URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [bintools/] [disassem.h] - Rev 83
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************** disassem.h ********************************** * Author: Agner Fog * Date created: 2017-04-26 * Last modified: 2021-04-11 * Version: 1.11 * Project: Binary tools for ForwardCom instruction set * Module: disassem.h * Description: * Header file for disassembler * * Copyright 2006-2021 GNU General Public License http://www.gnu.org/licenses *****************************************************************************/ /* Additional information stored in symbol records during disassembly: ElfFwcSym::st_other bit 31 set if symbol has been written out in section listing ElfFwcSym::st_reguse1 old symbol index before sorting and adding more symbols, needs translation to new index in relocation records ElfFwcSym::st_size reference symbol if symbol is a relative pointer, stored in bit 32-63 of st_size ElfFwcSym::st_reguse2 symbol data type: bit 0-2: operand type, bit 3 = 1 0x100 code pointer 0x200 data pointer */ // Universal template for all instruction formats union STemplate { uint64_t q; // First 64 bits struct { uint32_t rt: 5; // Source register RT in formats A and E uint32_t mask: 3; // Mask register in formats A and E uint32_t rs: 5; // Source register RS in formats A, B, and E uint32_t ot: 3; // Operand type and M in formats A, B, and E uint32_t rd: 5; // Destination register RD in formats A, B, C, and E uint32_t op1: 6; // Destination register RD in formats A, B, C, and E uint32_t mode: 3; // Mode in all formats uint32_t il: 2; // Instruction length in all formats uint32_t im2: 16; // IM2 in format E uint32_t im3: 6; // IM3 in format E uint32_t op2: 2; // OP2 in format E uint32_t ru: 5; // Source register RU in format E uint32_t mode2: 3; // Mode2 in format E } a; struct { int32_t im2: 24; // IM2 in format D uint32_t op1: 3; // The remaining part of OP1 in format D uint32_t mode: 3; // Mode in format D uint32_t il: 2; // Instruction length in format D } d; uint8_t b[12]; // IM1 in format B uint16_t s[4]; // IM1+2 in format C uint32_t i[3]; // IM2 and IM3 in format A2, A3, B2, B3 float f[2]; // IM2 as float }; // Record in nested lookup lists for formats. // crit = 0 means that index is an index into the format table // crit > 0 means that index is an offset into the next table. Add something to this offset according to the criterion struct SFormatIndex { uint8_t crit; // Criterion for lookup into next table: 0 = format table. // 1: mode2, 2: op1 / 8, 3: op1 % 8, 4: IM1 % 64 / 8, 5: IM1 % 8, // 6: IM12 == 0xFFFF uint8_t index; // Offset into next table }; // Record in list of formats (formatList) struct SFormat { uint16_t format2; // 0x0XYZ, where X = il, Y = mode, Z = subformat (mode2 or OP1) or variant within format uint8_t category; // Category: 1 = single format, 3 = multi-format, 4 = jump instruction uint8_t tmplate; // Template: 0xA, 0xB, 0xC, 0xD, 0xE. uint8_t opAvail; // Operands available: 1 = immediate, 2 = memory, // 0x10 = RT, 0x20 = RS, 0x40 = RU, 0x80 = RD uint8_t ot; // Operand type. 0: determined by OT field. 0x10 - 0x17: 0-7. // 0x32: int32 for even OP1, int64 for odd OP1 // 0x35: float for even OP1, double for odd OP1 uint8_t jumpSize; // Size of jump offset field (bytes) uint8_t jumpPos; // Position of jump offset field (bytes) uint8_t addrSize; // Size of address offset field (bytes) uint8_t addrPos; // Position of address offset field (bytes) uint8_t immSize; // Size of first immediate operand (bytes) uint8_t immPos; // Position of first immediate operand (bytes) uint16_t imm2; // Size and position of extra immediate operands: // 1 = IM2 in template C, // 2 = IM3 in template E may contain options, // 4 = IM3 is shift count for IM2 if no options, // 8 = IM2 is shift count for IM4, // 0x10 = IM3 in template A3 or B3, // 0x40 = has fixed values // 0x80 = jump OPJ in IM1 // 0x90 = jump OPJ is in high part of IM2 in format A2 // 0xC0 = jump with no OPJ // 0x100 = OP2 is used for immediate operand as extension of IM3 uint8_t vect; // 1 = vector registers used, 2 = vector length in RT, 4 = broadcast length in RT // 0x10 = vector registers used if M bit uint8_t mem; // 1 (unused), 2 = base in RS, 4 = index in RT, // 0x10 = has offset, 0x20 = has limit, uint8_t scale; // 1 = offset is scaled, 2 = index is scaled by OS, 4 = scale factor is -1 uint8_t formatIndex; // Bit index into format in instruction list uint8_t exeTable; // table of function pointers used during emulation }; // tables in emulator2.cpp: extern const SFormat formatList[]; // == FXEND in disasm1.cpp extern uint32_t formatListSize; // size of formatList extern const uint32_t dataSizeTable[8]; // = {1, 2, 4, 8, 16, 4, 8, 16}; extern const uint32_t dataSizeTableMax8[8]; // = {1, 2, 4, 8, 8, 4, 8, 8}; extern const uint32_t dataSizeTableLog[8]; // = {0, 1, 2, 3, 4, 2, 3, 4}; extern const uint32_t dataSizeTableBits[8]; // = {8, 16, 32, 64, 128, 32, 64, 128}; extern const uint64_t dataSizeMask[8]; // = {FF, FFFF, FFFFFFFF, -1, -1, FFFFFFFF, -1, -1}; // Operator for sorting symbols by address. Used by disassembler static inline bool operator < (ElfFwcSym const & a, ElfFwcSym const & b) { if (a.st_section != b.st_section) return a.st_section < b.st_section; return a.st_value < b.st_value; } // Operatur == tells if symbols have same address static inline bool operator == (ElfFwcSym const & a, ElfFwcSym const & b) { return a.st_section == b.st_section && a.st_value == b.st_value; } // Operator for sorting relocations by address. Used by disassembler static inline bool operator < (ElfFwcReloc const & a, ElfFwcReloc const & b) { if (a.r_section < b.r_section) return true; if (a.r_section > b.r_section) return false; return a.r_offset < b.r_offset; } // Look up format in FormatList (this function is in emulator2.cpp) uint32_t lookupFormat(uint64_t instruct); // Check integrity of format lists void checkFormatListIntegrity(); // Interpret template variants in instruction record uint64_t interpretTemplateVariants(const char *); // bits returned by interpretTemplateVariants const int VARIANT_D0 = (1 << 0); // no destination, no operand type const int VARIANT_D1 = (1 << 1); // no destination, but operant type specified const int VARIANT_D2 = (1 << 2); // operant type ignored const int VARIANT_D3 = (1 << 3); // register RD used for other purpose const int VARIANT_M0 = (1 << 4); // memory operand destination //const int VARIANT_M1 = (1 << 5); // IM3 used as extra immediate operand in E formats with a memory operand. obsolote const int VARIANT_R0 = (1 << 8); // destination is general purpose register const int VARIANT_R1B = 9; // bit index to VARIANT_R1 const int VARIANT_R1 = (1 << VARIANT_R1B); // first source operand is general purpose register const int VARIANT_R2 = (1 << (VARIANT_R1B+1)); // second source operand is general purpose register const int VARIANT_R3 = (1 << (VARIANT_R1B+2)); // third source operand is general purpose register const int VARIANT_R123 = (VARIANT_R1|VARIANT_R2|VARIANT_R3); // source operand is general purpose register const int VARIANT_D3R0 = VARIANT_D3 | VARIANT_R0; // RD is general purpose register const int VARIANT_RL = (1 << 12); // RS is a general purpose register specifying length const int VARIANT_F0 = (1 << 14); // can have mask register, but not fallback register const int VARIANT_F1 = (1 << 15); // can have fallback register without mask register const int VARIANT_I2 = (1 << 16); // immediate operand is integer const int VARIANT_U0 = (1 << 18); // integer operands are unsigned const int VARIANT_U3 = (1 << 19); // integer operands are unsigned if bit 3 in IM3 (format 2.4.x, 2.8.x) is set. //const int VARIANT_Kn = (1 << 20); // integer operand is implicit const int VARIANT_On = (7 << 24); // n IM3 bits used for options const int VARIANT_H0 = (1 << 28); // half precision floating point operands const int VARIANT_SPECB = 32; // bit index to special register type const uint64_t VARIANT_SPEC = (uint64_t)0xF << VARIANT_SPECB; // Special register types for operands const uint64_t VARIANT_SPECS = 0x1000000000; // Special register type for source const uint64_t VARIANT_SPECD = 0x2000000000; // Special register type for destination struct SInstruction2; // defined below struct SLineRef; // defined below uint8_t findFallback(SFormat const * fInstr, STemplate const * pInstr, int nOperands); // find fallback register in instruction code // class CDisassembler handles disassembly of ForwardCom ELF file class CDisassembler : public CELF { public: CDisassembler(); // Constructor void getComponents1(); // Read instruction list, split ELF file into components void getComponents2(CELF const & assembler, CMemoryBuffer const & instructList);// Read instruction list, get ELF components for assembler output listing void go(); // Disassemble void getLineList(CDynamicArray<SLineRef> & list); // transfer lineList to debugger void getOutFile(CTextFileBuffer & buffer); // transfer outFile to debugger uint32_t outputFile; // Output file name, as index into cmd.fileNameBuffer uint8_t debugMode; // produce disassembly for emulator/debugger uint8_t asmTab0; // Column for operand type uint8_t asmTab1; // Column for opcode uint8_t asmTab2; // Column for first operand uint8_t asmTab3; // Column for comment protected: uint32_t pass; // Pass number uint32_t codeMode; // 1 = code, 2 = data in code section, 4 = data section uint32_t iInstr; // Position of current instruction relative to section start uint32_t instrLength; // Length of current instruction, in 32-bit words uint32_t operandType; // Operand type of current instruction uint32_t format; // Format of current instruction uint32_t nextSymbol; // Index to next symbol label to write out uint32_t section; // Current section uint32_t sectionEnd; // Size of section uint64_t sectionAddress; // Start address of section uint32_t currentFunction; // Symbol index of current function uint32_t currentFunctionEnd; // Address of end of current function uint32_t instructionWarning; // Warnings and errors for current instruction uint32_t relocation; // relocation index in current instruction + 1 int8_t * sectionBuffer; // Pointer to start of current section uint64_t variant; // Template variant and options STemplate const * pInstr; // Pointer to current instruction code SInstruction2 const * iRecord; // Pointer to instruction table entry SFormat const * fInstr; // Format details of current instruction code CDynamicArray<SInstruction2> instructionlist;// List of instruction set, sorted by category, format, and op1 CDynamicArray<ElfFwcSym> newSymbols; // List of new symbols added during pass 1 CDynamicArray<SLineRef> lineList; // Cross reference of code addresses to lines in outFile (used by debugger) CTextFileBuffer outFile; // Output file bool isExecutable; // Disassembling executable file void feedBackText1(); // Write feedback text on stdout void parseInstruction(); // Parse current instruction //void CheckInstructionErrors(); // Check if instruction is valid void writeInstruction(); // Write current instruction to output file void writeNormalInstruction(); // Write normal instruction to output file void writeJumpInstruction(); // Write jump instruction to output file void writeOperandType(uint32_t ot); // Write operand type void writeMemoryOperand(); // Write memory operand of current instruction void writeImmediateOperand(); // Write immediate operand depending on type in instruction list void writeRegister(uint32_t r, uint32_t ot); // Write name of general purpose or vector register void writeGPRegister(uint32_t r); // Write name of general purpose register void writeVectorRegister(uint32_t v); // Write name of vector register void writeSpecialRegister(uint32_t r, uint32_t type); // Write name of other type of register void pass1(); // Pass 1 of disassembly. Resolves cross references and adds symbol labels void pass2(); // Pass 2 of disassembly. Writes output file void sortSymbolsAndRelocations(); // Sort symbols and relocations by address void symbolExeAddress(ElfFwcSym & sym); // Translate symbol address from section:offset to pointerbase:address void updateSymbols(); // Make missing symbols for jump targets and data references void joinSymbolTables(); // Join the tables: symbols and newSymbols void assignSymbolNames(); // Make names for unnamed symbols void initializeInstructionList(); // Read instruction list from file and sort it void updateTracer(); // Trace registers pointing to jump table (to do) void followJumpTable(uint32_t symi, uint32_t RelType); // Trace targets of jump table (to do) void markCodeAsDubious(); // Mark data in code section void writeFileBegin(); // Write beginning of disassembly file void writeFileEnd(); // Write end of disassembly file void writeSectionBegin(); // Write beginning of section void writeSectionEnd(); // Write end of section void writeCodeComment(); // Write comment after instruction void writeDataItems(); // Write data to disassembly file void writeLabels(); // Find and write any labels at current position void writeRelocationTarget(uint32_t src, uint32_t size); // Write relocation target for this source position void writeJumpTarget(uint32_t src, uint32_t size); // Write jump relocation target for this source position void writeWarning(const char * w); // Write warning message to output file void writeError(const char * w); // Write error message to output file void finalErrorCheck(); // Check for wrong entries in symbol table and relocations table //void checkNamesValid(); // Check for illegal characters in symbols void writeSymbolName(uint32_t symi); // Write name of symbol void writeSectionName(int32_t SegIndex); // Write name of section void writePublicsAndExternals(); // Write list of public and external symbols void writeAddress(); // write code address void setTabStops(); // set tab stops for output }; /***************************************************************************** Structures and classes for reading instruction list from comma-separated file, sorting, and searching *****************************************************************************/ const int maxINameLen = 31; // Maximum length of instruction name const int numInstructionColumns = 13; // Number of columns in csv file to read. Additional columns are ignored // Record structure for instruction definition struct SInstruction { uint64_t format; // Instruction format for single format instructions, // or one bit for each allowed format for multi format instructions. See table in manual. uint64_t variant; // Template variant uint32_t id; // Instruction id number uint8_t category; // 1: single format, 3: multiformat, 4: jump uint8_t templt; // Format template. 0xA - 0xE, 0 for multiple templates uint8_t sourceoperands; // Number of source operands, including register, memory and immediate operands uint8_t op1; // Operation code uint8_t op2; // Additional operation code uint8_t opimmediate; // Type of immediate operand for single-format instructions uint32_t implicit_imm; // Value of implicit immediate operand uint32_t optypesgp; // Operand types supported for general purpose registers uint32_t optypesscalar; // Operand types supported for scalars in vector registers uint32_t optypesvector; // Operand types supported for vectors char name[maxINameLen+1]; // Name of instruction. Lower case }; // Same structure, but sorted by category, format, and operation codes. Used by disassembler struct SInstruction2 : public SInstruction { }; // Same structure, but sorted by id struct SInstruction3 : public SInstruction { }; // Operator for sorting instructions by name. Used by assembler static inline bool operator < (SInstruction const & a, SInstruction const & b) { #ifdef _MSC_VER // case insensitive compare. name depends on compiler return _strcmpi(a.name, b.name) < 0; #else return strcasecmp(a.name, b.name) < 0; #endif } // Operator for sorting instructions by category, format, and operation codes. Used by disassembler static inline bool operator < (SInstruction2 const & a, SInstruction2 const & b) { // first sort criterion is category if (a.category < b.category) return true; if (a.category > b.category) return false; // sort by format for single-format instructions if (a.category == 1) { if (a.format < b.format) return true; if (a.format > b.format) return false; } // sort by op1 if (a.op1 < b.op1) return true; if (a.op1 > b.op1) return false; // last sort criterion is op2 return a.op2 < b.op2; } // Operator for sorting instructions by id static inline bool operator < (SInstruction3 const & a, SInstruction3 const & b) { return a.id < b.id; } // class for reading comma-separated file class CCSVFile : public CFileBuffer { public: CCSVFile() : CFileBuffer() {} // Constructor void parse(); // Read and parse file CDynamicArray<SInstruction> instructionlist; // List of records uint64_t interpretNumber(const char * text); // Interpret number in instruction list }; // Cross reference of code addresses to lines in outFile. Used by debugger struct SLineRef { uint64_t address; // code address uint32_t domain; // 1 = IP, 2 = datap, 4 = threadp uint32_t textPos; // position of corresponding line in outFile }; // Operators for sorting SLineRef by address static inline bool operator < (SLineRef const & a, SLineRef const & b) { if (a.domain != b.domain) return a.domain < b.domain; return a.address < b.address; }; static inline bool operator == (SLineRef const & a, SLineRef const & b) { return a.domain == b.domain && a.address == b.address; }; static inline bool operator != (SLineRef const & a, SLineRef const & b) { return !(a == b); }; // Interpret a string with a decimal, binary, octal, or hexadecimal number int64_t interpretNumber(const char * s, uint32_t maxLength, uint32_t * error); double interpretFloat(const char * s, uint32_t length); // interpret floating point number from string with indicated length
Go to most recent revision | Compare with Previous | Blame | View Log