URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [bintools/] [emulator4.cpp] - Rev 106
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************** emulator4.cpp ******************************** * Author: Agner Fog * date created: 2018-02-18 * Last modified: 2021-08-05 * Version: 1.11 * Project: Binary tools for ForwardCom instruction set * Description: * Emulator: Execution functions for single format instructions, part 1 * * Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses *****************************************************************************/ #include "stdafx.h" // Format 1.0 A. Three general purpose registers // Currently no instructions with format 1.0 // Format 1.1 C. One general purpose register and a 16 bit immediate operand. int64 static uint64_t move_16s(CThread * t) { // Move 16-bit sign-extended constant to general purpose register. return t->parm[2].q; } static uint64_t move_16u(CThread * t) { // Move 16-bit zero-extended constant to general purpose register. return t->parm[2].s; } static uint64_t shift16_add(CThread * t) { // Shift 16-bit unsigned constant left by 16 and add. t->parm[2].q <<= 16; return f_add(t); } static uint64_t shifti1_move(CThread * t) { // RD = IM2 << IM1. Sign-extend IM2 to 32/64 bits and shift left by the unsigned value IM1 return (t->parm[2].qs >> 8) << t->parm[2].b; } static uint64_t shifti1_add(CThread * t) { // RD += IM2 << IM1. Sign-extend IM2 to 32/64 bits and shift left by the unsigned value IM1 and add t->parm[2].q = (t->parm[2].qs >> 8) << t->parm[2].b; return f_add(t); } static uint64_t shifti1_and(CThread * t) { // RD &= IM2 << IM1 return t->parm[1].q & ((t->parm[2].qs >> 8) << t->parm[2].b); } static uint64_t shifti1_or(CThread * t) { // RD |= IM2 << IM1 return t->parm[1].q | ((t->parm[2].qs >> 8) << t->parm[2].b); } static uint64_t shifti1_xor(CThread * t) { // RD ^= IM2 << IM1 return t->parm[1].q ^ ((t->parm[2].qs >> 8) << t->parm[2].b); } // Format 1.8 B. Two general purpose registers and an 8-bit immediate operand. int64 static uint64_t abs_64(CThread * t) { // Absolute value of signed integer. // IM1 determines handling of overflow: 0: wrap around, 1: saturate, 2: zero. SNum a = t->parm[1]; uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size uint64_t signBit = (sizeMask >> 1) + 1; // sign bit if ((a.q & sizeMask) == signBit) { // overflow if (t->parm[2].b & 4) t->interrupt(INT_OVERFL_SIGN); switch (t->parm[2].b & ~4) { case 0: return a.q; // wrap around case 1: return sizeMask >> 1; // saturate case 2: return 0; // zero default: t->interrupt(INT_WRONG_PARAMETERS); } } if (a.q & signBit) { // negative a.qs = - a.qs; // change sign } return a.q; } static uint64_t shifti_add(CThread * t) { // Shift and add. RD += RS << IM1 SNum a = t->parm[0]; SNum b = t->parm[1]; SNum c = t->parm[2]; SNum r1, r2; // result r1.q = b.q << c.b; // shift left uint8_t nbits = dataSizeTableBits[t->operandType]; if (c.q >= nbits) r1.q = 0; // shift out of range gives zero r2.q = a.q + r1.q; // add /* if (t->numContr & MSK_OVERFL_I) { // check for overflow if (t->numContr & MSK_OVERFL_SIGN) { // check for signed overflow uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size uint64_t signBit = (sizeMask >> 1) + 1; // sign bit uint64_t ovfl = ~(a.q ^ r1.q) & (a.q ^ r2.q); // overflow if a and b have same sign and result has opposite sign if (r1.qs >> c.b != b.qs || (ovfl & signBit) || c.q >= nbits) t->interrupt(INT_OVERFL_SIGN); // signed overflow } else if (t->numContr & MSK_OVERFL_UNSIGN) { // check for unsigned overflow if (r2.q < a.q || r1.q >> c.b != b.q || c.q >= nbits) t->interrupt(INT_OVERFL_UNSIGN); // unsigned overflow } } */ return r2.q; // add } uint64_t bitscan_ (CThread * t) { // Bit scan forward or reverse. Find index to first or last set bit in RS SNum a = t->parm[1]; // input value uint8_t IM1 = t->parm[2].b; // immediate operand a.q &= dataSizeMask[t->operandType]; // mask for operand size if (a.q == 0) { a.qs = (IM1 & 0x10) ? -1 : 0; // return 0 or -1 if intput is 0 } else if (IM1 & 1) { // reverse a.q = bitScanReverse(a.q); } else { // forward a.q = bitScanForward(a.q); } return a.q; } static uint64_t roundp2(CThread * t) { // Round up or down to nearest power of 2. SNum a = t->parm[1]; // input operand uint8_t IM1 = t->parm[2].b; // immediate operand a.q &= dataSizeMask[t->operandType]; // mask off unused bits if (dataSizeTable[t->operandType] > 8) t->interrupt(INT_WRONG_PARAMETERS); // illegal operand type if (a.q == 0) { a.qs = IM1 & 0x10 ? -1 : 0; // return 0 or -1 if the intput is 0 } else if (!(a.q & (a.q-1))) { return a.q; // the number is a power of 2. Return unchanged } else if (IM1 & 1) { // round up to nearest power of 2 uint32_t s = bitScanReverse(a.q); // highest set bit if (s+1 >= dataSizeTableBits[t->operandType]) { // overflow a.qs = IM1 & 0x20 ? -1 : 0; // return 0 or -1 on overflow } else { a.q = (uint64_t)1 << (s+1); // round up } } else { // round down to nearest power of 2 a.q = (uint64_t)1 << bitScanReverse(a.q); } return a.q; } static uint32_t popcount32(uint32_t x) { // count bits in 32 bit integer. used by popcount_ function x = x - ((x >> 1) & 0x55555555); x = (x >> 2 & 0x33333333) + (x & 0x33333333); x = (x + (x >> 4)) & 0x0F0F0F0F; x = (x + (x >> 8)) & 0x00FF00FF; x = uint16_t(x + (x >> 16)); return x; } uint64_t popcount_ (CThread * t) { // Count the number of bits in RS that are 1 SNum a = t->parm[1]; // value a.q &= dataSizeMask[t->operandType]; // mask for operand size return popcount32(a.i) + popcount32(a.q >> 32); } static uint64_t read_spec(CThread * t) { // Read special register RS into g. p. register RD. uint8_t rs = t->operands[4]; // source register uint64_t retval = 0; switch (rs) { case REG_NUMCONTR & 0x1F: // numcontr register retval = t->numContr; break; case REG_THREADP & 0x1F: // threadp register retval = t->threadp; break; case REG_DATAP & 0x1F: // datap register retval = t->datap; break; default: // other register not implemented t->interrupt(INT_WRONG_PARAMETERS); } return retval; } static uint64_t write_spec(CThread * t) { // Write g. p. register RS to special register RD uint8_t rd = t->operands[0]; // destination register SNum a = t->parm[1]; // value switch (rd) { case REG_NUMCONTR & 0x1F: // numcontr register t->numContr = a.i | 1; // bit 0 must be set if (((t->numContr ^ t->lastMask) & (1<<MSK_SUBNORMAL)) != 0) { // subnormal status changed enableSubnormals(t->numContr & (1<<MSK_SUBNORMAL)); } t->lastMask = t->numContr; break; case REG_THREADP & 0x1F: // threadp register t->threadp = a.q; break; case REG_DATAP & 0x1F: // datap register t->datap = a.q; break; default: // other register not implemented t->interrupt(INT_WRONG_PARAMETERS); } t->returnType = 0; return 0; } static uint64_t read_capabilities(CThread * t) { // Read capabilities register into g. p. register RD uint8_t capabreg = t->operands[4]; // capabilities register number if (capabreg < number_of_capability_registers) { return t->capabilyReg[capabreg]; } else { t->interrupt(INT_WRONG_PARAMETERS); } return 0; } static uint64_t write_capabilities(CThread * t) { // Write g. p. register to capabilities register RD uint8_t capabreg = t->operands[0]; // capabilities register number uint64_t value = t->parm[1].q; if (capabreg < number_of_capability_registers) { t->capabilyReg[capabreg] = value; } else { t->interrupt(INT_WRONG_PARAMETERS); } t->returnType = 0; return 0; } static uint64_t read_perf(CThread * t) { // Read performance counter uint8_t parfreg = t->operands[4]; // performance register number uint8_t par2 = t->parm[2].b; // second operand uint64_t result = 0; switch (parfreg) { case 0: // reset all performance counters if (par2 & 1) { t->perfCounters[perf_cpu_clock_cycles] = 0; } if (par2 & 2) { t->perfCounters[perf_instructions] = 0; t->perfCounters[perf_2size_instructions] = 0; t->perfCounters[perf_3size_instructions] = 0; t->perfCounters[perf_gp_instructions] = 0; t->perfCounters[perf_gp_instructions_mask0] = 0; } if (par2 & 4) { t->perfCounters[perf_vector_instructions] = 0; } if (par2 & 8) { t->perfCounters[perf_control_transfer_instructions] = 0; t->perfCounters[perf_direct_jumps] = 0; t->perfCounters[perf_indirect_jumps] = 0; t->perfCounters[perf_cond_jumps] = 0; } break; case 1: // CPU clock cycles result = t->perfCounters[perf_cpu_clock_cycles]; if (par2 == 0) t->perfCounters[perf_cpu_clock_cycles] = 0; break; case 2: // number of instructions switch (par2) { case 0: result = t->perfCounters[perf_instructions]; t->perfCounters[perf_instructions] = 0; t->perfCounters[perf_2size_instructions] = 0; t->perfCounters[perf_3size_instructions] = 0; t->perfCounters[perf_gp_instructions] = 0; t->perfCounters[perf_gp_instructions_mask0] = 0; break; case 1: result = t->perfCounters[perf_instructions]; break; case 2: result = t->perfCounters[perf_2size_instructions]; break; case 3: result = t->perfCounters[perf_3size_instructions]; break; case 4: result = t->perfCounters[perf_gp_instructions]; break; case 5: result = t->perfCounters[perf_gp_instructions_mask0]; break; } break; case 3: // number of vector instructions result = t->perfCounters[perf_vector_instructions]; if (par2 == 0) t->perfCounters[perf_vector_instructions] = 0; break; case 4: // vector registers in use for (int iv = 0; iv < 32; iv++) { if (t->vectorLength[iv] > 0) result |= (uint64_t)1 << iv; } break; case 5: // jumps, calls, and returns switch (par2) { case 0: result = t->perfCounters[perf_control_transfer_instructions]; t->perfCounters[perf_control_transfer_instructions] = 0; t->perfCounters[perf_direct_jumps] = 0; t->perfCounters[perf_indirect_jumps] = 0; t->perfCounters[perf_cond_jumps] = 0; break; case 1: // all jumps, calls, returns result = t->perfCounters[perf_control_transfer_instructions]; break; case 2: // direct unconditional jumps, calls, returns result = t->perfCounters[perf_direct_jumps]; break; case 3: result = t->perfCounters[perf_indirect_jumps]; break; case 4: result = t->perfCounters[perf_cond_jumps]; break; } break; case 16: // errors counters switch (par2) { case 0: result = 0; t->perfCounters[perf_unknown_instruction] = 0; t->perfCounters[perf_wrong_operands] = 0; t->perfCounters[perf_array_overflow] = 0; t->perfCounters[perf_read_violation] = 0; t->perfCounters[perf_write_violation] = 0; t->perfCounters[perf_misaligned] = 0; t->perfCounters[perf_address_of_first_error] = 0; t->perfCounters[perf_type_of_first_error] = 0; break; case 1: // unknown instructions result = t->perfCounters[perf_unknown_instruction]; break; case 2: // wrong operands for instruction result = t->perfCounters[perf_wrong_operands]; break; case 3: // array index out of bounds result = t->perfCounters[perf_array_overflow]; break; case 4: // memory read access violation result = t->perfCounters[perf_read_violation]; break; case 5: // memory write access violation result = t->perfCounters[perf_write_violation]; break; case 6: // memory access misaligned result = t->perfCounters[perf_misaligned]; break; case 62: // address of first error result = t->perfCounters[perf_address_of_first_error]; break; case 63: // type of first error result = t->perfCounters[perf_type_of_first_error]; break; } break; default: t->interrupt(INT_WRONG_PARAMETERS); } return result; } static uint64_t read_sys(CThread * t) { // Read system register RS into g. p. register RD t->interrupt(INT_WRONG_PARAMETERS); // not supported yet return 0; } static uint64_t write_sys(CThread * t) { // Write g. p. register RS to system register RD t->interrupt(INT_WRONG_PARAMETERS); // not supported yet t->returnType = 0; return 0; } static uint64_t push_r(CThread * t) { // push one or more g.p. registers on a stack pointed to by rd int32_t step = dataSizeTable[t->operandType]; if (!(t->parm[4].i & 0x80)) step = -step; uint8_t reg0 = t->operands[0] & 0x1F; // pointer register uint8_t reg1 = t->operands[4] & 0x1F; // first push register uint8_t reglast = t->parm[4].i & 0x1F; // last push register uint8_t reg; uint64_t pointer = t->registers[reg0]; // loop through registers to push for (reg = reg1; reg <= reglast; reg++) { pointer += (int64_t)step; uint64_t value = t->registers[reg]; t->writeMemoryOperand(value, pointer); t->listResult(value); } t->registers[reg0] = pointer; return pointer; } static uint64_t pop_r(CThread * t) { // pop one or more g.p. registers from a stack pointed to by rd int32_t step = dataSizeTable[t->operandType]; if (t->parm[4].i & 0x80) step = -step; uint8_t reg0 = t->operands[0] & 0x1F; // pointer register uint8_t reg1 = t->operands[4] & 0x1F; // first push register uint8_t reglast = t->parm[4].i & 0x1F; // last push register uint8_t reg; uint64_t pointer = t->registers[reg0]; // loop through registers to pop in reverse order for (reg = reglast; reg >= reg1; reg--) { uint64_t value = t->readMemoryOperand(pointer); t->registers[reg] = value; pointer += (int64_t)step; t->listResult(value); } t->registers[reg0] = pointer; return pointer; } // Format 2.9 A. Three general purpose registers and a 32-bit immediate operand static uint64_t move_hi32(CThread * t) { // Load 32-bit constant into the high part of a general purpose register. The low part is zero. RD = IM2 << 32. return t->parm[2].q << 32; } static uint64_t insert_hi32(CThread * t) { // Insert 32-bit constant into the high part of a general purpose register, leaving the low part unchanged. return t->parm[2].q << 32 | t->parm[1].i; } static uint64_t add_32u(CThread * t) { // Add zero-extended 32-bit constant to general purpose register t->parm[2].q = t->parm[2].i; return f_add(t); } static uint64_t sub_32u(CThread * t) { // Subtract zero-extended 32-bit constant from general purpose register t->parm[2].q = t->parm[2].i; return f_sub(t); } static uint64_t add_hi32(CThread * t) { // Add 32-bit constant to high part of general purpose register. RD = RT + (IM2 << 32). t->parm[2].q <<= 32; return f_add(t); } static uint64_t and_hi32(CThread * t) { // AND high part of general purpose register with 32-bit constant. RD = RT & (IM2 << 32). return t->parm[1].q & t->parm[2].q << 32; } static uint64_t or_hi32(CThread * t) { // OR high part of general purpose register with 32-bit constant. RD = RT | (IM2 << 32). return t->parm[1].q | t->parm[2].q << 32; } static uint64_t xor_hi32(CThread * t) { // XOR high part of general purpose register with 32-bit constant. RD = RT ^ (IM2 << 32). return t->parm[1].q ^ t->parm[2].q << 32; } static uint64_t replace_bits(CThread * t) { // Replace a group of contiguous bits in RT by a specified constant SNum a = t->parm[1]; SNum b = t->parm[2]; uint64_t val = b.s; // value to insert uint8_t pos = uint8_t(b.i >> 16); // start position uint8_t num = uint8_t(b.i >> 24); // number of bits to replace if (num > 32 || pos + num > 64) t->interrupt(INT_WRONG_PARAMETERS); uint64_t mask = ((uint64_t)1 << num) - 1; // mask with 'num' 1-bits return (a.q & ~(mask << pos)) | ((val & mask) << pos); } static uint64_t address_(CThread * t) { // RD = RT + IM2, RS can be THREADP (28), DATAP (29) or IP (30) t->returnType = 0x13; return t->memAddress; } // Format 1.2 A. Three vector register operands static uint64_t set_len(CThread * t) { // RD = vector register RS with length changed to value of g.p. register RT // set_len: the new length is indicated in bytes // set_num: the new length is indicated in elements uint8_t rd = t->operands[0]; uint8_t rs = t->operands[4]; uint8_t rt = t->operands[5]; uint32_t oldLength = t->vectorLength[rs]; uint64_t newLength = t->registers[rt]; if (t->op & 1) newLength *= dataSizeTable[t->operandType]; // set_num: multiply by operand size if (newLength > t->MaxVectorLength) newLength = t->MaxVectorLength; if (newLength > oldLength) { memcpy(t->vectors.buf() + rd*t->MaxVectorLength, t->vectors.buf() + rs*t->MaxVectorLength, oldLength); // copy first part from RT memset(t->vectors.buf() + rd*t->MaxVectorLength + oldLength, 0, size_t(newLength - oldLength)); // set the rest to zero } else { memcpy(t->vectors.buf() + rd*t->MaxVectorLength, t->vectors.buf() + rs*t->MaxVectorLength, size_t(newLength)); // copy newLength from RT } t->vectorLength[rd] = (uint32_t)newLength; // set new length t->vect = 4; // stop vector loop t->running = 2; // don't save RD return 0; } static uint64_t get_len(CThread * t) { // Get length of vector register RT into general purpose register RD // get_len: get the length in bytes // get_num: get the length in elements uint8_t rd = t->operands[0]; uint8_t rt = t->operands[4]; uint32_t length = t->vectorLength[rt]; // length of RT if (t->op & 1) length >>= dataSizeTableLog[t->operandType]; // get_num: divide by operand size (round down) t->registers[rd] = length; // save in g.p. register, not vector register t->vect = 4; // stop vector loop t->running = 2; // don't save to vector register RD t->returnType = 0x12; // debug return output return length; } uint64_t insert_(CThread * t) { // Replace one element in vector RD, starting at offset RT·OS, with scalar RS uint64_t pos; // position of element insert uint8_t rd = t->operands[3]; // source and destination register uint8_t operandType = t->operandType; // operand type uint64_t returnval; uint8_t dsizelog = dataSizeTableLog[operandType]; // log2(elementsize) t->vectorLengthR = t->vectorLength[rd]; uint8_t sourceVector = t->operands[4]; // source register if (t->fInstr->format2 == 0x120) { // format 1.2A v1 = insert(v1, v2, r3) uint8_t rt = t->operands[5]; // index register pos = t->registers[rt] << dsizelog; } else { // format 1.3B v1 = insert(v1, v2, imm) pos = t->parm[2].q << dsizelog; } if (pos == t->vectorOffset) { if (dsizelog == 4) { // 128 bits. t->parm[5].q = t->readVectorElement(sourceVector, 8); // high part of 128-bit result } returnval = t->readVectorElement(sourceVector, 0); // first element of sourceVector } else { if (dsizelog == 4) { // 128 bits. t->parm[5].q = t->readVectorElement(rd, t->vectorOffset + 8); // high part of 128-bit result } returnval = t->parm[0].q; // rd unchanged } return returnval; } uint64_t extract_(CThread * t) { // Extract one element from vector RT, at offset RS·OS or IM1·OS, with size OS // and broadcast into vector register RD. uint8_t rd = t->operands[0]; // destination register uint8_t operandType = t->operandType; // operand type uint8_t dsizelog = dataSizeTableLog[operandType]; // log2(elementsize) uint8_t rsource = t->operands[4]; // source vector uint64_t pos; // position = index * OS if (t->fInstr->format2 == 0x120) { uint8_t rt = t->operands[5]; // index register pos = t->registers[rt] << dsizelog; } else { // format 0x130 pos = t->parm[4].q << dsizelog; } uint32_t sourceLength = t->vectorLength[rsource]; // length of source vector uint64_t result; if (pos >= sourceLength) { result = 0; // beyond end of source vector } else { int8_t * source = t->vectors.buf() + (uint64_t)rsource * t->MaxVectorLength; // address of rsource data result = *(uint64_t*)(source+pos); // no problem reading too much, it will be cut off later if the operand size is < 64 bits if (dsizelog >= 4) { // 128 bits t->parm[5].q = *(uint64_t*)(source+pos+8); // store high part of 128 bit element } } t->vectorLength[rd] = t->vectorLengthR = sourceLength; // length of destination vector return result; } static uint64_t compress_sparse(CThread * t) { // Compress sparse vector elements indicated by mask bits into contiguous vector. uint8_t rd = t->operands[0]; // destination vector //uint8_t rt = t->operands[4]; // length of input vector not specified uint8_t rt = t->operands[5]; // source vector uint8_t rm = t->operands[1]; // mask vector uint32_t sourceLength = t->vectorLength[rt]; // length of source vector uint32_t maskLength = t->vectorLength[rm]; // length of mask vector //uint64_t newLength = t->registers[rt]; // length of destination uint64_t newLength = sourceLength; // length of destination uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element int8_t * source = t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data int8_t * masksrc = t->vectors.buf() + rm*t->MaxVectorLength; // address of mask data int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data // limit length if (newLength > t->MaxVectorLength) newLength = t->MaxVectorLength; if (newLength > maskLength) newLength = maskLength; // no reason to go beyond mask if (newLength > sourceLength) { // reading beyond the end of the source vector memset(source + sourceLength, 0, size_t(newLength - sourceLength)); // make sure the rest is zero } uint32_t pos1 = 0; // position in source vector uint32_t pos2 = 0; // position in destination vector // loop through mask register for (pos1 = 0; pos1 < newLength; pos1 += elementSize) { if (*(masksrc + pos1) & 1) { // check mask bit // copy from pos1 in source to pos2 in destination switch (elementSize) { case 1: // int8 *(destination+pos2) = *(source+pos1); break; case 2: // int16 *(uint16_t*)(destination+pos2) = *(uint16_t*)(source+pos1); break; case 4: // int32, float *(uint32_t*)(destination+pos2) = *(uint32_t*)(source+pos1); break; case 8: // int64, double *(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1); break; case 16: // int128, float128 *(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1); *(uint64_t*)(destination+pos2+8) = *(uint64_t*)(source+pos1+8); break; } pos2 += elementSize; } } // set new length of destination vector t->vectorLength[rd] = pos2; t->vect = 4; // stop vector loop t->running = 2; // don't save. result has already been saved return 0; } static uint64_t expand_sparse(CThread * t) { // Expand contiguous vector into sparse vector with positions indicated by mask bits // RS = length of output vector uint8_t rd = t->operands[0]; // destination vector uint8_t rs = t->operands[4]; // source vector uint8_t rt = t->operands[5]; // length indicator uint8_t rm = t->operands[1]; // mask vector uint32_t sourceLength = t->vectorLength[rs]; // length of source vector uint32_t maskLength = t->vectorLength[rm]; // length of mask vector uint64_t newLength = t->registers[rt]; // length of destination uint32_t elementSize = dataSizeTable[t->operandType & 7]; // size of each element int8_t * source = t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data int8_t * masksrc = t->vectors.buf() + rm*t->MaxVectorLength; // address of mask data int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data if (rd == rs) { // source and destination are the same. Make a temporary copy of source to avoid overwriting memcpy(t->tempBuffer, source, sourceLength); source = t->tempBuffer; } // limit length if (newLength > t->MaxVectorLength) newLength = t->MaxVectorLength; if (newLength > maskLength) newLength = maskLength; // no reason to go beyond mask if (newLength > sourceLength) { // reading beyond the end of the source vector memset(source + sourceLength, 0, size_t(newLength - sourceLength)); // make sure the rest is zero } uint32_t pos1 = 0; // position in source vector uint32_t pos2 = 0; // position in destination vector // loop through mask register for (pos2 = 0; pos2 < newLength; pos2 += elementSize) { if (*(masksrc + pos2) & 1) { // check mask bit // copy from pos1 in source to pos2 in destination switch (elementSize) { case 1: // int8 *(destination+pos2) = *(source+pos1); break; case 2: // int16 *(uint16_t*)(destination+pos2) = *(uint16_t*)(source+pos1); break; case 4: // int32, float *(uint32_t*)(destination+pos2) = *(uint32_t*)(source+pos1); break; case 8: // int64, double *(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1); break; case 16: // int128, float128 *(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1); *(uint64_t*)(destination+pos2+8) = *(uint64_t*)(source+pos1+8); break; } pos1 += elementSize; } else { // mask is zero. insert zero switch (elementSize) { case 1: // int8 *(destination+pos2) = 0; break; case 2: // int16 *(uint16_t*)(destination+pos2) = 0; break; case 4: // int32, float *(uint32_t*)(destination+pos2) = 0; break; case 8: // int64, double *(uint64_t*)(destination+pos2) = 0; break; case 16: // int128, float128 *(uint64_t*)(destination+pos2) = 0; *(uint64_t*)(destination+pos2+8) = 0; break; } } } // set new length of destination vector t->vectorLength[rd] = pos2; t->vect = 4; // stop vector loop t->running = 2; // don't save. result has already been saved return 0; } static uint64_t broad_(CThread * t) { // Broadcast first element of source vector into all elements of RD with specified length uint8_t rlen; // g.p. register indicating length uint64_t value; // value to broadcast uint8_t rd = t->operands[0]; // destination vector if (t->fInstr->format2 == 0x120) { rlen = t->operands[5]; // RT = length uint8_t rs = t->operands[4]; // source vector value = t->readVectorElement(rs, 0); // first element of RS } else { rlen = t->operands[4]; // first source operand = length value = t->parm[2].q; // immediate operand } uint64_t destinationLength = t->registers[rlen]; // value of length register if (destinationLength > t->MaxVectorLength) destinationLength = t->MaxVectorLength; // limit length // set length of destination register, let vector loop continue to this length t->vectorLength[rd] = t->vectorLengthR = (uint32_t)destinationLength; return value; } static uint64_t bits2bool(CThread * t) { // The lower n bits of RT are unpacked into a boolean vector RD with length RS // with one bit in each element, where n = RS / OS. uint8_t rd = t->operands[0]; // destination vector uint8_t rt = t->operands[5]; // RT = source vector uint8_t rs = t->operands[4]; // RS indicates length SNum mask = t->parm[3]; // mask uint8_t * source = (uint8_t*)t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data uint64_t destinationLength = t->registers[rs]; // value of RS = length of destination uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize) if (destinationLength > t->MaxVectorLength) destinationLength = t->MaxVectorLength; // limit length // set length of destination register t->vectorLength[rd] = (uint32_t)destinationLength; uint32_t num = (uint32_t)destinationLength >> dsizelog; // number of elements destinationLength = num << dsizelog; // round down length to nearest multiple of element size // number of bits in source uint32_t srcnum = t->vectorLength[rt] * 8; if (num < srcnum) num = srcnum; // limit to the number of bits in source mask.q &= -(int64_t)2; // remove lower bit of mask. it will be replaced by source bit // loop through bits for (uint32_t i = 0; i < num; i++) { uint8_t bit = (source[i / 8] >> (i & 7)) & 1; // extract single bit from source switch (dsizelog) { case 0: // int8 *destination = mask.b | bit; break; case 1: // int16 *(uint16_t*)destination = mask.s | bit; break; case 2: // int32 *(uint32_t*)destination = mask.i | bit; break; case 3: // int64 *(uint64_t*)destination = mask.q | bit; break; case 4: // int128 *(uint64_t*)destination = mask.q | bit; *(uint64_t*)(destination+8) = mask.q | bit; break; } destination += (uint64_t)1 << dsizelog; } t->vect = 4; // stop vector loop t->running = 2; // don't save RD if ((t->returnType & 7) >= 5) t->returnType -= 3; // make return type integer return 0; } static uint64_t shift_expand(CThread * t) { // Shift vector RS up by RT bytes and extend the vector length by RT. // The lower RT bytes of RD will be zero. uint8_t rd = t->operands[0]; // destination vector uint8_t rs = t->operands[4]; // RS = source vector uint8_t rt = t->operands[5]; // RT indicates length uint8_t * source = (uint8_t*)t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data uint64_t shiftCount = t->registers[rt]; // value of RT = shift count if (shiftCount > t->MaxVectorLength) shiftCount = t->MaxVectorLength; // limit length uint32_t sourceLength = t->vectorLength[rs]; // length of source vector uint32_t destinationLength = sourceLength + (uint32_t)shiftCount; // length of destination vector if (destinationLength > t->MaxVectorLength) destinationLength = t->MaxVectorLength; // limit length // set length of destination vector t->vectorLength[rd] = destinationLength; // set lower part of destination to zero memset(destination, 0, size_t(shiftCount)); // copy the rest from source if (destinationLength > shiftCount) { memmove(destination + shiftCount, source, size_t(destinationLength - shiftCount)); } t->vect = 4; // stop vector loop t->running = 2; // don't save RD. It has already been saved return 0; } static uint64_t shift_reduce(CThread * t) { // Shift vector RS down RT bytes and reduce the length by RT. // The lower RT bytes of RS are lost uint8_t rd = t->operands[0]; // destination vector uint8_t rs = t->operands[4]; // RS = source vector uint8_t rt = t->operands[5]; // RT indicates length uint8_t * source = (uint8_t*)t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data uint32_t sourceLength = t->vectorLength[rs]; // length of source vector uint64_t shiftCount = t->registers[rt]; // value of RT = shift count if (shiftCount > sourceLength) shiftCount = sourceLength; // limit length uint32_t destinationLength = sourceLength - (uint32_t)shiftCount; // length of destination vector t->vectorLength[rd] = destinationLength; // set length of destination vector // copy data from source if (destinationLength > 0) { memmove(destination, source + shiftCount, destinationLength); } t->vect = 4; // stop vector loop t->running = 2; // don't save RD. It has already been saved return 0; } static uint64_t shift_up(CThread * t) { // Shift elements of vector RS up RT elements. // The lower RT elements of RD will be zero, the upper RT elements of RS are lost. uint8_t rd = t->operands[0]; // destination vector uint8_t rs = t->operands[4]; // RS = source vector uint8_t rt = t->operands[5]; // RT indicates length uint8_t * source = (uint8_t*)t->vectors.buf() + rs * t->MaxVectorLength; // address of RS data uint8_t * destination = (uint8_t*)t->vectors.buf() + rd * t->MaxVectorLength; // address of RD data uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize) uint64_t shiftCount = t->registers[rt] << dsizelog; // value of TS = shift count, elements if (shiftCount > t->MaxVectorLength) shiftCount = t->MaxVectorLength; // limit length uint32_t sourceLength = t->vectorLength[rs]; // length of source vector t->vectorLength[rd] = sourceLength; // set length of destination vector to the same as source vector // copy from source if (sourceLength > shiftCount) { memmove(destination + shiftCount, source, size_t(sourceLength - shiftCount)); } // set lower part of destination to zero memset(destination, 0, size_t(shiftCount)); t->vect = 4; // stop vector loop t->running = 2; // don't save RD. It has already been saved return 0; } static uint64_t shift_down(CThread * t) { // Shift elements of vector RS down RT elements. // The upper RT elements of RD will be zero, the lower RT elements of RS are lost. uint8_t rd = t->operands[0]; // destination vector uint8_t rs = t->operands[4]; // RS = source vector uint8_t rt = t->operands[5]; // RT indicates length uint8_t * source = (uint8_t*)t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data uint32_t sourceLength = t->vectorLength[rs]; // length of source vector uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize) uint64_t shiftCount = t->registers[rt] << dsizelog; // value of RT = shift count, elements if (shiftCount > sourceLength) shiftCount = sourceLength; // limit length t->vectorLength[rd] = sourceLength; // set length of destination vector if (sourceLength > shiftCount) { // copy data from source memmove(destination, source + shiftCount, size_t(sourceLength - shiftCount)); } if (shiftCount > 0) { // set the rest to zero memset(destination + sourceLength - shiftCount, 0, size_t(shiftCount)); } t->vect = 4; // stop vector loop t->running = 2; // don't save RD. It has already been saved return 0; } /* static uint64_t rotate_up (CThread * t) { // Rotate vector RT up one element. uint8_t rd = t->operands[0]; // destination vector uint8_t rt = t->operands[5]; // RT = source vector //uint8_t rs = t->operands[4]; // RS indicates length int8_t * source = t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data //uint64_t length = t->registers[rs]; // value of RS = vector length //if (length > t->MaxVectorLength) length = t->MaxVectorLength; // limit length uint32_t sourceLength = t->vectorLength[rt]; // length of source vector uint32_t length = sourceLength; if (rd == rt) { // source and destination are the same. Make a temporary copy of source to avoid overwriting memcpy(t->tempBuffer, source, length); source = t->tempBuffer; } if (length > sourceLength) { // reading beyond the end of the source vector. make sure the rest is zero memset(source + sourceLength, 0, size_t(length - sourceLength)); } uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element if (elementSize > length) elementSize = (uint32_t)length; t->vectorLength[rd] = (uint32_t)length; // set length of destination vector memcpy(destination, source + length - elementSize, elementSize); // copy top element to bottom memcpy(destination + elementSize, source, size_t(length - elementSize)); // copy the rest t->vect = 4; // stop vector loop t->running = 2; // don't save RD. It has already been saved return 0; } static uint64_t rotate_down (CThread * t) { // Rotate vector RT down one element. uint8_t rd = t->operands[0]; // destination vector uint8_t rt = t->operands[5]; // RT = source vector //uint8_t rs = t->operands[4]; // RS indicates length int8_t * source = t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data //uint64_t length = t->registers[rs]; // value of RS = vector length uint32_t sourceLength = t->vectorLength[rt]; // length of source vector uint32_t length = sourceLength; //if (length > t->MaxVectorLength) length = t->MaxVectorLength; // limit length if (rd == rt) { // source and destination are the same. Make a temporary copy of source to avoid overwriting memcpy(t->tempBuffer, source, length); source = t->tempBuffer; } if (length > sourceLength) { // reading beyond the end of the source vector. make sure the rest is zero memset(source + sourceLength, 0, size_t(length - sourceLength)); } uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element if (elementSize > length) elementSize = (uint32_t)length; t->vectorLength[rd] = (uint32_t)length; // set length of destination vector memcpy(destination, source + elementSize, size_t(length - elementSize)); // copy down memcpy(destination + length - elementSize, source, elementSize); // copy the bottom element to top t->vect = 4; // stop vector loop t->running = 2; // don't save RD. It has already been saved return 0; }*/ static uint64_t div_ex (CThread * t) { // Divide vector of double-size integers RS by integers RT. // RS has element size 2·OS. These are divided by the even numbered elements of RT with size OS. // The truncated results are stored in the even-numbered elements of RD. // The remainders are stored in the odd-numbered elements of RD // op = 24: signed, 25: unsigned SNum result; // quotient SNum remainder; // remainder SNum a_lo = t->parm[1]; // low part of dividend SNum b = t->parm[2]; // divisor uint8_t rs = t->operands[4]; // RS indicates length uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element SNum a_hi; a_hi.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of dividend uint64_t sizemask = dataSizeMask[t->operandType]; // mask for operand size uint64_t signbit = (sizemask >> 1) + 1; // mask indicating sign bit //SNum mask = t->parm[3]; // mask register value or NUMCONTR bool isUnsigned = t->op & 1; // 24: signed, 25: unsigned bool overflow = false; int sign = 0; // 1 if result is negative if (!isUnsigned) { // convert signed division to unsigned if (b.q & signbit) { // b is negative. make it positive b.qs = -b.qs; sign = 1; } if (a_hi.q & signbit) { // a is negative. make it positive a_lo.qs = - a_lo.qs; a_hi.q = ~ a_hi.q; if ((a_lo.q & sizemask) == 0) a_hi.q++; // carry from low to high part sign ^= 1; // invert sign } } // limit data size b.q &= sizemask; a_hi.q &= sizemask; a_lo.q &= sizemask; result.q = 0; remainder.q = 0; // check for overflow if (a_hi.q >= b.q || b.q == 0) { overflow = true; } else { switch (t->operandType) { case 0: // int8 a_lo.s |= a_hi.s << 8; result.s = a_lo.s / b.s; remainder.s = a_lo.s % b.s; break; case 1: // int16 a_lo.i |= a_hi.i << 16; result.i = a_lo.i / b.i; remainder.i = a_lo.i % b.i; break; case 2: // int32 a_lo.q |= a_hi.q << 32; result.q = a_lo.q / b.q; remainder.q = a_lo.q % b.q; break; case 3: // int64 // to do: implement 128/64 -> 64 division by intrinsic or inline assembly // or bit shift method (other methods are too complex) default: t->interrupt(INT_WRONG_PARAMETERS); } } // check sign if (sign) { if (result.q == signbit) overflow = true; result.qs = - result.qs; if (remainder.q == signbit) overflow = true; remainder.qs = - remainder.qs; } if (overflow) { if (isUnsigned) { // unsigned overflow //if (mask.i & MSK_OVERFL_UNSIGN) t->interrupt(INT_OVERFL_UNSIGN); // unsigned overflow result.q = sizemask; remainder.q = 0; } else { // signed overflow //if (mask.i & MSK_OVERFL_SIGN) t->interrupt(INT_OVERFL_SIGN); // signed overflow result.q = signbit; remainder.q = 0; } } t->parm[5].q = remainder.q; // save remainder return result.q; } static uint64_t f_mul_ex(CThread * t) { // extended signed multiply. result uses two consecutive array elements if (!t->vect) { t->interrupt(INT_WRONG_PARAMETERS); return 0; } SNum result; switch (t->operandType) { case 0: // int8 result.is = ((int32_t)t->parm[1].bs * (int32_t)t->parm[2].bs); t->parm[5].is = result.is >> 8; // store high part in parm[q] break; case 1: // int16 result.is = ((int32_t)t->parm[1].ss * (int32_t)t->parm[2].ss); t->parm[5].is = result.is >> 16; // store high part in parm[5] break; case 2: // int32 result.qs = ((int64_t)t->parm[1].is * (int64_t)t->parm[2].is); t->parm[5].qs = result.qs >> 32; // store high part in parm[5] break; case 3: // int64 result.qs = mul64_128s(&t->parm[5].q, t->parm[1].qs, t->parm[2].qs); break; default: t->interrupt(INT_WRONG_PARAMETERS); result.i = 0; } return result.q; } static uint64_t f_mul_ex_u(CThread * t) { // extended unsigned multiply. result uses two consecutive array elements if (!t->vect) { t->interrupt(INT_WRONG_PARAMETERS); return 0; } SNum result; switch (t->operandType) { case 0: // int8 result.i = ((uint32_t)t->parm[1].b * (uint32_t)t->parm[2].b); t->parm[5].i = result.i >> 8; // store high part in parm[5] break; case 1: // int16 result.i = ((uint32_t)t->parm[1].s * (uint32_t)t->parm[2].s); t->parm[5].i = result.i >> 16; // store high part in parm[5] break; case 2: // int32 result.q = ((uint64_t)t->parm[1].i * (uint64_t)t->parm[2].i); t->parm[5].q = result.q >> 32; // store high part in parm[5] break; case 3: // int64 result.q = mul64_128u(&t->parm[5].q, t->parm[1].q, t->parm[2].q); break; default: t->interrupt(INT_WRONG_PARAMETERS); result.i = 0; } return result.q; } static uint64_t sqrt_ (CThread * t) { // square root SNum a = t->parm[2]; // input operand SNum result; result.q = 0; uint32_t mask = t->parm[3].i; uint8_t operandType = t->operandType; bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions bool roundingMode = (mask & (3 << MSKI_ROUNDING)) != 0; // non-standard rounding mode bool error = false; switch (operandType) { case 0: // int8 if (a.bs < 0) error = true; else result.b = (int8_t)sqrtf(a.bs); break; case 1: // int16 if (a.ss < 0) error = true; else result.s = (int16_t)sqrtf(a.bs); break; case 2: // int32 if (a.is < 0) error = true; else result.i = (int32_t)sqrt(a.bs); break; case 3: // int64 if (a.qs < 0) error = true; else result.q = (int64_t)sqrt(a.bs); break; case 5: // float if (a.f < 0) { result.q = t->makeNan(nan_invalid_sqrt, operandType); } else { if (detectExceptions) clearExceptionFlags(); // clear previous exceptions if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING); result.f = sqrtf(a.f); // calculate square root if (roundingMode) setRoundingMode(0); if (detectExceptions) { uint32_t x = getExceptionFlags(); // read exceptions if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType); else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType); } } break; case 6: // double if (a.d < 0) { result.q = t->makeNan(nan_invalid_sqrt, operandType); } else { if (detectExceptions) clearExceptionFlags(); // clear previous exceptions if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING); result.d = sqrt(a.d); // calculate square root if (roundingMode) setRoundingMode(0); if (detectExceptions) { uint32_t x = getExceptionFlags(); // read exceptions if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType); else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType); } } break; default: t->interrupt(INT_WRONG_PARAMETERS); } return result.q; } static uint64_t add_c (CThread * t) { // Add with carry. Vector has two elements. // The upper element is used as carry on input and output SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint8_t rs = t->operands[4]; // RS is first input vector uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element SNum carry; carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size result.q = a.q + b.q; // add uint8_t newCarry = (result.q & sizeMask) < (a.q & sizeMask); // get new carry result.q += carry.q & 1; // add carry if ((result.q & sizeMask) == 0) newCarry = 1;// carry t->parm[5].q = newCarry; // save new carry return result.q; } static uint64_t sub_b (CThread * t) { // Subtract with borrow. Vector has two elements. // The upper element is used as borrow on input and output SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint8_t rs = t->operands[4]; // RS is first input vector uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element SNum carry; carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size result.q = a.q - b.q; // subtract uint8_t newCarry = (result.q & sizeMask) > (a.q & sizeMask); // get new carry result.q -= carry.q & 1; // subtract borrow if ((result.q & sizeMask) == sizeMask) newCarry = 1;// borrow t->parm[5].q = newCarry; // save new borrow return result.q; } static uint64_t add_ss (CThread * t) { // Add integer vectors, signed with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size uint64_t signBit = (sizeMask >> 1) + 1; // sign bit result.q = a.q + b.q; // add uint64_t overfl = ~(a.q ^ b.q) & (a.q ^ result.q); // overflow if a and b have same sign and result has opposite sign if (overfl & signBit) { // overflow result.q = (sizeMask >> 1) + ((a.q & signBit) != 0); // INT_MAX or INT_MIN } return result.q; } static uint64_t sub_ss (CThread * t) { // subtract integer vectors, signed with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size uint64_t signBit = (sizeMask >> 1) + 1; // sign bit result.q = a.q - b.q; // subtract uint64_t overfl = (a.q ^ b.q) & (a.q ^ result.q); // overflow if a and b have different sign and result has opposite sign of a if (overfl & signBit) { // overflow result.q = (sizeMask >> 1) + ((a.q & signBit) != 0); // INT_MAX or INT_MIN } return result.q; } static uint64_t add_us (CThread * t) { // Add integer vectors, unsigned with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size result.q = a.q + b.q; // add if ((result.q & sizeMask) < (a.q & sizeMask)) { // overflow result.q = sizeMask; // UINT_MAX } return result.q; } static uint64_t sub_us (CThread * t) { // subtract integer vectors, unsigned with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size result.q = a.q - b.q; // add if ((result.q & sizeMask) > (a.q & sizeMask)) { // overflow result.q = 0; // 0 } return result.q; } static uint64_t mul_ss (CThread * t) { // multiply integer vectors, signed with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size uint64_t signBit = (sizeMask >> 1) + 1; // sign bit // check for overflow bool overflow = false; switch (t->operandType) { case 0: // int8 result.is = (int32_t)a.bs * (int32_t)b.bs; // multiply overflow = result.bs != result.is; break; case 1: // int16 result.is = (int32_t)a.ss * (int32_t)b.ss; // multiply overflow = result.ss != result.is; break; case 2: // int32 result.qs = (int64_t)a.is * (int64_t)b.is; // multiply overflow = result.is != result.qs; break; case 3: // int64 result.qs = a.qs * b.qs; // multiply overflow = fabs((double)a.qs * (double)b.qs - (double)result.qs) > 1.E8; break; default: t->interrupt(INT_WRONG_PARAMETERS); } if (overflow) { result.q = (sizeMask >> 1) + (((a.q ^ b.q) & signBit) != 0); // INT_MAX or INT_MIN } return result.q; } static uint64_t mul_us (CThread * t) { // multiply integer vectors, unsigned with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size // check for overflow bool overflow = false; switch (t->operandType) { case 0: result.i = (uint32_t)a.b * (uint32_t)b.b; // multiply overflow = result.b != result.i; break; case 1: result.i = (uint32_t)a.s * (uint32_t)b.s; overflow = result.s != result.i; break; case 2: result.q = (uint64_t)a.i * (uint64_t)b.i; overflow = result.i != result.q; break; case 3: result.q = a.q * b.q; overflow = fabs((double)a.q * (double)b.q - (double)result.q) > 1.E8; break; default: t->interrupt(INT_WRONG_PARAMETERS); } if (overflow) { result.q = sizeMask; } return result.q; } /* static uint64_t shift_ss (CThread * t) { // Shift left integer vectors, signed with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; result.q = a.q << b.i; // shift left uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size uint64_t signBit = (sizeMask >> 1) + 1; // sign bit uint32_t bits1 = bitScanReverse(a.q & sizeMask) + 1; // number of bits in a uint32_t bitsMax = dataSizeTable[t->operandType]; // maximum number of bits if negative uint8_t negative = (a.q & signBit) != 0; // a is negative if (!negative) bitsMax--; // maximum number of bits if positive if ((a.q & sizeMask) != 0 && bits1 + (b.q & sizeMask) > bitsMax) { // overflow result.q = (sizeMask >> 1) + negative; // INT_MAX or INT_MIN } return result.q; } static uint64_t shift_us (CThread * t) { // Shift left integer vectors, unsigned with saturation SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand SNum result; result.q = a.q << b.i; // shift left uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size uint32_t bits1 = bitScanReverse(a.q & sizeMask) + 1; // number of bits in a uint32_t bitsMax = dataSizeTable[t->operandType]; // maximum number of bits if ((a.q & sizeMask) != 0 && bits1 + (b.q & sizeMask) > bitsMax) { // overflow result.q = sizeMask; // UINT_MAX } return result.q; } */ /* Instructions with overflow check use the even-numbered vector elements for arithmetic instructions. Each following odd-numbered vector element is used for overflow detection. If the first source operand is a scalar then the result operand will be a vector with two elements. Overflow conditions are indicated with the following bits: bit 0. Unsigned integer overflow (carry). bit 1. Signed integer overflow. The values are propagated so that the overflow result of the operation is OR’ed with the corresponding values of both input operands. */ static uint64_t add_oc (CThread * t) { // add with overflow check SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand uint8_t rs = t->operands[4]; // RS is first input vector uint8_t rt = t->operands[5]; // RT is first input vector uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element SNum carry; carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector SNum result; if (t->operandType < 4) { uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size result.q = a.q + b.q; // add if ((result.q & sizeMask) < (a.q & sizeMask)) { // unsigned overflow carry.b |= 1; } // signed overflow if a and b have same sign and result has opposite sign uint64_t signedOverflow = ~(a.q ^ b.q) & (a.q ^ result.q); uint64_t signBit = (sizeMask >> 1) + 1; // sign bit if (signedOverflow & signBit) { carry.b |= 2; } } else { // unsupported operand type t->interrupt(INT_WRONG_PARAMETERS); result.q = 0; } t->parm[5].q = carry.q & 3; // return carry return result.q; // return result } static uint64_t sub_oc (CThread * t) { // subtract with overflow check SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand uint8_t rs = t->operands[4]; // RS is first input vector uint8_t rt = t->operands[5]; // RT is second input vector uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element SNum carry; carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector SNum result; if (t->operandType < 4) { uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size result.q = a.q - b.q; // add if ((result.q & sizeMask) > (a.q & sizeMask)) { // unsigned overflow carry.b |= 1; } // signed overflow if a and b have opposite sign and result has opposite sign of a uint64_t signedOverflow = (a.q ^ b.q) & (a.q ^ result.q); uint64_t signBit = (sizeMask >> 1) + 1; // sign bit if (signedOverflow & signBit) { carry.b |= 2; } } else { // unsupported operand type t->interrupt(INT_WRONG_PARAMETERS); result.q = 0; } t->parm[5].q = carry.q & 3; // return carry return result.q; // return result } static uint64_t mul_oc (CThread * t) { // multiply with overflow check SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand uint8_t rs = t->operands[4]; // RS is first input vector uint8_t rt = t->operands[5]; // RT is second input vector uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element SNum carry; carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector SNum result; bool signedOverflow = false; bool unsignedOverflow = false; // multiply and check for signed and unsigned overflow switch (t->operandType) { case 0: result.is = (int32_t)a.bs * (int32_t)b.bs; // multiply unsignedOverflow = result.b != result.i; signedOverflow = result.bs != result.is; break; case 1: result.is = (int32_t)a.ss * (int32_t)b.ss; unsignedOverflow = result.s != result.i; signedOverflow = result.ss != result.is; break; case 2: result.qs = (int64_t)a.is * (int64_t)b.is; unsignedOverflow = result.q != result.i; signedOverflow = result.qs != result.is; break; case 3: result.qs = a.qs * b.qs; unsignedOverflow = fabs((double)a.q * (double)b.q - (double)result.q) > 1.E8; signedOverflow = fabs((double)a.qs * (double)b.qs - (double)result.qs) > 1.E8; break; default: t->interrupt(INT_WRONG_PARAMETERS); } if (unsignedOverflow) carry.b |= 1; // unsigned overflow if (signedOverflow) carry.b |= 2; // signed overflow t->parm[5].q = carry.q & 3; // return carry return result.q; // return result } static uint64_t div_oc (CThread * t) { // signed divide with overflow check SNum a = t->parm[1]; // input operand SNum b = t->parm[2]; // input operand uint8_t rs = t->operands[4]; // RS is first input vector uint8_t rt = t->operands[5]; // RT is second input vector uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element SNum carry; carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector SNum result; // to do: rounding mode! switch (t->operandType) { case 0: // int8 if (b.b == 0) { result.i = 0x80; carry.b |= 3; // signed and unsigned overflow } else if (a.b == 0x80 && b.bs == -1) { result.i = 0x80; carry.b |= 2; // signed overflow } else result.i = a.bs / b.bs; break; case 1: // int16 if (b.s == 0) { result.i = 0x8000; carry.b |= 3; // signed and unsigned overflow } else if (a.s == 0x8000 && b.ss == -1) { result.i = 0x8000; carry.b |= 2; // signed overflow } else result.i = a.ss / b.ss; break; case 2: // int32 if (b.i == 0) { result.i = sign_f; carry.b |= 3; // signed and unsigned overflow } else if (a.i == sign_f && b.is == -1) { result.i = sign_f; carry.b |= 2; // signed overflow } else result.i = a.is / b.is; break; case 3: // int64 if (b.q == 0) { result.q = sign_d; carry.b |= 3; // signed and unsigned overflow } else if (a.q == sign_d && b.qs == int64_t(-1)) { result.q = sign_d; carry.b |= 2; // signed overflow } else result.qs = a.qs / b.qs; break; default: t->interrupt(INT_WRONG_PARAMETERS); } t->parm[5].q = carry.q & 3; // return carry return result.q; // return result } static uint64_t read_spev (CThread * t) { // Read special register RS into vector register RD with length RT. // to do return 0; } static uint64_t read_call_stack (CThread * t) { // read internal call stack. RD = vector register destination of length RS, RT-RS = internal address return 0; // to do } static uint64_t write_call_stack (CThread * t) { // write internal call stack. RD = vector register source of length RS, RT-RS = internal address return 0; // to do } static uint64_t read_memory_map (CThread * t) { // read memory map. RD = vector register destination of length RS, RT-RS = internal address return 0; // to do } static uint64_t write_memory_map (CThread * t) { // write memory map. RD = vector register return 0; // to do } /* Input ports to match soft core Note: serial input from stdin in windows and Linux is messy. Emulation will have quirks. Input port 8. Serial input: Read one byte from RS232 serial input. The value is bit 0-7: Received data (zero if input buffer empty) bit 8: Data valid. Will be 0 if the input buffer is empty. It will not wait for data if the system allows polling bit 9: More data ready: The input buffer contains at least one more byte ready to read bit 12: Buffer overflow error. Data has been lost due to input buffer overflow bit 13: Frame error. Error detected in start bit or stop bit. May be due to noise or wrong BAUD rate Input port 9. Serial input status: bit 0-15: Number of bytes currently in input buffer bit 16: Buffer overflow error. Data has been lost due to input buffer overflow bit 17: Frame error. Error detected in start bit or stop bit. May be due to noise or wrong BAUD rate Input port 11. Serial output status: bit 0-15: Number of bytes currently in output buffer bit 16: Buffer overflow error. Data has been lost due to output buffer overflow bit 18: Ready. The output buffer has enough space to receive at least one more byte */ static uint64_t input_ (CThread * t) { // read from input port. // vector version: RD = vector register, RS = port address, RT = vector length // g.p. version: RD = g.p. register, RS = port address, IM1 = port address using namespace std; // some compilers have getchar and putchar in namespace std, some not if (t->vect) { // vector version not implemented yet t->interrupt(INT_WRONG_PARAMETERS); return 0; } uint32_t port = t->parm[2].i; // immediate operand contains port number if (port == 255) port = t->parm[1].i; // register operand contains port number switch (port) { #if defined (__WINDOWS__) || defined (_WIN32) || defined (_WIN64) case 8: // port 8: read serial input if (_kbhit()) { //int res = getchar(); // read character from stdin. waits for enter int res = _getch(); // read character from stdin. does not wait for enter if (res < 0) return 0; // error or end of file (EOF = -1) else return (res | 0x100); // input valid } else return 0; case 9: // port 9: read serial input status. Only in systems that allow polling return _kbhit(); #else // Other operating systems // Why is there no portable way of non-blocking read or polling a serial input? //case 8: case 9: // return 0; // to do: implement for Linux using curses.h or something #endif case 11: // port 11: get serial output status. return 0; default: t->interrupt(INT_WRONG_PARAMETERS); break; } return 0; } /* Output ports to match soft core Output port 9. Serial input control: bit 0: Clear buffer. Delete all data currently in the input buffer, and clear error flags bit 1: Clear error flags but keep data. The error bits remain high after an error condition until reset by this or by system reset Output port 10. Serial output: Write one byte to RS232 serial output. bit 0-7: Data to write Other bits are reserved. Output port 11. Serial output control: bit 0: Clear buffer. Delete all data currently in the input buffer, and clear error flags bit 1: Clear error flags but keep data. The error bits remain high after an error condition until reset by this or by system reset */ static uint64_t output_ (CThread * t) { // write to output port. // vector version: RD = vector register to write, RS = port address, RT = vector length // g.p. version: RD = g.p. register to wrote, RS = port address, IM1 = port address using namespace std; // some compilers have getchar and putchar in namespace std::, some not if (t->vect) { // vector version not implemented yet t->interrupt(INT_WRONG_PARAMETERS); return 0; } uint32_t port = t->parm[2].i; // immediate operand contains port number if (port == 255) port = t->parm[1].i; // register operand contains port number uint32_t value = t->parm[0].i; // value to output switch (port) { case 9: // clear input buffer #if defined (__WINDOWS__) || defined (_WIN32) || defined (_WIN64) while (_kbhit()) (void)_getch(); #endif break; case 10: // write character putchar(value); break; case 11: // serial output control. not possible in most operating systems break; default: t->interrupt(INT_WRONG_PARAMETERS); break; } t->running = 2; // don't save to register RD return 0; } // tables of single format instructions // Format 1.0 A. Three general purpose registers PFunc funcTab4[64] = { 0, 0, 0, 0, 0, 0, 0, 0 }; // Format 1.1 C. One general purpose register and a 16 bit immediate operand. int64 PFunc funcTab5[64] = { move_16s, move_16s, 0, move_16u, shifti1_move, shifti1_move, f_add, 0, // 0 - 7 f_mul, 0, shifti1_add, shifti1_add, shifti1_and, shifti1_and, shifti1_or, shifti1_or, // 8 - 15 shifti1_xor, shifti1_xor, shift16_add, 0, 0, 0, 0, // 16 -23 }; // Format 1.2 A. Three vector register operands PFunc funcTab6[64] = { get_len, get_len, set_len, set_len, insert_, extract_, broad_, 0, // 0 - 7 compress_sparse, expand_sparse, 0, 0, bits2bool, 0, 0, 0, // 8 - 15 shift_expand, shift_reduce, shift_up, shift_down, 0, 0, 0, 0, // 16 - 23 div_ex, div_ex, f_mul_ex, f_mul_ex_u, sqrt_, 0, 0, 0, // 24 - 31 add_ss, add_us, sub_ss, sub_us, mul_ss, mul_us, add_oc, sub_oc, // 32 - 39 mul_oc, div_oc, add_c, sub_b, 0, 0, 0, 0, // 40 - 47 0, 0, 0, 0, 0, 0, 0, 0, // 48 - 55 read_spev, 0, read_call_stack, write_call_stack, read_memory_map, write_memory_map, input_, output_ // 56 - 63 }; // Format 1.8 B. Two general purpose registers and an 8-bit immediate operand. int64 PFunc funcTab9[64] = { abs_64, shifti_add, bitscan_, roundp2, popcount_, 0, 0, 0, // 0 - 7 0, 0, 0, 0, 0, 0, 0, 0, // 8 - 15 0, 0, 0, 0, 0, 0, 0, 0, // 16 - 23 0, 0, 0, 0, 0, 0, 0, 0, // 24 - 31 read_spec, write_spec, read_capabilities, write_capabilities, read_perf, read_perf, read_sys, write_sys, // 32 - 39 0, 0, 0, 0, 0, 0, 0, 0, // 40 - 47 0, 0, 0, 0, 0, 0, 0, 0, // 48 - 55 push_r, pop_r, 0, 0, 0, 0, input_, output_ // 56 - 63 }; // Format 2.9 A. Three general purpose registers and a 32-bit immediate operand PFunc funcTab12[64] = { move_hi32, insert_hi32, add_32u, sub_32u, add_hi32, and_hi32, or_hi32, xor_hi32, // 0 - 7 0, replace_bits, 0, 0, 0, 0, 0, 0, // 8 - 15 0, 0, 0, 0, 0, 0, 0, 0, // 16 - 23 0, 0, 0, 0, 0, 0, 0, 0, // 24 - 31 address_, 0, 0, 0, 0, 0, 0, 0, // 32 - 39 0, 0, 0, 0, 0, 0, 0, 0, // 40 - 47 };
Go to most recent revision | Compare with Previous | Blame | View Log