URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [trunk/] [dataread.sv] - Rev 90
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////////
// Engineer: Agner Fog
//
// Create Date: 2020-06-06
// Last modified: 2021-07-18
// Module Name: data read
// Project Name: ForwardCom soft core
// Target Devices: Artix 7
// Tool Versions: Vivado v. 2020.1
// License: CERN-OHL-W v. 2 or later
// Description: Waiting stage after the address generator.
// This pipeline stage comes after the address generator.
// It waits for a clock cycle while data retrieved from the data cache.
// Checks if a memory address is valid.
// Converts single format instructions to multiformat instruction code where possible
// Dispatches the instruction to the right execution unit.
//
//////////////////////////////////////////////////////////////////////////////////
`include "defines.vh"
module dataread (
input clock, // system clock (100 MHz)
input clock_enable, // clock enable. Used when single-stepping
input reset, // system reset
input valid_in, // data from fetch module ready
input stall_in, // a later stage in pipeline is stalled
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
input [63:0] instruction_in, // current instruction, up to 3 words long
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
input vector_in, // this is a vector instruction
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
input [1:0] format_in, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
//input rs_status_in, // 1: RS is register operand
//input rt_status_in, // 1: RT is register operand
//input ru_status_in, // 1: RU is used
//input rd_status_in, // 1: RD is used as input
input mask_status_in, // 1: mask register used
input mask_alternative_in, // mask register and fallback register used for alternative purposes
input [1:0] num_operands_in, // number of source operands
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
input [1:0] immediate_field_in, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
input memory_operand_in, // The instruction has a memory operand
input array_error_in, // Array index exceeds limit
input options3_in, // IM3 containts option bits
// monitor result buses:
input write_en1, // a result is written to writeport1
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
input [`RB1:0] writeport1_in, // result bus 1
input write_en2, // a result is written to writeport2
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
input [`RB1:0] writeport2_in, // result bus 2
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
// Register values sampled from result bus in previous stages
input [`RB:0] operand1_in, // value of first operand
input [`RB:0] operand2_in, // value of second operand
input [`RB:0] operand3_in, // value of last operand
input [`MASKSZ:0] regmask_val_in, // value of mask register
input [`RB1:0] address_in, // address of memory operand
input [`RB1:0] ram_data_in, // memory operand from data cache
output reg valid_out, // An instruction is ready for output to next stage
output reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instruction
output reg [31:0] instruction_out, // first word of instruction
output reg stall_predict_out, // predict next stage will stall
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
output reg [`RB:0] operand1_out, // value of first operand for 3-op instructions, bit `RB is 0 if valid
output reg [`RB:0] operand2_out, // value of second operand, bit `RB is 0 if valid
output reg [`RB:0] operand3_out, // value of last operand, bit `RB is 0 if valid
output reg [`MASKSZ:0] mask_val_out, // value of mask, bit 32 is 0 if valid
output reg opr2_from_ram_out, // value of operand 2 comes from data cache
output reg opr3_from_ram_out, // value of last operand comes from data cache
output reg vector_out, // this is a vector instruction
output reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jump
output reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
output reg [1:0] num_operands_out, // number of source operands
output reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
output reg opr1_used_out, // opr1_val_out is needed
output reg opr2_used_out, // opr2_val_out is needed
output reg opr3_used_out, // opr3_val_out is needed
output reg regmask_used_out, // regmask_val_out is needed
output reg mask_alternative_out,// mask register and fallback register used for alternative purposes
output reg [3:0] exe_unit_out, // each bit enables a particular execution unit:
// 1: ALU, 10: MUL, 100: DIV, 1000: IN/OUT
output reg [6:0] opx_out, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
output reg [5:0] opj_out, // operation ID for conditional jump instructions
output reg [2:0] ot_out, // operand type
output reg [5:0] option_bits_out, // option bits from IM3 or mask
output reg [15:0] im2_bits_out, // constant bits from IM2 as extra operand
output reg trap_out, // trap instruction detected
output reg array_error_out, // array index out of bounds
output reg read_address_error_out, // invalid read memory address
output reg write_address_error_out, // invalid write memory address
output reg misaligned_address_error_out, // misaligned read/write memory address
output reg [31:0] debug_out // output for debugging
);
// instruction components
logic [1:0] il; // instruction length
logic [2:0] mode; // instruction mode
logic [2:0] mode2; // mode2 in format E
logic M; // M bit
logic [2:0] otype; // operand type in instruction
logic [5:0] op1; // OP1 in instruction
logic [1:0] op2; // OP2 in instruction
logic is_addr_instr; // this is an address instruction
logic [5:0] option_bits; // option bits
logic [15:0] im2_bits; // constant bits from IM2 as extra operand
logic [1:0] last_operand; // 0: last operand is a register,
// 1: last operand i an immediate constant
// 2: last operand is memory
// 3: both memory and immediate operands
logic half_precision; // half precision float
logic swap_operands; // swap last two operands
logic [3:0] exe_unit;
// operand values. Extra bit is 1 if not found
logic [`RB:0] opr1_val; // first operand if 3 operands
logic [`RB:0] opr2_val; // first operand if 2 operands, second operand if 3 operands
logic [`RB:0] opr3_val; // last operand
logic [`MASKSZ:0] regmask_val; // value of mask register, bit 32 indicates missing
logic opr2_from_ram; // value of operand 2 comes from data ram
logic opr3_from_ram; // value of last operand comes from data ram
logic opr1_used; // operand 1 is used
logic opr2_used; // operand 2 is used
logic opr3_used; // operand 3 is used
logic mask_off; // mask is zero
logic stall_predict; // predict that alu will stall in next clock cycle
logic read_address_error; // invalid read memory address
logic write_address_error; // invalid write memory address
logic misaligned_address_error; // misaligned read/write memory address
logic [31:0] jump_offset; // relative jump offset
// converted operation id
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
logic [5:0] opj; // operation ID for conditional jump instructions
// temporary storage of register values if found during stall. High bit is zero if valid
reg [`RB:0] opr1_val_temp; // value of first operand, bit `RB indicates missing
reg [`RB:0] opr2_val_temp; // value of second operand, bit `RB indicates missing
reg [`RB:0] opr3_val_temp; // value of last operand, bit `RB indicates missing
reg [`MASKSZ:0] regmask_val_temp; // value of mask register, bit 32 indicates missing
reg last_stall; // was stalled in last clock cycle. May obtain register values from the temporary registers
reg last_valid; // input was valid in last clock cycle. May obtain memory input
always_comb begin
il = instruction_in[`IL]; // instruction length
mode = instruction_in[`MODE]; // format mode
mode2 = instruction_in[`MODE2]; // format mode2
M = instruction_in[`M]; // M bit
op1 = instruction_in[`OP1]; // op1 operation
op2 = instruction_in[`OP2]; // op2 operation
option_bits = 0; // option bits from IM3 etc.
opr1_used = 0; // operand 1 used
opr2_used = 0; // operand 2 used
opr3_used = 0; // operand 3 used
half_precision = 0; // float16. not implemented yet
swap_operands = 0; // swap operands 2 and 3
mask_off = 0; // mask known to be zero
stall_predict = 0; // predict stall in next clock
read_address_error = 0; // read address out of range
write_address_error = 0; // write address out of range
misaligned_address_error = 0; // read or write to misaligned address
opr2_from_ram = 0; // value of operand 2 comes from data memory
opr3_from_ram = 0; // value of last operand comes from data memory
im2_bits = instruction_in[`IM2E]; // IM2 may be used as extra immediate operand
// look for address instruction in format 2.9A:
is_addr_instr = (il == 2 && mode == 1 && M && op1 == `II_ADDRESS_29);
// Detect operand type
if (format_in == `FORMAT_C) begin
otype = 2; // default operand type in format C is int32.
// Exceptions to format C operand type:
if (mode == 1) begin // format 1.1C.
if (op1[0]) otype = 3; // optype is int64 when op1 is odd
end
if (mode == 4) begin // format 1.4C.
if (op1 < 8) begin
otype = 1; // optype is int16 when op1 < 8
end else if (op1 < 32) begin
otype = 2 | op1[0]; // optype is int32 for even op1, int64 for odd op1
end else if (op1 < `II_ADD_H14) begin
otype = 5 + op1[0]; // optype is float32 for even op1, float64 for odd op1
end else begin
otype = 1; // 16 bits or float16
half_precision = 1; // half precision single format instructions
end
end
if (mode == 7) begin // format 1.7C
if ((op1 & -2) == `IJ_SUB_MAXLEN_JPOS) otype = 3; // sub_maxlen/jump instruction has int64
end
end else if (vector_in) begin
otype = instruction_in[`OT];
end else begin
otype = instruction_in[`OT] & 3'b011;
end
/*
// detect if half precision
if (category_in == `CAT_MULTI && op1 >= `II_ADD_FLOAT16 && op1 <= `II_MUL_ADD_FLOAT16)
half_precision = 1; // half precision multiformat instructions
if (category_in == `CAT_SINGLE && il == 1 && mode == 4 && op1 >= `II_ADD_H14 && op1 <= `II_MUL_H14)
half_precision = 1; // half precision single format instructions
*/
// detect if last two operands should be swapped
if (category_in == `CAT_MULTI && (op1 == `II_SUB_REV || op1 == `II_DIV_REV || op1 == `II_MUL_ADD2))
swap_operands = 1;
// look for register values in result buses
if (last_stall && opr1_val_temp[`RB] == 0) opr1_val = opr1_val_temp; // obtained during stall
else if (operand1_in[`RB] == 1 && write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) opr1_val = {1'b0, writeport1_in}; // obtained from result bus 1
else if (operand1_in[`RB] == 1 && write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) opr1_val = {1'b0, writeport2_in}; // obtained from result bus 2
else opr1_val = operand1_in;
if (last_stall && opr2_val_temp[`RB] == 0) opr2_val = opr2_val_temp; // obtained during stall
else if (operand2_in[`RB] == 1 && write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) opr2_val = {1'b0, writeport1_in}; // obtained from result bus 1
else if (operand2_in[`RB] == 1 && write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) opr2_val = {1'b0, writeport2_in}; // obtained from result bus 2
else opr2_val = operand2_in;
if (operand3_in[`RB] == 1 && write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) opr3_val = {1'b0, writeport1_in}; // obtained from result bus 1
else if (operand3_in[`RB] == 1 && write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) opr3_val = {1'b0, writeport2_in}; // obtained from result bus 2
else if (last_stall && opr3_val_temp[`RB] == 0) opr3_val = opr3_val_temp; // obtained during stall
else opr3_val = operand3_in;
if (last_stall && regmask_val_temp[`MASKSZ] == 0) regmask_val = regmask_val_temp; // obtained during stall
if (regmask_val_in[`MASKSZ] == 1 && write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) regmask_val = {1'b0, writeport1_in[`MASKSZ-1:0]}; // obtained from result bus 1
else if (regmask_val_in[`MASKSZ] == 1 && write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) regmask_val = {1'b0, writeport2_in[`MASKSZ-1:0]}; // obtained from result bus 2
else regmask_val = regmask_val_in;
// look for memory operand
if (memory_operand_in) begin
if (last_stall && last_valid) begin
// value from data memory is available early because of stall
if (immediate_field_in != `IMMED_NONE) begin
opr2_val = ram_data_in;
end else begin
opr3_val = ram_data_in;
end
end else begin
if (immediate_field_in != `IMMED_NONE) begin
opr2_from_ram = 1;
end else begin
opr3_from_ram = 1;
end
end
end
// check if memory operand is valid
// (this check is not placed in the address generator stage because of timing constraints)
if (valid_in && memory_operand_in && !is_addr_instr) begin
// invalid read memory address:
read_address_error = result_type_in != `RESULT_MEM &&
address_in >= 2**`DATA_ADDR_WIDTH; // can read from data only
// Invalid write memory address:
// To do: fix this when write access to code memory is removed.
// Note: The calculation of write_address_error is not done in the address generator
// stage because of critical timing. It is too late to disable illegal writes in this
// stage. We must find a solution to this in future versions with memory protection.
// For now, we will be satisfied with program halt.
write_address_error = result_type_in == `RESULT_MEM &&
address_in >= 2**`COMMON_ADDR_WIDTH; // can write to data or code
// misaligned read/write memory address:
case (otype)
0: // int8
misaligned_address_error = 0;
1: // int16
misaligned_address_error = address_in[0];
2, 5: // int32, float32
misaligned_address_error = address_in[1:0] != 0;
3, 6: // int64, float64
misaligned_address_error = address_in[2:0] != 0;
4, 7: // int128, float128
misaligned_address_error = address_in[3:0] != 0;
endcase
end
// find jump offset
jump_offset = 0;
if (category_in == `CAT_JUMP) begin
if (il == 1 && mode == 6) begin
// 1.6 B: Short jump with two register operands and 8 bit offset (IM1).
jump_offset = {{24{instruction_in[`IM1S]}},instruction_in[`IM1]}; // sign extend
end else if (il == 1 && mode == 7) begin
// 1.7 C: Short jump with one register operand, an 8-bit immediate constant (IM2) and 8 bit offset (IM1),
jump_offset = {{24{instruction_in[`IM1S]}},instruction_in[`IM1]}; // sign extend
end else if (il == 2 && mode == 5) begin
if (op1 == 0) begin
// 2.5.0A: Double size jump with three register operands and 24 bit jump offset
jump_offset = {{8{instruction_in[55]}},instruction_in[55:32]}; // sign extend 24 bit offset
end else if (op1 == 1) begin
// format 2.5.1B: jump with one register, one 16 bit operand, and 16 bit offset
jump_offset = {{16{instruction_in[63]}},instruction_in[63:48]}; // sign extend 16 bit offset
end else if (op1 == 2) begin
// format 2.5.2B: jump with one register, a memory operand with 16 bit address, and 16 bit offset
jump_offset = {{16{instruction_in[63]}},instruction_in[63:48]}; // sign extend 16 bit offset
end else if (op1 == 4) begin
// format 2.5.4C: jump with one register, one 8 bit operand, and 32 bit offset
jump_offset = instruction_in[63:32]; // 32 bit offset
end else if (op1 == 5) begin
// format 2.5.5C: jump with one register, one 32 bit operand, and 8 bit offset
jump_offset = {{24{instruction_in[15]}},instruction_in[15:8]}; // sign extend 8 bit offset
end
end else if (il == 3 && mode == 1) begin
if (op1 == 0) begin
// 3.1.0A: Triple size jump with two register operands and 24 bit jump offset and 32 bit address
jump_offset = {{8{instruction_in[55]}},instruction_in[55:32]}; // sign extend 24 bit offset
end else if (op1 == 1) begin
// 3.1.1B: Jump with two registers, a 32 bit operand, and 32 bit jump offset
jump_offset = instruction_in[63:32]; // 32 bit jump offset
end
end
end
// get condition code for jump instructions
opj = 0;
if (category_in == `CAT_JUMP) begin
if (il == 1) begin
if (mode == 7 && op1 <= `II_UNCOND_JUMP) opj = 0; // unconditional jump or call handled by fetch unit
else if (op1 == `II_RETURN) opj = 0; // return handled by fetch unit
else opj = op1;
end else if (il == 2 && mode == 5 && op1 == 0) begin
opj = instruction_in[61:56]; // format 2.5.0A: opj in upper part of IM2
end else if (il == 2 && mode == 5 && op1 == 7) begin // system call
opj = `IJ_SYSCALL;
end else if (il == 3 && mode == 1 && op1 == 0) begin
opj = instruction_in[61:56]; // format 3.1.0A: opj in upper part of IM2
end else if (op1 < 8) begin // other jump formats have opj in IM1
opj = instruction_in[5:0];
end else begin
opj = 56; // unknown
end
end
// get option bits
if (options3_in && format_in == `FORMAT_E) begin
option_bits = instruction_in[`IM3E]; // option bits in IM3
end else if (category_in == `CAT_JUMP) begin
// imitate compare instruction option bits for compare/jump
case (opj[5:1])
// ignore bit 0 of opj here: it is inserted in the alu stage
`IJ_COMPARE_JEQ>>1: option_bits = 4'b0000;
`IJ_COMPARE_JSB>>1: option_bits = 4'b0010;
`IJ_COMPARE_JSA>>1: option_bits = 4'b0100;
`IJ_COMPARE_JUB>>1: option_bits = 4'b1010;
`IJ_COMPARE_JUA>>1: option_bits = 4'b1100;
endcase
end else if (category_in == `CAT_MULTI && op1 >= `II_MIN && op1 <= `II_MAX_U) begin
// use compare unit to implement max and min
case (op1[1:0])
0: option_bits = 4'b0010; // min, signed
1: option_bits = 4'b1010; // min, unsigned
2: option_bits = 4'b0100; // max, signed
3: option_bits = 4'b1100; // max, unsigned
endcase
end
// convert op1 to opx: operation id in execution unit
opx = `IX_UNDEF; // default is undefined
if (category_in == `CAT_MULTI) begin
opx = op1; // mostly same id for multiformat instructions
if (op1 == `II_SUB_REV) opx = `II_SUB; // operands have been swapped
if (op1 == `II_DIV_REV) opx = `II_DIV; // operands have been swapped
end else if (category_in == `CAT_JUMP) begin
// convert jump instructions to corresponding general ALU instructions
if (opj <= `IJ_SUB_JBORROW + 1) opx = `II_SUB;
else if (opj <= `IJ_AND_JZ + 1) opx = `II_AND;
else if (opj <= `IJ_OR_JZ + 1) opx = `II_OR;
else if (opj <= `IJ_XOR_JZ + 1) opx = `II_XOR;
else if (opj <= `IJ_ADD_JCARRY + 1) opx = `II_ADD;
else if (opj <= `IJ_AND_JZ + 1) opx = `II_AND;
else if (opj <= `IJ_TEST_BIT_JTRUE + 1) opx = `II_TEST_BIT;
else if (opj <= `IJ_TEST_BITS_AND + 1) opx = `II_TEST_BITS_AND;
else if (opj <= `IJ_TEST_BITS_OR + 1) opx = `II_TEST_BITS_OR;
else if (opj <= `IJ_COMPARE_JUA + 1) opx = `II_COMPARE;
else if ((opj & ~1) == `II_INDIRECT_JUMP) begin // 58
if ((il == 1 && mode == 6) || (il == 2 && mode == 5 && op1[2:0] == 2))
opx = `IX_INDIRECT_JUMP; // indirect jump w memory operand, format 1.6 and 2.5.2
else opx = `IX_UNCOND_JUMP; // unconditional jump format 2.5.4 and 3.1.1
end else if ((opj & ~1) == `II_JUMP_RELATIVE) begin // 60
if (il == 1 && mode == 7) opx = `IX_INDIRECT_JUMP;
else opx = `IX_RELATIVE_JUMP;
end
else opx = 0;
end else if (il == 1 && mode == 1) begin
// format 1.1 C. single format instructions with 16 bit constant
case (op1[5:1]) // even and odd op1 values treated together, they differ only by operand type
`II_ADD11 >> 1: opx = `II_ADD;
`II_MUL11 >> 1: opx = `II_MUL;
`II_ADDSHIFT16_11 >> 1: opx = `II_ADD;
`II_SHIFT_ADD_11 >> 1: opx = `II_ADD;
`II_SHIFT_AND_11 >> 1: opx = `II_AND;
`II_SHIFT_OR_11 >> 1: opx = `II_OR;
`II_SHIFT_XOR_11 >> 1: opx = `II_XOR;
default: opx = `IX_UNDEF;
endcase
if (op1 <= `II_MOVE11_LAST) opx = `II_MOVE; // five different move instructions
end else if (il == 1 && mode == 0 && M) begin
// format 1.8 B. single format instructions with 8 bit constant
case (op1)
`II_SHIFT_ABS18: opx = `IX_ABS;
`II_BITSCAN_18: opx = `IX_BIT_SCAN;
`II_ROUNDP2_18: opx = `IX_ROUNDP2;
`II_POPCOUNT_18: opx = `IX_POPCOUNT;
`II_READ_SPEC18: opx = `IX_READ_SPEC;
`II_WRITE_SPEC18: opx = `IX_WRITE_SPEC;
`II_READ_CAP18: opx = `IX_READ_CAPABILITIES;
`II_WRITE_CAP18: opx = `IX_WRITE_CAPABILITIES;
`II_READ_PERF18: opx = `IX_READ_PERF;
`II_READ_PERFS18: opx = `IX_READ_PERFS;
`II_READ_SYS18: opx = `IX_READ_SYS;
`II_WRITE_SYS18: opx = `IX_WRITE_SYS;
`II_INPUT_18: opx = `IX_INPUT;
`II_OUTPUT_18: opx = `IX_OUTPUT;
endcase
end else if (il == 2 && (mode == 0 && !M || mode == 2) && mode2 == 6) begin // format 2.0.6 and 2.2.6
if (op1 == `II_TRUTH_TAB3 && op2 == `II2_TRUTH_TAB3) opx = `IX_TRUTH_TAB3;
end else if (il == 2 && (mode == 0 && !M || mode == 2) && mode2 == 7) begin
// format 2.0.7 and 2.2.7 single format
if (op1 == `II_MOVE_BITS && op2 == `II2_MOVE_BITS) begin // move_bits instruction.
// Do calculations on constant operands here to save critical time in the alu stage
logic [5:0] move_from; // bit position to move from
logic [5:0] move_to; // bit position to move to
logic [5:0] num_bits; // number of bits to move
logic [6:0] end_to; // end of destination bit field
move_from = instruction_in[37:32]; // low part of im2
move_to = instruction_in[45:40]; // high part of im2
num_bits = instruction_in[`IM3E]; // number of bits to move
if (move_from > move_to) begin // IX_MOVE_BITS2 if shifting right
opx = `IX_MOVE_BITS2;
end else begin
opx = `IX_MOVE_BITS1; // IX_MOVE_BITS1 if shifting left
end
end_to = {1'b0,move_to} + num_bits - 1;// end of destination bit field.
if (end_to[6]) option_bits[5:0] = 6'b111111; // saturate on overflow
else option_bits = end_to[5:0];
// begin of destination bit field is in im2_bits[13:8]
// end of destination bit field is in option_bits
opr3_val[7:0] = move_from - move_to; // shift right count, or -(shift left count)
end
end else if (il == 2 && mode == 5) begin
// format 2.5 B. single format instructions with 32 bit constant
if (op1 == `II_STOREI) opx = `II_STORE;
end else if (il == 2 && mode == 1 && M) begin
// format 2.9A. single format instructions with 32 bit constant
case (op1)
`II_MOVE_HI_29: opx = `II_MOVE; // shifted left by 32 here. just store result
`II_INSERT_HI_29: opx = `IX_INSERT_HI;
`II_ADDU_29: opx = `II_ADD;
`II_SUBU_29: opx = `II_SUB;
`II_ADD_HI_29: opx = `II_ADD;
`II_AND_HI_29: opx = `II_SUB;
`II_OR_HI_29: opx = `II_OR;
`II_XOR_HI_29: opx = `II_XOR;
`II_ADDRESS_29: opx = `II_MOVE; // address instruction. resolved in this state. just store result
endcase
end
// select execution unit
if (opx == `IX_INPUT || opx == `IX_OUTPUT || (opx >= `IX_READ_CAPABILITIES && opx <= `IX_WRITE_SYS+1)) begin
exe_unit = 4'b1000; // input/output unit. also handles system registers
end else if (opx >= `II_DIV && opx <= `II_REM_U) begin
exe_unit = 4'b0100; // division unit
end else if ((opx >= `II_MUL && opx <= `II_MUL_HI_U) || opx == `II_MUL_ADD || opx == `II_MUL_ADD2) begin
exe_unit = 4'b0010; // multiplication unit
end else begin
exe_unit = 4'b0001; // general ALU unit
end
// find which operands are used
mask_off = result_type_in != `RESULT_MEM && mask_status_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in && !vector_in;
if (mask_status_in) begin
if (regmask_val[`MASKSZ] == 0) begin
// a mask is used and the value is already available
if (regmask_val[0]) begin
// mask is 1. operands are needed. fallback not needed
if (num_operands_in > 0) opr3_used = 1;
if (num_operands_in > 1) opr2_used = 1;
if (num_operands_in > 2) opr1_used = 1;
end else begin
// mask is 0. operands are not needed. fallback is needed
opr1_used = 1;
end
end else begin
// a mask is used. The value is not available yet. operands and fallback are needed
if (num_operands_in > 0) opr3_used = 1;
if (num_operands_in > 1) opr2_used = 1;
opr1_used = 1;
end
end else begin
// mask not used. fallback not needed
if (num_operands_in > 0) opr3_used = 1;
if (num_operands_in > 1) opr2_used = 1;
if (num_operands_in > 2) opr1_used = 1;
end
if (mask_alternative_in) opr1_used = 1; // alternative use of fallback register
// predict stall in ALU
stall_predict =
(opr1_used && opr1_val[`RB] && predict_tag1_in != opr1_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr1_val[`TAG_WIDTH-1:0]) ||
(opr2_used && opr2_val[`RB] && predict_tag1_in != opr2_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr2_val[`TAG_WIDTH-1:0] && !mask_off) ||
(opr3_used && opr3_val[`RB] && predict_tag1_in != opr3_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr3_val[`TAG_WIDTH-1:0] && !mask_off) ||
(mask_status_in && regmask_val[`MASKSZ] && predict_tag1_in != regmask_val[`TAG_WIDTH-1:0] && predict_tag2_in != regmask_val[`TAG_WIDTH-1:0]);
end
// save values from result bus during stall
always_ff @(posedge clock) if (clock_enable) begin
if (stall_in) begin
opr1_val_temp <= opr1_val; // temporary save during stall
opr2_val_temp <= opr2_val; // temporary save during stall
opr3_val_temp <= opr3_val; // temporary save during stall
regmask_val_temp <= regmask_val; // temporary save during stall
end else begin
opr1_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
opr2_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
opr3_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
regmask_val_temp <= {1'b1,`MASKSZ'b0}; // reset when not stalled
end
end
// output operands
always_ff @(posedge clock) if (clock_enable && !stall_in) begin
if (!swap_operands) begin // normal operand order
// jump instructions
if (category_in == `CAT_JUMP) begin
if (opj < `IJ_JUMP_INDIRECT_MEM || opx == `IX_UNCOND_JUMP) begin
// calculate jump target = ip + il + offset (il cannot be 0 for jump instructions)
operand1_out[`RB1:0] <= instruction_pointer_in + {{32{jump_offset[31]}},jump_offset} + il;
operand1_out[`RB] <= 0; // indicate not missing
end else begin
// target address not known yet. Make sure we don't accidentally assume no jump
operand1_out <= ~(`RB'b0); // -1 for unknown target address
end
end else begin
operand1_out <= opr1_val;
end
operand2_out <= opr2_val;
operand3_out <= opr3_val;
opr2_from_ram_out <= opr2_from_ram; // value of operand 2 comes from data cache
opr3_from_ram_out <= opr3_from_ram; // value of last operand comes from data cache
opr1_used_out <= opr1_used;
opr2_used_out <= opr2_used;
opr3_used_out <= opr3_used;
// disable ram input if error (removed because of critical timing):
/*
if (array_error_in || read_address_error) begin
opr2_from_ram_out <= 0;
opr3_from_ram_out <= 0;
if (opr2_from_ram) operand2_out <= 0;
if (opr3_from_ram) operand3_out <= 0;
end*/
end else begin // swap last two operands
operand1_out <= opr1_val;
operand2_out <= opr3_val;
operand3_out <= opr2_val;
opr2_from_ram_out <= opr3_from_ram; // value of operand 2 comes from data cache
opr3_from_ram_out <= opr2_from_ram; // value of last operand comes from data cache
opr1_used_out <= opr1_used;
opr2_used_out <= opr3_used;
opr3_used_out <= opr2_used;
// disable ram input if error (removed because of critical timing):
/*
if (array_error_in || read_address_error) begin
opr2_from_ram_out <= 0;
opr3_from_ram_out <= 0;
if (opr2_from_ram) operand3_out <= 0;
if (opr3_from_ram) operand2_out <= 0;
end*/
end
mask_val_out <= regmask_val;
// other outputs
regmask_used_out <= mask_status_in;
instruction_pointer_out <= instruction_pointer_in; // address of current instruction
instruction_out <= instruction_in[31:0];
tag_val_out <= tag_val_in; // instruction tag value
vector_out <= vector_in; // this is a vector instruction
mask_alternative_out <= mask_alternative_in;
opx_out <= opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
opj_out <= opj; // operation ID for conditional jump instructions
ot_out <= otype; // operand type
option_bits_out <= option_bits; // option bits in format E
im2_bits_out <= im2_bits; // constant bits from IM2 as extra operand
result_type_out <= result_type_in; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
num_operands_out <= num_operands_in; // number of source operands
category_out <= category_in; // 00: multiformat, 01: single format, 10: jump
format_out <= format_in; // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
// choose which execution unit to use
exe_unit_out <= exe_unit;
// detect trap instruction. will enable single step mode in next clock cycle
trap_out <= (il == 1 && mode == 7 && op1 == `IJ_TRAP && valid_in);
end
always_ff @(posedge clock) if (clock_enable) begin
if (reset) valid_out <= 0;
else if (!stall_in) valid_out <= valid_in;
last_stall <= stall_in & valid_in;
last_valid <= valid_in;
array_error_out <= array_error_in & valid_in; // array index out of bounds
read_address_error_out <= read_address_error & valid_in; // invalid read memory address
write_address_error_out <= write_address_error & valid_in; // invalid write memory address
misaligned_address_error_out <= misaligned_address_error & valid_in; // misaligned read/write memory address
// predict stall
if (exe_unit[2] && 0) begin
stall_predict_out <= valid_in; // To do: stall if div unit busy
end else begin
stall_predict_out <= stall_predict && valid_in && !stall_in; // not all operands and units are ready
end
// debug output
debug_out <= 0;
debug_out[1:0] <= result_type_in;
debug_out[5:4] <= num_operands_in;
debug_out[9:8] <= mask_status_in;
debug_out[10] <= mask_alternative_in;
debug_out[11] <= mask_off;
debug_out[12] <= regmask_val[0];
debug_out[15] <= regmask_val[`MASKSZ];
debug_out[16] <= opr1_used;
debug_out[17] <= opr2_used;
debug_out[18] <= opr3_used;
debug_out[19] <= swap_operands;
debug_out[20] <= stall_predict;
debug_out[25:24] <= il;
end
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log