URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [trunk/] [alu.sv] - Rev 159
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////////
// Engineer: Agner Fog
//
// Create Date: 2020-06-06
// Last modified: 2021-08-03
// Module Name: decoder
// Project Name: ForwardCom soft core
// Target Devices: Artix 7
// Tool Versions: Vivado v. 2020.1
// License: CERN-OHL-W
// Description: Arithmetic-logic unit for general purpose registers.
// Executes add, subtract, bit manipulation, etc.
//////////////////////////////////////////////////////////////////////////////////
`include "defines.vh"
`include "subfunctions.vh"
module alu (
input clock, // system clock
input clock_enable, // clock enable. Used when single-stepping
input reset, // system reset
input valid_in, // data from previous stage ready
input stall_in, // pipeline is stalled
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
input [31:0] instruction_in, // current instruction, only first word used here
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
input mask_alternative_in, // mask register and fallback register used for alternative purposes
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
input vector_in, // vector registers used
input [6:0] opx_in, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
input [5:0] opj_in, // operation ID for conditional jump instructions
input [2:0] ot_in, // operand type
input [5:0] option_bits_in, // option bits from IM3 or mask
input [15:0] im2_bits_in, // constant bits from IM2 as extra operand
// monitor result buses:
input write_en1, // a result is written to writeport1
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
input [`RB1:0] writeport1_in, // result bus 1
input write_en2, // a result is written to writeport2
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
input [`RB1:0] writeport2_in, // result bus 2
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
// Register values sampled from result bus in previous stages
input [`RB:0] operand1_in, // first register operand or fallback
input [`RB:0] operand2_in, // second register operand RS
input [`RB:0] operand3_in, // last register operand RT
input [`MASKSZ:0] regmask_val_in, // mask register
input [`RB1:0] ram_data_in, // memory operand from data ram
input opr2_from_ram_in, // value of operand 2 comes from data ram
input opr3_from_ram_in, // value of last operand comes from data ram
input opr1_used_in, // operand1_in is needed
input opr2_used_in, // operand2_in is needed
input opr3_used_in, // operand3_in is needed
input regmask_used_in, // regmask_val_in is needed
output reg valid_out, // for debug display: alu is active
output reg register_write_out,
output reg [5:0] register_a_out, // register to write
output reg [`RB1:0] result_out, // output result to destination register
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
output reg jump_out, // jump instruction: jump taken
output reg nojump_out, // jump instruction: jump not taken
output reg [`CODE_ADDR_WIDTH-1:0] jump_pointer_out, // jump target to fetch unit
output reg stall_out, // alu is waiting for an operand or not ready to receive a new instruction
output reg stall_next_out, // alu will be waiting in next clock cycle
output reg error_out, // unknown instruction
output reg error_parm_out, // wrong parameter for instruction
// outputs for debugger:
output reg [31:0] debug1_out, // debug information
output reg [31:0] debug2_out // temporary debug information
);
logic [`RB1:0] operand1; // first register operand RD or RU. bit `RB is 1 if invalid
logic [`RB1:0] operand2; // second register operand RS. bit `RB is 1 if invalid
logic [`RB1:0] operand3; // last register operand RT. bit `RB is 1 if invalid
logic [`MASKSZ:0] regmask_val; // mask register
logic [1:0] otout; // operand type for output
logic [5:0] msb; // index to most significant bit
logic signbit2, signbit3; // sign bits of operands
logic [`RB1:0] sbit; // position of sign bit
logic [`RB1:0] result; // result for output
logic [1:0] result_type; // type of result
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
logic [6:0] opj; // operation ID for conditional jump
logic jump_result; // result of jump condition (needs inversion if opj[0])
logic mask_off; // result is masked off
logic stall; // waiting for operands
logic stall_next; // will be waiting for operands in next clock cycle
logic error; // unknown instruction
logic error_parm; // wrong parameter for instruction
logic jump_taken; // conditional jump is jumping
logic jump_not_taken; // conditional jump is not jumping or target follows immediately
logic normal_output; // normal register output
logic [`CODE_ADDR_WIDTH-1:0] nojump_target; // next address if not jumping
logic [`CODE_ADDR_WIDTH-1:0] relative_jump_target; // jump target for multiway relative jump
// It seems to be more efficient to truncate operands locally by ANDing with sizemask than to
// make separate wires for the truncated operands, because wiring is more expensive than logic:
logic [`RB1:0] sizemask; // mask for operand type
always_comb begin
stall = 0;
stall_next = 0;
regmask_val = 0;
// get all inputs
if (regmask_val_in[`MASKSZ]) begin // value missing
if (write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
regmask_val = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
regmask_val = writeport2_in[(`MASKSZ-1):0]; // obtained from result bus 2
end else begin
if (regmask_used_in) begin
stall = 1; // operand not ready
if (regmask_val_in[`TAG_WIDTH-1:0] != predict_tag1_in && regmask_val_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
end
end
end
end else begin // value available
regmask_val = regmask_val_in;
end
// result is masked off
mask_off = regmask_used_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in;
operand1 = 0;
if (operand1_in[`RB]) begin // value missing
if (write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
operand1 = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
operand1 = writeport2_in; // obtained from result bus 2
end else begin
if (opr1_used_in) begin
stall = 1; // operand not ready
if (operand1_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand1_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
end
end
end
end else begin
operand1 = operand1_in[`RB1:0];
end
operand2 = 0;
if (opr2_from_ram_in) begin
operand2 = ram_data_in;
end else if (operand2_in[`RB]) begin // value missing
if (write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
operand2 = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
operand2 = writeport2_in; // obtained from result bus 2
end else begin
if (opr2_used_in /*&& !mask_off*/) begin // mask_off removed because of critical timing
stall = 1; // operand not ready
if (operand2_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand2_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
end
end
end
end else begin // value available
operand2 = operand2_in[`RB1:0];
end
operand3 = 0;
if (opr3_from_ram_in) begin
operand3 = ram_data_in;
end else if (operand3_in[`RB]) begin // value missing
if (write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
operand3 = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
operand3 = writeport2_in; // obtained from result bus 2
end else begin
if (opr3_used_in /*&& !mask_off*/) begin // mask_off removed because of critical timing
stall = 1; // operand not ready
if (operand3_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand3_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
end
end
end
end else begin // value available
operand3 = operand3_in[`RB1:0];
end
opx = opx_in; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
opj = opj_in; // operation ID for conditional jump
result = 0;
jump_result = 0;
otout = ot_in[1:0]; // operand type for output
result_type = result_type_in;
jump_taken = 0;
jump_not_taken = 0;
nojump_target = 0;
relative_jump_target = 0;
error = 0;
error_parm = 0;
// auxiliary variables depending on operand type
case (ot_in[1:0])
0: begin // 8 bit
msb = 7; // most significant bit
sbit = 8'H80; // sign bit
sizemask = 8'HFF; // mask off unused bits
signbit2 = operand2[7]; // sign bit of operand 2
signbit3 = operand3[7]; // sign bit of operand 3
end
1: begin // 16 bit
msb = 15; // most significant bit
sbit = 16'H8000; // sign bit
sizemask = 16'HFFFF; // mask off unused bits
signbit2 = operand2[15]; // sign bit of operand 2
signbit3 = operand3[15]; // sign bit of operand 3
end
2: begin // 32 bit
msb = 31; // most significant bit
sbit = 32'H80000000; // sign bit
sizemask = 32'HFFFFFFFF; // mask off unused bits
signbit2 = operand2[31]; // sign bit of operand 2
signbit3 = operand3[31]; // sign bit of operand 3
end
3: begin // 64 bit, or 32 if 64 bit not supported
msb = `RB1; // most significant bit
sbit = {1'b1,{(`RB-1){1'b0}}}; // sign bit
sizemask = ~(`RB'b0); // mask off unused bits
signbit2 = operand2[`RB1]; // sign bit of operand 2
signbit3 = operand3[`RB1]; // sign bit of operand 3
end
endcase
////////////////////////////////////////////////
// Select ALU operation
////////////////////////////////////////////////
if (opx == `II_MOVE || opx == `II_STORE) begin
// simple move instructions
result = operand3;
end else if (opx == `IX_READ_SPEC || opx == `IX_WRITE_SPEC) begin
// read or write special registers
result = operand2;
end else if (opx == `II_SIGN_EXTEND || opx == `II_SIGN_EXTEND_ADD || opx == `IX_RELATIVE_JUMP) begin
// instructions involving sign extension
logic [`RB1:0] sign_ex; // result of sign extension
logic [`RB1:0] sign_ex_sc; // result of sign extension and scaling
otout = 3; // 64 bit output
// sign extend:
case (ot_in[1:0])
0: sign_ex = {{56{operand3[ 7]}},operand3[7:0]}; // 8 bit
1: sign_ex = {{48{operand3[15]}},operand3[15:0]}; // 16 bit
2: sign_ex = {{32{operand3[31]}},operand3[31:0]}; // 32 bit
3: sign_ex = operand3[`RB1:0]; // 64 bit
endcase
if (opx == `II_SIGN_EXTEND_ADD) begin
// scale sign_ex.
// The scale factor is limited to 3 here for timing reasons so that it fits a 6-input LUT
// A full barrel shifter takes too much time
case (option_bits_in[1:0]) // optional shift count in option bits
0: sign_ex_sc = sign_ex; // scale factor 1
1: sign_ex_sc = {sign_ex,1'b0}; // scale factor 2
2: sign_ex_sc = {sign_ex,2'b0}; // scale factor 4
3: sign_ex_sc = {sign_ex,3'b0}; // scale factor 8
endcase
result = sign_ex_sc + operand2; // add
if (|(option_bits_in[5:2])) error_parm = 1; // shift count > 3
end else begin
result = sign_ex;
end
if (opx == `IX_RELATIVE_JUMP) begin
relative_jump_target = sign_ex + operand2[`RB1:2] - {1'b1,{(`CODE_ADDR_START-2){1'b0}}}; // subtract (code memory start)/4
if (|(operand2[1:0])) error_parm = 1; // jump to misaligned address
end
end else if (opx == `II_COMPARE || (opx >= `II_MIN && opx <= `II_MAX_U)) begin
// instructions involving signed and unsigned compare. operation defined by option bits
logic b1, b2, b3, eq, less; // intermediate results
logic [`RB1:0] sbit1;
b1 = 0; b2 = 0; b3 = 0; eq = 0; less = 0;
// flip a 1 in the sign bit position if comparison is signed (option_bits_in[3] = 0)
sbit1 = option_bits_in[3] ? `RB'b0 : sbit; // sign bit if signed
eq = (operand2 & sizemask) == (operand3 & sizemask); // operands are equal
less = ((operand2 & sizemask) ^ sbit1) < ((operand3 & sizemask) ^ sbit1); // a < b, signed or unsigned
if (option_bits_in[2:1] == 0) begin
b1 = eq; // a == b
end else if (option_bits_in[2:1] == 1) begin
b1 = less; // a < b
end else if (option_bits_in[2:1] == 2) begin
b1 = ~less & ~eq; // a > b
end else begin
logic [`RB1:0] absa;
logic [`RB1:0] absb;
absa = signbit2 ? -operand2 : operand2; // abs(a)
absb = signbit3 ? -operand3 : operand3; // abs(b)
b1 = (absa & sizemask) < (absb & sizemask); // abs(a) < abs(b)
end
jump_result = b1; // result for conditional jump
b2 = b1 ^ option_bits_in[0]; // bit 0 of condition code inverts the result
// alternative use of mask
case (option_bits_in[5:4])
2'b00: b3 = regmask_val[0] ? b2 : operand1[0]; // normal fallback
2'b01: b3 = regmask_val[0] & b2 & operand1[0]; // mask & result & fallback
2'b10: b3 = regmask_val[0] & (b2 | operand1[0]); // mask & (result | fallback)
2'b11: b3 = regmask_val[0] & (b2 ^ operand1[0]); // mask & (result ^ fallback)
endcase
// copy remaining bits from mask
if (opx == `II_COMPARE && instruction_in[`MASK] != 3'b111) begin
result[`RB1:1] = regmask_val[(`MASKSZ-1):1];
end
if (opx >= `II_MIN) begin
// min and max instructions
result = b1 ? operand2 : operand3;
end else if (regmask_used_in | mask_alternative_in) begin
// combine result with rest of mask or NUMCONTR
result = {regmask_val[(`MASKSZ-1):1],b3}; // get remaining bits from mask
end else begin
// normal compare
result = b3;
end
end else if (opx == `II_ADD || opx == `II_SUB) begin
// addition, subtraction, and conditional jumps involving addition or subtraction
logic [`RB:0] bigresult; // one extra bit on result for carry
logic zero; // result is zero
logic sign; // sign of result
logic carry; // unsigned carry/borrow
logic overflow; // signed overflow
if (~opx[0]) bigresult = operand2 + operand3; // add
else bigresult = operand2 - operand3; // subtract
result = bigresult[`RB1:0]; // result without extra carry bit
case (ot_in[1:0])
0: begin // 8 bit
sign = bigresult[7]; // sign bit
carry = bigresult[8]; // carry out (unsigned overflow)
end
1: begin // 16 bit
sign = bigresult[15]; // sign bit
carry = bigresult[16]; // carry out (unsigned overflow)
end
2: begin // 32 bit
sign = bigresult[31]; // sign bit
carry = bigresult[32]; // carry out (unsigned overflow)
end
3: begin // 64 bit (or 32)
sign = bigresult[`RB1]; // sign bit
carry = bigresult[`RB]; // carry out (unsigned overflow)
end
endcase
zero = ~|(result & sizemask); // result is zero
overflow = (signbit2 ^ signbit3 ^ ~opx[0]) & (signbit2 ^ sign); // signed overflow
// jump condition
case (opj[3:1])
`IJ_SUB_JZ >> 1: jump_result = zero;
`IJ_SUB_JNEG >> 1: jump_result = sign;
`IJ_SUB_JPOS >> 1: jump_result = ~sign & ~zero;
`IJ_SUB_JOVFLW >> 1: jump_result = overflow;
`IJ_SUB_JBORROW >> 1: jump_result = carry;
default: jump_result = 0;
endcase
end else if (opx == `II_AND || opx == `II_OR || opx == `II_XOR) begin
if (opx == `II_AND) begin
// bitwise AND, and conditional jumps involving this
result = operand2[`RB1:0] & operand3[`RB1:0];
end else if (opx == `II_OR) begin
// bitwise OR, and conditional jumps involving this
result = operand2[`RB1:0] | operand3[`RB1:0];
end else if (opx == `II_XOR) begin
// bitwise XOR, and conditional jumps involving this
result = operand2[`RB1:0] ^ operand3[`RB1:0];
end
jump_result = ~|(result & sizemask); // zero condition for conditional jump
end else if (opx >= `II_CLEAR_BIT && opx <= `II_TEST_BITS_OR) begin
// various bit manipulation instructions
logic [`RB1:0] onebit; // 1 in the position indicated by opr3
logic rbit; // result bit from test
rbit = 0;
onebit = 0;
if ((operand3 & sizemask) <= msb) onebit[operand3[5:0]] = 1'b1;// onebit = 1 ** opr3
case (opx)
`II_CLEAR_BIT: result = operand2 & ~ onebit;
`II_SET_BIT: result = operand2 | onebit;
`II_TOGGLE_BIT: result = operand2 ^ onebit;
`II_TEST_BIT: begin
rbit = |(operand2 & onebit);
end
`II_TEST_BITS_OR: begin
rbit = |(operand2 & operand3 & sizemask);
end
`II_TEST_BITS_AND: begin
rbit = ~|(((operand2 & operand3) ^ operand3) & sizemask);
end
endcase
jump_result = rbit; // jump condition for bit tests
if (opx >= `II_TEST_BIT && opx <= `II_TEST_BITS_OR) begin
// alternative use of mask and fallback in bit test instructions
logic a, b, c;
a = regmask_val[0] ^ option_bits_in[4]; // mask bit flipped by option bit 4
b = rbit ^ option_bits_in[2]; // result bit flipped by option bit 2
c = operand1[0] ^ option_bits_in[3]; // fallback bit flipped by option bit 3
case (option_bits_in[1:0]) // boolean operations controlled by option bits 1-0
2'b00: result[0] = a ? b : c; // normal fallback
2'b01: result[0] = a & (b & c); // mask & result & fallback
2'b10: result[0] = a & (b | c); // mask & (result | fallback)
2'b11: result[0] = a & (b ^ c); // mask & (result ^ fallback)
endcase
if (option_bits_in[5]) begin // copy remaining bits from mask or NUMCONTR
result[`RB1:1] = regmask_val[(`MASKSZ-1):1];
end
end
end else if ((opx >= `II_SHIFT_LEFT && opx <= `II_SHIFT_RIGHT_U) || opx == `II_FUNNEL_SHIFT
|| opx == `IX_MOVE_BITS1 || opx == `IX_MOVE_BITS2) begin
// shift instructions and other instruction involving shift and rotate
// Barrel shifters are expensive in terms of LUT use.
// Make one universal barrel shifter to use for all shift and rotate instructions
logic [(`RB*2-1):0] barrel; // input to barrel shifter. 2x32 or 2x64 bits
logic [`RB1:0] barrel_out; // output from barrel shifter. 32 or 64 bits
logic [5:0] shift_count1; // shift count for barrel shifter
logic [5:0] shift_count2; // shift count for barrel shifter, limited
logic overfl; // shift count overflows
if (opx == `II_SHIFT_LEFT || opx == `II_ROTATE) begin
shift_count1 = -operand3[5:0];
end else begin
shift_count1 = operand3[5:0];
end
// select input for barrel shifter
barrel = 0;
if (ot_in[1:0] == 0) begin // 8 bits
shift_count2 = shift_count1[2:0];
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
barrel[15:8] = operand2[7:0];
if (operand3[5:0] == 0) barrel[7:0] = operand2[7:0]; // no shift
end else if (opx == `II_SHIFT_RIGHT_S) begin
barrel[7:0] = operand2[7:0];
barrel[15:8] = {8{operand2[7]}}; // sign bit
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
barrel[7:0] = operand2[7:0];
end else if (opx == `II_ROTATE) begin
barrel[7:0] = operand2[7:0];
barrel[15:8] = operand2[7:0];
end else begin // funnel shift
barrel[7:0] = operand1[7:0];
barrel[15:8] = operand2[7:0];
end
end else if (ot_in[1:0] == 1) begin // 16 bits
shift_count2 = shift_count1[3:0];
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
barrel[31:16] = operand2[15:0];
if (operand3[5:0] == 0) barrel[15:0] = operand2[15:0]; // no shift
end else if (opx == `II_SHIFT_RIGHT_S) begin
barrel[15:0] = operand2[15:0];
barrel[31:16] = {16{operand2[15]}}; // sign bit
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
barrel[15:0] = operand2[15:0];
end else if (opx == `II_ROTATE) begin
barrel[15:0] = operand2[15:0];
barrel[31:16] = operand2[15:0];
end else begin // funnel shift
barrel[15:0] = operand1[15:0];
barrel[31:16] = operand2[15:0];
end
end else if (ot_in[1:0] == 2 || `RB <= 32) begin // 32 bits (or 64 bits if not supported)
shift_count2 = shift_count1[4:0];
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
barrel[63:32] = operand2[31:0];
if (operand3[5:0] == 0) barrel[31:0] = operand2[31:0]; // no shift
end else if (opx == `II_SHIFT_RIGHT_S) begin
barrel[31:0] = operand2[31:0];
barrel[63:32] = {32{operand2[31]}}; // sign bit
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
barrel[31:0] = operand2[31:0];
end else if (opx == `II_ROTATE) begin
barrel[31:0] = operand2[31:0];
barrel[63:32] = operand2[31:0];
end else begin // funnel shift
barrel[31:0] = operand1[31:0];
barrel[63:32] = operand2[31:0];
end
end else begin // 64 bits (if supported)
shift_count2 = shift_count1[5:0];
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
barrel[127:64] = operand2[63:0];
if (operand3[5:0] == 0) barrel[63:0] = operand2[63:0]; // no shift
end else if (opx == `II_SHIFT_RIGHT_S) begin
barrel[63:0] = operand2[63:0];
barrel[127:64] = {64{operand2[63]}}; // sign bit
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
barrel[63:0] = operand2[63:0];
end else if (opx == `II_ROTATE) begin
barrel[63:0] = operand2[63:0];
barrel[127:64] = operand2[63:0];
end else begin // funnel shift
barrel[63:0] = operand1[63:0];
barrel[127:64] = operand2[63:0];
end
end
// big barrel shifter
barrel_out = barrel[shift_count2+:`RB];
// select output
overfl = (operand3 & sizemask) > msb; // check if shift count overflows
if (opx == `IX_MOVE_BITS1 || opx == `IX_MOVE_BITS2) begin // move_bits instruction
// insert shift result in destination bit field
integer i;
for (i = 0; i < `RB; i++) begin
if (i >= im2_bits_in[13:8] && i <= option_bits_in) result[i] = barrel_out[i];
else result[i] = operand1[i];
end
end else if (overfl) begin
if (opx == `II_SHIFT_RIGHT_S) result = {`RB{signbit2}}; // shift right overflows to sign bit
else if (opx == `II_ROTATE) result = barrel_out; // rotate has no overflow
else result = 0; // all other shifts overflow to zero
end else begin
result = barrel_out; // result of shift or rotate
end
end else if (opx == `II_ADD_ADD) begin
// 3-operand add. signs are controlled by option bits
// (this is separate from the add and subtract operations with conditional jumps because the timing is critical)
logic [`RB1:0] r1, r2, r3;
r1 = option_bits_in[0] ? -operand1[`RB1:0] : operand1[`RB1:0];
r2 = option_bits_in[1] ? -operand2[`RB1:0] : operand2[`RB1:0];
r3 = option_bits_in[2] ? -operand3[`RB1:0] : operand3[`RB1:0];
result = r1 + r2 + r3;
end else if (opx == `II_SELECT_BITS) begin
// select_bits instruction
result = (operand1[`RB1:0] & operand3[`RB1:0]) | (operand2[`RB1:0] & ~operand3[`RB1:0]);
// bit scan is critical in terms of timing. Several different implementations tried here:
`define BITSCAN_BASED_ON_ROUNDP2
`ifdef BITSCAN_BASED_ON_ROUNDP2 // bit scan and roundp2 instructions combined. This takes less resources
end else if (opx == `IX_BIT_SCAN || opx == `IX_ROUNDP2) begin
//
// using bit index method because this makes roundp2 simple
logic [`RB1:0] a; // intermediate results
logic [`RB1:0] b;
logic [`RB1:0] c;
logic [`RB1:0] d;
logic [6:0] bitscan_result;
logic [5:0] r;
logic iszero; // input is zero
logic ispow2; // input is a power of 2
r = 0; iszero = 0;
a = operand2 & sizemask;
ispow2 = ~|(a & (a-1)); // a is a power of 2
if (opx == `IX_ROUNDP2 || operand3[0]) begin
// bitscan reverse scan
`ifdef SUPPORT_64BIT
b = reversebits64(a); // reverse order of bits (in subfunctions.vh)
c = b & ~(b-1); // isolate lowest 1-bit
d = reversebits64(c); // reverse back again
`else
b = reversebits32(a); // reverse order of bits (in subfunctions.vh)
c = b & ~(b-1); // isolate lowest 1-bit
d = reversebits32(c); // reverse back again
`endif
end else begin
// bitscan forward scan
d = a & ~(a-1); // isolate lowest 1-bit
end
// bitindex implemented in subfunctions.vh
bitscan_result = bitindex(d);
r = bitscan_result[6:1];
iszero = bitscan_result[0];
if (iszero) begin // input is zero. output determined by option bit 1
if (operand3[4]) begin
result = ~(`RB'b0); // return -1 if zero
end else begin
result = `RB'b0; // return 0 if zero
end
end else if (opx == `IX_BIT_SCAN) begin
result = r; // output result
end else if (!operand3[0] || ispow2) begin
// roundp2 round down to nearest power of 2
result = d;
end else begin
// round up to nearest power of 2
if (signbit2) begin // overflow
result = operand3[5] ? ~(`RB'b0) : 0; // return 0 or -1 if overflow
end else begin
result = {d,1'b0}; // round up
end
end
`else // bit scan and roundp2 instructions implemented separately
end else if (opx == `IX_ROUNDP2) begin
logic [`RB1:0] a; // intermediate results
logic [`RB1:0] b;
logic [`RB1:0] c;
logic [`RB1:0] d;
logic iszero; // input is zero
logic ispow2; // input is a power of 2
a = operand2 & sizemask; // cut off input to desired operand size
iszero = ~|a; // input is zero
ispow2 = ~|(a & (a-1)); // input is a power of 2
`ifdef SUPPORT_64BIT
b = reversebits64(a); // reverse order of bits (in subfunctions.vh)
c = b & ~(b-1); // isolate lowest 1-bit
d = reversebits64(c); // reverse back again
`else
b = reversebits32(a); // reverse order of bits (in subfunctions.vh)
c = b & ~(b-1); // isolate lowest 1-bit
d = reversebits32(c); // reverse back again
`endif
if (iszero) begin // input is zero. output determined by option bit 4
if (operand3[4]) begin
result = ~(`RB'b0); // return -1 if zero
end else begin
result = 0; // return 0 if zero
end
end else if (~operand3[0] | ispow2) begin
// roundp2 round down to nearest power of 2
result = d;
end else begin
// round up to nearest power of 2
if (signbit2) begin // overflow
result = operand3[5] ? ~(`RB'b0) : 0; // return 0 or -1 if overflow
end else begin
result = {d,1'b0}; // round up
end
end
end else if (opx == `IX_BIT_SCAN) begin
logic [`RB1:0] a; // input cut off to desired operand size
logic [`RB1:0] b; // input with bits reversed
logic [`RB1:0] c; // input bits reversed if forward scan
logic [6:0] r; // bitscan result
logic iszero; // input is zero
a = operand2 & sizemask; // cut off input to desired operand size
// reverse bits if forward scan
case (ot_in[1:0])
0: b = reversebits8(operand2[7:0]); // 8 bit
1: b = reversebits16(operand2[15:0]); // 16 bit
`ifdef SUPPORT_64BIT
3: b = reversebits64(operand2[63:0]); // 64 bit
`endif
default: b = reversebits32(operand2[31:0]); // 32 bit
endcase
if (operand3[0]) c = a; // reverse scan
else c = b; // forward scan
// bitscan function defined in subfunctions.vh
r = bitscan64A(a); // this implementation may be faster?
//r = bitscan64C(c); // alternative implementation
iszero = r[0]; // input is zero
if (iszero) begin // input is zero. output determined by option bit 4
if (operand3[4]) begin
result = ~(`RB'b0); // return -1 if zero
end else begin
result = 0; // return 0 if zero
end
end else begin
result = r[6:1]; // normal bitscan result
end
`endif
end else if (opx == `IX_POPCOUNT) begin
// popcount instruction. functions are is in subfunctions.vh
if (`RB <= 32) result = popcount32(operand2 & sizemask);
else result = popcount64(operand2 & sizemask);
end else if (opx == `IX_ABS) begin
// abs instruction
if (~signbit2) begin
result = operand2; // input is not negative
end else if ((operand2 & ~sbit & sizemask) == 0) begin
// overflow
case (operand3[1:0]) // last operand determines what to do with overflow
0: result = operand2; // overfloaw wraps around
1: result = ~sbit; // overfloaw gives saturation
2: result = 0; // overflow gives 0
endcase
end else begin
result = -operand2; // input is negative. change sign
end
end else if (opx == `IX_TRUTH_TAB3) begin
// truth_tab3 instruction
// truth_table_lookup is in subfunctions.vh
result = truth_table_lookup(operand1, operand2, operand3, im2_bits_in[7:0]);
if (option_bits_in[0]) result[`RB1:1] = 0; // output only bit 0
else if (option_bits_in[1]) result[`RB1:1] = regmask_val[(`MASKSZ-1):1]; // remaining bits from mask
end else if (opx == `IX_INSERT_HI) begin
// insert constant into high 32 bits, leave low 32 bit unchanged
`ifdef SUPPORT_64BIT
result = {operand3[31:0],operand2[31:0]};
`else
result = operand2;
`endif
end else if (category_in == `CAT_JUMP) begin
// jump instructions that have no corresponding general instruction
if (opj[5:0] >= `IJ_INC_COMP_JBELOW && opj[5:0] <= `IJ_INC_COMP_JABOVE+1) begin
// loop instruction: increment and jump if below/above
`ifdef THIS_VERSION_IS_SLOW__IT_IS_NOT_USED
// This version is slow because the addition and the compare both involve a big carry-lookahead circuit.
// Use this version only if timing is not critical
logic eq, less;
result = operand2 + 1; // increment
eq = (result & sizemask) == (operand3 & sizemask); // operands are equal
less = ((result & sizemask) ^ sbit) < ((operand3 & sizemask) ^ sbit); // a+1 < b, signed
if (opj[1]) begin
jump_result = ~less & ~eq; // above
end else begin
jump_result = less; // below
end
`else
// This version is faster because it does most of the compare in parallel with the addition
logic less; // a < b, signed
logic result_equal_limit; // a + 1 == b
logic b_is_min; // the limit b is INT_MIN. a+1 < b always false
logic overflow1; // a+1 overflows
// The overflow check may not be important, but we want to make sure that the result is always
// the same as if the increment and the compare are coded as two separate instructions
result = operand2 + 1; // increment
less = ((operand2 & sizemask) ^ sbit) < ((operand3 & sizemask) ^ sbit); // a < b, signed
overflow1 = ((operand2 & sizemask) ^ sbit) == sizemask; // a+1 overflows
b_is_min = ((operand3 & sizemask) ^ sbit) == 0; // limit is INT_MIN, nothing is less than limit
result_equal_limit = ((result ^ operand3) & sizemask) == 0; // a + 1 == b
if (opj[1]) begin // increment_compare/jump_above
// check if a+1 > b <=> !(a+1 <= b) <=> !(a < b || overflow)
jump_result = ~(less | overflow1); // a+1 > b
end else begin // increment_compare/jump_below
// check if a+1 < b <=> (a < b && a+1 != b) || (overflow && b != INT_MIN)
jump_result = (less & ~result_equal_limit) | (overflow1 & ~b_is_min); // a + 1 < b
end
`endif
end else if (opj[5:1] == `IJ_SUB_MAXLEN_JPOS >> 1) begin
// vector loop instruction: subtract maximum vector length and jump if positive
logic [`RB1:0] max_vector_length;
logic sign; // sign of result
logic zero; // result is zero
if (`NUM_VECTOR_UNITS > 0) max_vector_length = `NUM_VECTOR_UNITS * 8;
else max_vector_length = 8; // make sure max_vector_length is not zero to avoid infinite loop
result = operand2 - max_vector_length;
zero = ~|(result & sizemask);
case (ot_in[1:0])
0: sign = result[7]; // 8 bit
1: sign = result[15]; // 16 bit
2: sign = result[31]; // 32 bit
3: sign = result[`RB1]; // 64 bit (or 32)
endcase
`ifdef SUPPORT_64BIT
if (instruction_in[`IL] == 1) begin
// 64 bits in format C
otout = 3; // 64 bit output
sign = result[`RB1];
zero = ~|result;
end
`endif
jump_result = ~sign & ~zero;
end
end else if (opx == `II_NOP) begin
// nop instruction. do nothing
end else begin
// unknown instruction. error
error = 1;
end
if (vector_in) error = 1; // Vector instructions not supported yet
if (category_in == `CAT_JUMP) begin
// manage conditional jump conditions
logic [1:0] il;
logic [2:0] mode;
il = instruction_in[`IL];
mode = instruction_in[`MODE];
// calculate target if not jumping
//instruction_length = il[1] ? il : 1; // il cannot be 0 for jump instructions)
nojump_target = instruction_pointer_in + il;
// treat jump as not taken if jump target is equal to nojump target
jump_not_taken = nojump_target == operand1_in;
// detect jump result
if (jump_result ^ opj[0]) jump_taken = 1; // bit 0 of opj inverts the condition
if (opj > `IJ_LAST_CONDITIONAL) jump_taken = 1; // unconditional jump always taken
if (opj == `IJ_TRAP) begin // trap and IJ_SYSCALL have same opj. Both will stop debugger
jump_taken = 0; // use trap as debug breakpoint. Resume execution in next instruction
end
// compare, test and indirect jumps have no register return. The decoder takes care of result_type = `RESULT_NONE;
end
// normal register output
// regmask_used_in removed from this equation because of critical timing:
normal_output = valid_in & ~stall & ~stall_in
& (result_type == `RESULT_REG | result_type == `RESULT_SYS)
& (regmask_val[0] | mask_alternative_in) & ~vector_in;
end
// outputs
always_ff @(posedge clock) if (clock_enable) begin
if (normal_output) begin
// normal register output
case (otout)
0: result_out <= result[7:0];
1: result_out <= result[15:0];
2: result_out <= result[31:0];
3: result_out <= result[`RB1:0];
endcase
register_write_out <= ~reset;
tag_val_out <= tag_val_in;
// destination register number. high bit is 1 for system registers
register_a_out <= {result_type[0],instruction_in[`RD]};
end else if (!valid_in || stall || stall_in || result_type == `RESULT_MEM || result_type == `RESULT_NONE || vector_in) begin
// stall_in must disable the output to avoid executing the same instruction twice.
// note: the FPGA has no internal tri-state buffers. We need to simulate result bus by or'ing outputs
register_write_out <= 0;
result_out <= 0;
register_a_out <= 0;
tag_val_out <= 0;
end else /*if (!regmask_val[0] && !mask_alternative_in) */ begin
// mask is zero. output is fallback
case (otout)
0: result_out <= operand1[7:0];
1: result_out <= operand1[15:0];
2: result_out <= operand1[31:0];
3: result_out <= operand1[`RB1:0];
endcase
register_write_out <= ~reset;
register_a_out <= {1'b0,instruction_in[`RD]};
tag_val_out <= tag_val_in;
end
if (stall || stall_in || !valid_in) begin
jump_out <= 0;
nojump_out <= 0;
end else if (category_in == `CAT_JUMP) begin
// additional output for conditional jump instructions
if (jump_not_taken | ~jump_taken) begin
jump_out <= 0;
nojump_out <= valid_in;
jump_pointer_out <= nojump_target;
end else begin // jump taken
jump_out <= valid_in && !reset;
nojump_out <= 0;
end
end else begin
// not a jump instruction
jump_out <= 0;
nojump_out <= 0;
jump_pointer_out <= 0;
end
// special cases for indirect jumps
if (opx == `IX_INDIRECT_JUMP) begin
jump_pointer_out <= operand3[`RB1:2] - {1'b1,{(`CODE_ADDR_START-2){1'b0}}}; // jump target = (last operand - code memory start)/ 4
if (|(operand3[1:0])) error_parm_out <= 1; // misaligned jump target
end else if (opx == `IX_RELATIVE_JUMP) begin // jump target is calculated
jump_pointer_out <= relative_jump_target;
end else begin
jump_pointer_out <= operand1_in; // jump target is calculated in previous stage
end
// other outputs
valid_out <= !stall & valid_in & !reset; // a valid output is produced
stall_out <= stall & valid_in & !reset; // stalled. waiting for operand
stall_next_out <= stall_next & valid_in & !reset; // predict stall in next clock cycle
error_out <= error & valid_in & !reset; // unknown instruction
error_parm_out <= error_parm & valid_in & !reset; // wrong parameter
// outputs for debugger:
debug1_out <= 0;
debug1_out[6:0] <= opx;
debug1_out[14:8] <= opj;
debug1_out[21:20] <= category_in;
debug1_out[24] <= stall;
debug1_out[25] <= stall_next;
debug1_out[27] <= error;
debug1_out[28] <= jump_taken;
debug1_out[29] <= jump_not_taken;
debug1_out[30] <= jump_result;
debug1_out[31] <= valid_in;
debug2_out[16] <= opr1_used_in;
debug2_out[17] <= opr2_used_in;
debug2_out[18] <= opr3_used_in;
debug2_out[19] <= regmask_used_in;
debug2_out[20] <= mask_alternative_in;
debug2_out[21] <= mask_off;
/*
debug2_out[22] <= regmask_val_in[0];
debug2_out[23] <= regmask_val_in[`MASKSZ];
debug2_out[27:24] <= regmask_val[3:0];
debug2_out[28] <= regmask_val[`MASKSZ];
*/
end
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log