisassembler::assignSymbolNames() { // Assign names to symbols that do not have a name uint32_t i; // New symbol index uint32_t numDigits; // Number of digits in new symbol names char name[64]; // sectionBuffer for making symbol name static char format[64]; uint32_t unnamedNum = 0; // Number of unnamed symbols //uint32_t addMoreSymbols = 0; // More symbols need to be added // Find necessary number of digits numDigits = 3; i = symbols.numEntries(); while (i >= 1000) { i /= 10; numDigits++; } // format string for symbol names sprintf(format, "%s%c0%i%c", "@_", '%', numDigits, 'i'); // Loop through symbols for (i = 1; i < symbols.numEntries(); i++) { if (symbols[i].st_name == 0 ) { // Symbol has no name. Make one sprintf(name, format, ++unnamedNum); // Store new name symbols[i].st_name = stringBuffer.pushString(name); } } #if 0 //!! // For debugging: list all symbols printf("\n\nSymbols:"); for (i = 0; i < symbols.numEntries(); i++) { printf("\n%3X %3X %s sect %i offset %X type %X size %i Scope %i", i, symbols[i].st_name, stringBuffer.buf() + symbols[i].st_name, symbols[i].st_section, (uint32_t)symbols[i].st_value, symbols[i].st_type, (uint32_t)symbols[i].st_unitsize, symbols[i].st_other); if (symbols[i].st_reguse2) printf(" Type %X", symbols[i].st_reguse2); } #endif #if 0 // For debugging: list all relocations printf("\n\nRelocations:"); for (uint32_t i = 0; i < relocations.numEntries(); i++) { printf("\nsect %i, os %X, type %X, sym %i, add %X, refsym %X", (uint32_t)(relocations[i].r_section), (uint32_t)relocations[i].r_offset, relocations[i].r_type, relocations[i].r_sym, relocations[i].r_addend, relocations[i].r_refsym); } #endif } /************************** class CDisassembler ***************************** Members of class CDisassembler Members that relate to file output are in disasm2.cpp ******************************************************************************/ CDisassembler::CDisassembler() { // Constructor. Initialize variables pass = 0; nextSymbol = 0; currentFunction = 0; currentFunctionEnd = 0; debugMode = 0; outputFile = cmd.outputFile; checkFormatListIntegrity(); }; void CDisassembler::initializeInstructionList() { // Read and initialize instruction list and sort it by category, format, and op1 CCSVFile instructionListFile; instructionListFile.read(cmd.getFilename(cmd.instructionListFile), CMDL_FILE_SEARCH_PATH); // Filename of list of instructions instructionListFile.parse(); // Read and interpret instruction list file instructionlist << instructionListFile.instructionlist; // Transfer instruction list to my own container instructionlist.sort(); // Sort list, using sort order defined by SInstruction2 } // Read instruction list, split ELF file into components void CDisassembler::getComponents1() { // Check code integrity checkFormatListIntegrity(); // Read instruction list initializeInstructionList(); // Split ELF file into containers split(); } // Read instruction list, get ELF components for assembler output listing void CDisassembler::getComponents2(CELF const & assembler, CMemoryBuffer const & instructList) { // This function replaces getComponents1() when making an output listing for the assembler // list file name from command line // copy containers from assembler outFile sectionHeaders.copy(assembler.getSectionHeaders()); symbols.copy(assembler.getSymbols()); relocations.copy(assembler.getRelocations()); stringBuffer.copy(assembler.getStringBuffer()); dataBuffer.copy(assembler.getDataBuffer()); // Copy instruction list from assembler to avoid reading the csv file again. // Use the unsorted list to make sure the preferred name for an instuction comes first, in case there are alias names instructionlist.copy(instructList); instructionlist.sort(); // Sort list, using the sort order needed by the disassembler as defined by SInstruction2 } // Do the disassembly void CDisassembler::go() { // set tabulator stops setTabStops(); // write feedback to console feedBackText1(); // is this an executable or object file isExecutable = fileHeader.e_type == ET_EXEC; // Begin writing output file writeFileBegin(); // Sort symbols by address sortSymbolsAndRelocations(); // pass 1: Find symbols types and unnamed symbols pass = 1; pass1(); if (pass & 0x10) { // Repetition of pass 1 requested pass = 2; pass1(); } // Join the tables: symbols and newSymbols; joinSymbolTables(); // put names on unnamed symbols assignSymbolNames(); // pass 2: Write all sections to output file pass = 0x100; pass2(); // Check for illegal entries in symbol table and relocations table finalErrorCheck(); // Finish writing output file writeFileEnd(); // write output file if (outputFile && !debugMode) outFile.write(cmd.getFilename(outputFile)); } // write feedback text on stdout void CDisassembler::feedBackText1() { if (cmd.verbose && cmd.job == CMDL_JOB_DIS) { // Tell what we are doing: printf("\nDisassembling %s to %s", cmd.getFilename(cmd.inputFile), cmd.getFilename(outputFile)); } } void CDisassembler::pass1() { /* pass 1: does the following jobs: -------------------------------- * Scans all code sections, instruction by instruction. * Follows all references to data in order to determine data type for each data symbol. * Assigns symbol table entries for all jump and call targets that do not allready have a name. * Identifies and analyzes tables of jump addresses and call addresses, e.g. switch/case tables and virtual function tables. (to do !) * Tries to identify any data in the code section. */ //uint32_t sectionType; // Loop through sections, pass 1 for (section = 1; section < sectionHeaders.numEntries(); section++) { // Get section type //sectionType = sectionHeaders[section].sh_type; codeMode = (sectionHeaders[section].sh_flags & SHF_EXEC) ? 1 : 4; sectionBuffer = dataBuffer.buf() + sectionHeaders[section].sh_offset; sectionEnd = (uint32_t)sectionHeaders[section].sh_size; if (codeMode < 4) { // This is a code section sectionAddress = sectionHeaders[section].sh_addr; if (sectionEnd == 0) continue; iInstr = 0; // Loop through instructions while (iInstr < sectionEnd) { // Check if code not dubious if (codeMode == 1) { parseInstruction(); // Parse instruction updateSymbols(); // Detect symbol types for operands of this instruction updateTracer(); // Trace register values iInstr += instrLength * 4; // Next instruction } else { // iEnd = labelEnd; } } } } } void CDisassembler::pass2() { /* pass 2: does the following jobs: -------------------------------- * Scans through all sections, code and data. * Outputs warnings for suboptimal instruction codes and error messages for erroneous code and erroneous relocations. * Outputs disassembly of all instructions, operands and relocations, followed by the binary code listing as comment. * Outputs disassembly of all data, followed by alternative representations as comment. */ //uint32_t sectionType; // Loop through sections, pass 2 for (section = 1; section < sectionHeaders.numEntries(); section++) { // Get section type //sectionType = sectionHeaders[section].sh_type; codeMode = (sectionHeaders[section].sh_flags & SHF_EXEC) ? 1 : 4; // Initialize code parser sectionBuffer = dataBuffer.buf() + sectionHeaders[section].sh_offset; sectionEnd = (uint32_t)sectionHeaders[section].sh_size; sectionAddress = sectionHeaders[section].sh_addr; writeSectionBegin(); // Write segment directive if (codeMode < 4) { // This is a code section if (sectionEnd == 0) continue; iInstr = 0; // Loop through instructions while (iInstr < sectionEnd) { if (debugMode) { // save cross reference SLineRef xref = { iInstr + sectionAddress, 1, outFile.dataSize() }; lineList.push(xref); writeAddress(); } writeLabels(); // Find any label here // Check if code not dubious if (codeMode == 1) { parseInstruction(); // Parse instruction writeInstruction(); // Write instruction iInstr += instrLength * 4; // Next instruction } else { // This is data Skip to next label } } writeSectionEnd(); // Write segment directive } else { // This is a data section pInstr = 0; iRecord = 0; fInstr = 0; // Set invalid pointers to zero operandType = 2; // Default data type is int32 instrLength = 4; // Default data size is 4 bytes iInstr = 0; // Instruction position nextSymbol = 0; writeDataItems(); // Loop through data. Write data writeSectionEnd(); // Write segment directive } } } /******************** Explanation of tracer: *************************** This is a machine which can trace the contents of each register in certain situations. It is currently used for recognizing pointers to jump tables in order to identify jump tables (to do!) */ void CDisassembler::updateTracer() { // Trace register values. See explanation above } void CDisassembler::updateSymbols() { // Find unnamed symbols, determine symbol types, // update symbol list, call checkJumpTarget if jump/call. // This function is called during pass 1 for every instruction uint32_t relSource = 0; // Position of relocated field if (fInstr->category == 4 && fInstr->jumpSize) { // Self-relative jump instruction. Check OPJ // uint32_t opj = (instrLength == 1) ? pInstr->a.op1 : pInstr->b[0]; // Jump instruction opcode // Check if there is a relocation here relSource = iInstr + (fInstr->jumpPos); // Position of relocated field ElfFwcReloc rel; rel.r_offset = relSource; rel.r_section = section; rel.r_addend = 0; if (relocations.findFirst(rel) < 0) { // There is no relocation. Target must be in the same section. Find target int32_t offset = 0; switch (fInstr->jumpSize) { // Read offset of correct size case 1: // 8 bit offset = *(int8_t*)(sectionBuffer + relSource); rel.r_type = R_FORW_8 | 0x80000000; // add 0x80000000 to remember that this is not a real relocation break; case 2: // 16 bit offset = *(int16_t*)(sectionBuffer + relSource); rel.r_type = R_FORW_16 | 0x80000000; break; case 3: // 24 bit. Sign extend to 32 bits offset = *(int32_t*)(sectionBuffer + relSource) << 8 >> 8; rel.r_type = R_FORW_24 | 0x80000000; break; case 4: // 32 bit offset = *(int32_t*)(sectionBuffer + relSource); rel.r_type = R_FORW_32 | 0x80000000; break; } // Scale offset by 4 and add offset to end of instruction int32_t target = iInstr + instrLength * 4 + offset * 4; // Add a symbol at target address if none exists ElfFwcSym sym; zeroAllMembers(sym); sym.st_bind = STB_LOCAL; sym.st_other = STV_EXEC; sym.st_section = section; sym.st_value = (uint64_t)(int64_t)target; symbolExeAddress(sym); int32_t symi = symbols.findFirst(sym); if (symi < 0) { symi = newSymbols.push(sym); // Add symbol to new symbols table symi |= 0x80000000; // Upper bit means index refers to newSymbols } // Add a dummy relocation record for this symbol. // This relocation does not need type, scale, or addend because the only purpose is to identify the symbol. // It does have a size, though, because this is checked later in writeRelocationTarget() rel.r_sym = (uint32_t)symi; relocations.addUnique(rel); } } // Check if instruction has a memory reference relative to IP, DATAP, or THREADP uint32_t basePointer = 0; if (fInstr->mem & 2) basePointer = pInstr->a.rs; relSource = iInstr + fInstr->addrPos; // Position of relocated field if (fInstr->addrSize > 1 && basePointer >= 28 && basePointer <= 30 && !(fInstr->mem & 0x20)) { // Memory operand is relative to THREADP, DATAP or IP // Check if there is a relocation here uint32_t relpos = iInstr + fInstr->addrPos; ElfFwcReloc rel; rel.r_offset = relpos; rel.r_section = section; rel.r_type = (operandType | 0x80) << 24; uint32_t nrel, irel = 0; nrel = relocations.findAll(&irel, rel); if (nrel > 1) writeWarning("Overlapping relocations here"); if (nrel) { // Relocation found. Put the data type into the relocation record. // The data type will later be transferred to the symbol record in joinSymbolTables() if (!(relocations[irel].r_type & 0x80000000)) { // Save target data type in upper 8 bits of r_type relocations[irel].r_type = (relocations[irel].r_type & 0x00FFFFFF) | (operandType /*| 0x80*/) << 24; } // Check if the target is a section + offset uint32_t symi = relocations[irel].r_sym; if (symi < symbols.numEntries() && symbols[symi].st_type == STT_SECTION && relocations[irel].r_addend > 0) { // Add a new symbol at this address ElfFwcSym sym; zeroAllMembers(sym); sym.st_bind = STB_LOCAL; sym.st_other = STT_OBJECT; sym.st_section = symbols[symi].st_section; sym.st_value = symbols[symi].st_value + (int64_t)relocations[irel].r_addend; symbolExeAddress(sym); uint32_t symi2 = newSymbols.push(sym); relocations[irel].r_sym = symi2 | 0x80000000; // Upper bit means index refers to newSymbols relocations[irel].r_addend = 0; } } else if (basePointer == REG_IP >> 16 && fInstr->addrSize > 1 && !(fInstr->mem & 0x20)) { // No relocation found. Insert new relocation and new symbol // This fits the address instruction with a local IP target. // to do: Make it work for other cases // Add a symbol at target address if none exists int32_t target = iInstr + instrLength * 4; switch (fInstr->addrSize) { // Read offset of correct size /* case 1: // 8 bit. cannot use IP target += *(int8_t*)(sectionBuffer + relSource) << (operandType & 7); rel.r_type = R_FORW_8 | R_FORW_SELFREL | 0x80000000; break;*/ case 2: // 16 bit target += *(int16_t*)(sectionBuffer + relSource); rel.r_type = R_FORW_16 | R_FORW_SELFREL | 0x80000000; break; case 4: // 32 bit target += *(int32_t*)(sectionBuffer + relSource); rel.r_type = R_FORW_32 | R_FORW_SELFREL | 0x80000000; break; } ElfFwcSym sym; zeroAllMembers(sym); sym.st_bind = STB_LOCAL; sym.st_other = STV_EXEC; sym.st_section = section; sym.st_value = (uint64_t)(int64_t)target; symbolExeAddress(sym); int32_t symi = symbols.findFirst(sym); if (symi < 0) { symi = newSymbols.push(sym); // Add symbol to new symbols table symi |= 0x80000000; // Upper bit means index refers to newSymbols } // Add a dummy relocation record for this symbol. // This relocation does not need type, scale, or addend because the only purpose is to identify the symbol. // It does have a size, though, because this is checked later in writeRelocationTarget() rel.r_offset = (uint64_t)iInstr + fInstr->addrPos; // Position of relocated field rel.r_section = section; rel.r_addend = -4; rel.r_sym = (uint32_t)symi; relocations.addUnique(rel); } else if ((basePointer == REG_DATAP >> 16 || basePointer == REG_THREADP >> 16) && fInstr->addrSize > 1 && !(fInstr->mem & 0x20) && isExecutable) { // No relocation found. Insert new relocation and new symbol. datap or threadp based // Add a symbol at target address if none exists int64_t target = fileHeader.e_datap_base; rel.r_type = R_FORW_DATAP; uint32_t dom = 2; uint32_t st_other = STV_DATAP; if (basePointer == REG_THREADP >> 16) { target = fileHeader.e_threadp_base; rel.r_type = R_FORW_THREADP; dom = 3; st_other = STV_THREADP; } switch (fInstr->addrSize) { // Read offset of correct size case 1: // 8 bit target += *(int8_t*)(sectionBuffer + relSource); rel.r_type |= R_FORW_8 | 0x80000000; break; case 2: // 16 bit target += *(int16_t*)(sectionBuffer + relSource); rel.r_type |= R_FORW_16 | 0x80000000; break; case 4: // 32 bit target += *(int32_t*)(sectionBuffer + relSource); rel.r_type |= R_FORW_32 | 0x80000000; break; } ElfFwcSym sym; zeroAllMembers(sym); sym.st_type = STT_OBJECT; sym.st_bind = STB_WEAK; sym.st_other = st_other; sym.st_section = dom; sym.st_value = (uint64_t)target; int32_t symi = symbols.findFirst(sym); if (symi < 0) { symi = newSymbols.push(sym); // Add symbol to new symbols table symi |= 0x80000000; // Upper bit means index refers to newSymbols } // Add a dummy relocation record for this symbol. // This relocation does not need type, scale, or addend because the only purpose is to identify the symbol. // It does have a size, though, because this is checked later in writeRelocationTarget() rel.r_offset = iInstr + fInstr->addrPos; // Position of relocated field rel.r_section = section; rel.r_addend = 0; rel.r_sym = (uint32_t)symi; relocations.addUnique(rel); } } } void CDisassembler::followJumpTable(uint32_t symi, uint32_t RelType) { // Check jump/call table and its targets // to do ! } void CDisassembler::markCodeAsDubious() { // Remember that this may be data in a code segment } // List of instructionlengths, used in parseInstruction static const uint8_t lengthList[8] = {1,1,1,1,2,2,3,4}; void CDisassembler::parseInstruction() { // Parse one opcode at position iInstr instructionWarning = 0; // Get instruction pInstr = (STemplate*)(sectionBuffer + iInstr); // Get op1 uint8_t op = pInstr->a.op1; // Get format format = (pInstr->a.il << 8) + (pInstr->a.mode << 4); // Construct format = (il,mode,submode) // Get submode switch (format) { case 0x200: case 0x220: case 0x300: case 0x320: // submode in mode2 format += pInstr->a.mode2; break; case 0x250: case 0x310: // Submode for jump instructions etc. if (op < 8) { format += op; op = pInstr->b[0] & 0x3F; } else { format += 8; } break; } // Look up format details static SFormat form; fInstr = &formatList[lookupFormat(pInstr->q)]; // lookupFormat is in emulator2.cpp format = fInstr->format2; // Include subformat depending on op1 if (fInstr->tmplate == 0xE && pInstr->a.op2 && !(fInstr->imm2 & 0x100)) { // Single format instruction if op2 != 0 and op2 not used as immediate operand form = *fInstr; form.category = 1; fInstr = &form; } // Get operand type if (fInstr->ot == 0) { // Operand type determined by OT field operandType = pInstr->a.ot; // Operand type if (!(pInstr->a.mode & 6) && !(fInstr->vect & 0x11)) { // Check use of M bit format |= (operandType & 4) << 5; // Add M bit to format operandType &= ~4; // Remove M bit from operand type } } else if ((fInstr->ot & 0xF0) == 0x10) { // Operand type fixed. Value in formatList operandType = fInstr->ot & 7; } else if (fInstr->ot == 0x32) { // int32 for even op1, int64 for odd op1 operandType = 2 + (pInstr->a.op1 & 1); } else if (fInstr->ot == 0x35) { // Float for even op1, double for odd op1 operandType = 5 + (pInstr->a.op1 & 1); } else { operandType = 0; // Error in formatList. Should not occur } // Find instruction length instrLength = lengthList[pInstr->i[0] >> 29]; // Length up to 3 determined by il. Length 4 by upper bit of mode // Find any reasons for warnings //findWarnings(p); // Find any errors //findErrors(p); } /***************************************************************************** Functions for reading instruction list from comma-separated file, sorting, and searching *****************************************************************************/ // Members of class CCSVFile for reading comma-separated file // Read and parse file void CCSVFile::parse() { // Sorry for the ugly code! const char * fields[numInstructionColumns]; // pointer to each field in line int fi = 0; // field index uint32_t i, j; // loop counters char * s, * t = 0; // point to begin and end of field char c; char separator = 0; // separator character, preferably comma int line = 1; // line number SInstruction record; // record constructed from line zeroAllMembers(fields); if (data_size==0) read(cmd.getFilename(cmd.instructionListFile), 2); // read file if it has not already been read if (err.number()) return; // loop through file for (i = 0; i < data_size; i++) { // find begin of field, quoted or not s = (char*)buf() + i; c = *s; if (c == ' ') continue; // skip leading spaces if (c == '"' || c == 0x27) { // single or double quote fields[fi] = s+1; // begin of quoted string for (i++; i < data_size; i++) { // search for matching end quote t = (char*)buf() + i; if (*t == c) { *t = 0; i++; // End quote found. Put end of string here goto SEARCHFORCOMMA; } if (*t == '\n') break; // end of line found before end quote } // end quote not found err.submit(ERR_INSTRUCTION_LIST_QUOTE, line); return; } if (c == '\r' || c == '\n') goto NEXTLINE; // end of line found if (c == separator || c == ',') { // empty field fields[fi] = ""; goto SEARCHFORCOMMA; } // Anything else: begin of unquoted string fields[fi] = s; // search for end of field SEARCHFORCOMMA: for (; i < data_size; i++) { // search for comma after field t = (char*)buf() + i; if (*t == separator || (separator == 0 && (*t == ',' || *t == ';' || *t == '\t'))) { separator = *t; // separator set to the first comma, semicolon or tabulator *t = 0; // put end of string here goto NEXTFIELD; } if (*t == '\n') break; // end of line found before comma } fi++; goto NEXTLINE; NEXTFIELD: // next field fi++; if (fi != numInstructionColumns) continue; // end of last field NEXTLINE: for (; i < data_size; i++) { // search for end. of line t = (char*)buf() + i; // accept newlines as "\r", "\n", or "\r\n" if (*t == '\r' || *t == '\n') break; } if (*t == '\r' && *(t+1) == '\n') i++; // end of line is two characters *t = 0; // terminate line // make any remaining fields blank for (; fi < numInstructionColumns; fi++) { fields[fi] = ""; } // Begin next line line++; fi = 0; // Check if blank or heading record if (fields[2][0] < '0' || fields[2][0] > '9') continue; // save values to record // most fields are decimal or hexadecimal numbers record.id = (uint32_t)interpretNumber(fields[1]); record.category = (uint32_t)interpretNumber(fields[2]); record.format = interpretNumber(fields[3]); record.templt = (uint32_t)interpretNumber(fields[4]); record.sourceoperands = (uint32_t)interpretNumber(fields[6]); record.op1 = (uint32_t)interpretNumber(fields[7]); record.op2 = (uint32_t)interpretNumber(fields[8]); record.optypesgp = (uint32_t)interpretNumber(fields[9]); record.optypesscalar = (uint32_t)interpretNumber(fields[10]); record.optypesvector = (uint32_t)interpretNumber(fields[11]); // interpret immediate operand if (tolower(fields[12][0]) == 'i') { // implicit immediate operand. value is prefixed by 'i'. Get value record.implicit_imm = (uint32_t)interpretNumber(fields[12]+1); record.opimmediate = OPI_IMPLICIT; } else { // immediate operand type record.opimmediate = (uint8_t)interpretNumber(fields[12]); } // interpret template variant record.variant = interpretTemplateVariants(fields[5]); // copy instruction name for (j = 0; j < sizeof(record.name)-1; j++) { c = fields[0][j]; if (c == 0) break; record.name[j] = tolower(c); } record.name[j] = 0; // add record to list instructionlist.push(record); } } // Interpret number in instruction list uint64_t CCSVFile::interpretNumber(const char * text) { uint32_t error = 0; uint64_t result = uint64_t(::interpretNumber(text, 64, &error)); if (error) err.submit(ERR_INSTRUCTION_LIST_SYNTAX, text); return result; } // Interpret a string with a decimal, binary, octal, or hexadecimal number int64_t interpretNumber(const char * text, uint32_t maxLength, uint32_t * error) { int state = 0; // 0: begin, 1: after 0, // 2: after 0x, 3: after 0b, 4: after 0o // 5: after decimal digit, 6: trailing space uint64_t number = 0; uint8_t c, clower, digit; bool sign = false; uint32_t i; *error = 0; if (text == 0) { *error = 1; return number; } for (i = 0; i < maxLength; i++) { c = text[i]; // read character clower = c | 0x20; // convert to lower case if (clower == 'x') { if (state != 1) { *error = 1; return 0; } state = 2; } else if (clower == 'o') { if (state != 1) { *error = 1; return 0; } state = 4; } else if (clower == 'b' && state == 1) { state = 3; } else if (c >= '0' && c <= '9') { // digit 0 - 9 digit = c - '0'; switch (state) { case 0: state = (digit == 0) ? 1 : 5; number = digit; break; case 1: state = 5; // continue in case 5: case 5: // decimal number = number * 10 + digit; break; case 2: // hexadecimal number = number * 16 + digit; break; case 3: // binary if (digit > 1) { *error = 1; return 0; } number = number * 2 + digit; break; case 4: // octal if (digit > 7) { *error = 1; return 0; } number = number * 8 + digit; break; default: *error = 1; return 0; } } else if (clower >= 'a' && clower <= 'f') { // hexadecimal digit digit = clower - ('a' - 10); if (state != 2) { *error = 1; return 0; } number = number * 16 + digit; } else if (c == ' ' || c == '+') { // ignore leading or trailing blank or plus if (state > 0) state = 6; } else if (c == '-') { // change sign if (state != 0) { *error = 1; return 0; } sign = ! sign; } else if (c == 0) break; // end of string else if (c == ',') { *error = i | 0x1000; // end with comma. return position in error break; } else { // illegal character *error = 1; return 0; } } if (sign) number = uint64_t(-int64_t(number)); return (int64_t)number; } void CDisassembler::getLineList(CDynamicArray<SLineRef> & list) { // transfer lineList to debugger list << lineList; } void CDisassembler::getOutFile(CTextFileBuffer & buffer) { // transfer outFile to debugger buffer.copy(outFile); }
Go to most recent revision | Compare with Previous | Blame | View Log