URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [bintools/] [emulator.h] - Rev 152
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************** emulator.h ********************************** * Author: Agner Fog * date created: 2018-02-18 * Last modified: 2021-04-02 * Version: 1.11 * Project: Binary tools for ForwardCom instruction set * Module: emulator.h * Description: * Header file for emulator * * Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses *****************************************************************************/ // structure for memory map struct SMemoryMap { uint64_t startAddress; // virtual address boundary (must be divisible by 8) uint64_t access_addend; // (access_addend & 7) is access permission: SHF_READ, SHF_WRITE, SHF_EXEC // (access_addend & ~7) is added to the virtual address to get physical address }; // union for an operand value of any type union SNum { uint64_t q; // 64 bit unsigned integer int64_t qs; // 64 bit signed integer uint32_t i; // 32 bit unsigned integer int32_t is; // 32 bit signed integer uint16_t s; // 16 bit unsigned integer int16_t ss; // 16 bit signed integer uint8_t b; // 8 bit unsigned integer int8_t bs; // 8 bit signed integer double d; // double precision float float f; // single precision float }; // Indexes into perfCounters array const int perf_cpu_clock_cycles = 1; const int perf_instructions = 2; const int perf_2size_instructions = 3; const int perf_3size_instructions = 4; const int perf_gp_instructions = 5; const int perf_gp_instructions_mask0 = 6; const int perf_vector_instructions = 7; const int perf_control_transfer_instructions = 8; const int perf_direct_jumps = 9; const int perf_indirect_jumps = 10; const int perf_cond_jumps = 11; const int perf_unknown_instruction = 12; const int perf_wrong_operands = 13; const int perf_array_overflow = 14; const int perf_read_violation = 15; const int perf_write_violation = 16; const int perf_misaligned = 17; const int perf_address_of_first_error = 18; const int perf_type_of_first_error = 19; const int number_of_perf_counters = 20; // number of performance counter registers // Indexes into capabilities registers array const int disable_errors_capability_register = 2;// register for disabling errors const int number_of_capability_registers = 16; // number of capability registers class CEmulator; // preliminary declaration // Class for a thread or CPU core in the emulator class CThread { public: CThread(); // constructor ~CThread(); // destructor void run(); // start running void setRegisters(CEmulator * emulator); // initialize registers etc. uint64_t ip; // instruction pointer uint64_t ip0; // address base for code and read-only data uint64_t datap; // base pointer for writeable data uint64_t threadp; // base pointer for thread-local data uint64_t ninstructions; // number of instructions executed uint32_t numContr; // numeric control register uint32_t lastMask; // shows last status of subnormal support uint32_t options; // option bits in instruction uint32_t exception; // exception or jump caused by current instruction STemplate const * pInstr; // current instruction code SFormat const * fInstr; // format of current instruction SNum parm[6]; // parm[0] = value of first operand if 3 operands // parm[1] = value of first operand if 2 operands or second operand if 3 operands // parm[2] = value of last operand // parm[3] = value of mask register or NUMCONTR // parm[4] = value of immediate operand without shift or conversion // parm[5] = high part of double size return value uint8_t operands[6]; // instruction operands. 0x00-0x1F = register. 0x20 = immediate, 0x40 = memory // operands[0] is destination register // operands[1] is mask register // operands[2] is fallback register // two-operand instructions use operands[4-5] // three-operand instructions use operands[3-5] uint8_t op; // operation code uint8_t operandType; // operand type for current instruction uint8_t nOperands; // number of source operands for current instruction uint8_t vect; // instruction uses vector registers uint8_t running; // thread is running. 0 = stop, 1 = save RD, 2 = don't save RD bool readonly; // expect memory address to be in read-only section bool ignoreMask; // call execution function even if mask is zero bool doubleStep; // execution function will process two vector elements at a time bool noVectorLength; // RS is not a vector register, or vector length is determined by execution function bool dontRead; // don't read source operand before execution bool unchangedRd; // store instruction: RD is not destination bool terminate; // stop execution bool memory_error; // memory address error CMemoryBuffer vectors; // vector register i is at offset i*MaxVectorLength uint64_t registers[32]; // value of register r0 - r31 uint32_t vectorLength[32]; // length of vector registers v0 - v31 uint32_t vectorLengthM; // vector length of memory operand uint32_t vectorLengthR; // vector length of result uint32_t vectorOffset; // offset to current element within vector uint32_t MaxVectorLength; // maximum vector length uint32_t returnType; // debug return output. bit 0-3: operand type (8 = half precision). bit 4: register. bit 5: memory. //(bit6: one extra element save_cp) // bit 8: vector. bit 12: jump. bit 13: jump taken int8_t * memory; // program memory int8_t * tempBuffer; // temporary buffer for vector operand uint64_t memAddress; // address of memory operand int64_t addrOperand; // relative address of memory operand or jump target uint64_t readVectorElement(uint32_t v, uint32_t vectorOffset); // read vector element void writeVectorElement(uint32_t v, uint64_t value, uint32_t vectorOffset); // write vector element uint64_t getMemoryAddress(); // get address of a memory operand uint64_t readMemoryOperand(uint64_t address);// read a memory operand void writeMemoryOperand(uint64_t val, uint64_t address); // write a memory operand void interrupt(uint32_t n); // interrupt or trap uint64_t checkSysMemAccess(uint64_t address, uint64_t size, uint8_t rd, uint8_t rs, uint8_t mode); int fprintfEmulated(FILE * stream, const char * format, uint64_t * argumentList); // emulate fprintf with ForwardCom argument list // check if system function has access to a particular address void systemCall(uint32_t mod, uint32_t funcid, uint8_t rd, uint8_t rs); // entry for system calls uint64_t makeNan(uint32_t code, uint32_t operandType);// make a NAN with exception code and address in payload CDynamicArray<uint64_t> callStack; // stack of return addresses uint32_t callDept; // maximum number of entries observed in callStack uint64_t entry_point; // program entry point uint64_t perfCounters[number_of_perf_counters];// performance counters uint64_t capabilyReg[number_of_capability_registers];// capability registers protected: uint32_t mapIndex1; // last memory map index for code uint32_t mapIndex2; // last memory map index for read-only data uint32_t mapIndex3; // last memory map index for writeable data CEmulator * emulator; // pointer to owner CDynamicArray<SMemoryMap> memoryMap; // memory map CTextFileBuffer listOut; // output debug listing uint32_t listFileName; // file name for listOut (index into cmd.fileNameBuffer) uint32_t listLines; // line counter void fetch(); // fetch next instruction void decode(); // decode current instruction void execute(); // execute current instruction void listStart(); // start writing debug list void listInstruction(uint64_t address); // write current instruction to debug list public: void listResult(uint64_t result); // write result of current instruction to debug list void performanceCounters(); // update performance counters uint64_t readRegister(uint8_t reg) { // read register value if (vect) { // this function is inlined for performance reasons uint64_t val = vectors.get<uint64_t>(reg*MaxVectorLength); if (vectorLength[reg] < 8) { // vector is less than 8 bytes. zero-extend to 8 bytes val &= ((uint64_t)1 << vectorLength[reg]) - 1; } return val; } else { return registers[reg]; } } }; // Class for the whole emulator class CEmulator : public CELF { public: CEmulator(); // constructor ~CEmulator(); // destructor void go(); // start protected: void load(); // load executable file into memory void relocate(); // relocate any absolute addresses and system function id's void disassemble(); // make disassembly listing for debug output uint32_t MaxVectorLength; // maximum vector length int8_t * memory; // program memory uint64_t memsize; // total allocated memory size uint32_t maxNumThreads; // maximum number of threads uint64_t ip0; // address base for code and read-only data uint64_t datap0; // address base for writeable data uint64_t threadp0; // address base for thread data of main thread uint64_t stackp; // pointer to stack uint64_t stackSize; // data stack size for main thread uint64_t callStackSize; // call stack size for main thread uint64_t heapSize; // heap size for main thread uint32_t environmentSize; // maximum size of environment and command line data CMetaBuffer<CThread> threads; // one or more threads CDynamicArray<SMemoryMap> memoryMap; // main memory map CDynamicArray<SLineRef> lineList; // Cross reference of code addresses to lines in dissassembler output CTextFileBuffer disassemOut; // Output file from disassembler CDisassembler disassembler; // disassembler for producing output list friend class CThread; }; // Functions for floating point exception and rounding control void setRoundingMode(uint8_t r); void clearExceptionFlags(); uint32_t getExceptionFlags(); void enableSubnormals(uint32_t e); // universal function type for execution function // all operands and option bits are accessed via *thread typedef uint64_t (*PFunc)(CThread * thread); // Tables of execution functions extern PFunc funcTab1[64]; // multiformat instructions extern PFunc funcTab2[64]; // jump instructions extern PFunc funcTab3[16]; // jump instructions with 24 bit offset // single format instructions: extern PFunc funcTab4[64]; // format 1.0 extern PFunc funcTab5[64]; // format 1.1 extern PFunc funcTab6[64]; // format 1.2 extern PFunc funcTab7[64]; // format 1.3 extern PFunc funcTab8[64]; // format 1.4 extern PFunc funcTab9[64]; // format 1.8 extern PFunc funcTab10[64]; // format 2.5 extern PFunc funcTab11[64]; // format 2.6 extern PFunc funcTab12[64]; // format 2.9 extern PFunc funcTab13[64]; // format 3.1 // Table of execution function tables, indexed by fInstr->exeTable extern PFunc * metaFunctionTable[]; // Table of dispatch functions for single format instructions with E template extern PFunc EDispatchTable[]; // Table of number of operands for each instruction extern uint8_t numOperands[15][64]; extern uint8_t numOperands2071[64]; extern uint8_t numOperands2261[64]; extern uint8_t numOperands2271[64]; // Execution functions shared between multiple cpp files uint64_t f_nop(CThread * thread); uint64_t f_add(CThread * thread); uint64_t f_sub(CThread * thread); uint64_t f_mul(CThread * thread); uint64_t f_div(CThread * thread); uint64_t f_mul_add(CThread * thread); uint64_t f_add_h(CThread * thread); uint64_t f_mul_h(CThread * thread); uint64_t insert_(CThread * t); uint64_t extract_(CThread * t); uint64_t bitscan_(CThread * t); uint64_t popcount_(CThread * t); int64_t mul64_128s(uint64_t * low, int64_t a, int64_t b); uint64_t mul64_128u(uint64_t * low, uint64_t a, uint64_t b); // constants and functions for detecting NAN and infinity const uint16_t inf_h = 0x7C00; // float16 infinity const uint16_t inf2h = inf_h*2; // for detecting infinity when sign bit has been shifted out const uint32_t inf_f = 0x7F800000; // float infinity const uint32_t inf2f = inf_f*2; // for detecting infinity when sign bit has been shifted out const uint32_t nan_f = 0x7FC00000; // float nan const uint32_t sign_f = 0x80000000; // float sign bit const uint32_t nsign_f = 0x7FFFFFFF; // float not sign bit const uint64_t inf_d = 0x7FF0000000000000; // double infinity const uint64_t inf2d = inf_d*2; // for detecting infinity when sign bit has been shifted out const uint64_t nan_d = 0x7FF8000000000000; // double nan const uint64_t nsign_d = 0x7FFFFFFFFFFFFFFF; // double not sign bit const uint64_t sign_d = 0x8000000000000000; // double sign bit // functions applied to the bit representations of floating point numbers to detect NAN and infinity: static inline bool isnan_h(uint16_t x) {return uint16_t(x << 1) > inf2h;} static inline bool isnan_f(uint32_t x) {return (x << 1) > inf2f;} static inline bool isnan_d(uint64_t x) {return (x << 1) > inf2d;} static inline bool isinf_h(uint16_t x) {return uint16_t(x << 1) == inf2h;} static inline bool isinf_f(uint32_t x) {return (x << 1) == inf2f;} static inline bool isinf_d(uint64_t x) {return (x << 1) == inf2d;} static inline bool isnan_or_inf_h(uint16_t x) {return uint16_t(x << 1) >= inf2h;} static inline bool isnan_or_inf_f(uint32_t x) {return (x << 1) >= inf2f;} static inline bool isnan_or_inf_d(uint64_t x) {return (x << 1) >= inf2d;} static inline bool is_zero_or_subnormal_h(uint16_t x) {return (x & 0x7C00) == 0;}
Go to most recent revision | Compare with Previous | Blame | View Log