URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [trunk/] [in_out_ports.sv] - Rev 153
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////////
// Engineer: Agner Fog
//
// Create Date: 2020-11-16
// Last modified: 2021-08-03
// Module Name: in_out_ports
// Project Name: ForwardCom soft core
// Target Devices: Artix 7
// Tool Versions: Vivado v. 2020.1
// License: CERN-OHL-W v. 2 or later
// Description: Input and output ports, as well as reading and writing of special
// registers, including capabilities registers and performance counter registers
//////////////////////////////////////////////////////////////////////////////////
/* Input and output ports:
All input and output bits beyond the specified operand size are set to zero.
The port address can have up to 64 bits regardless of the specified operand size.
The following input and output ports are currently defined:
-----------------------------------------------------------
RS232 serial input and output.
Transmission settings: 8 data bits, one stop bit, no parity, no flow control.
The BAUD rate is currently defined in the file defines.vh
Input port 8. Serial input:
Read one byte from RS232 serial input. Non-blocking
The following value is returned:
bit 0-7: Received data (zero if input buffer empty)
bit 8: Data valid. Unreliable!
bit 9: More data ready: The input buffer contains at least one more byte ready to read
bit 12: Buffer overflow error. Data has been lost due to input buffer overflow
bit 13: Frame error. Error detected in start bit or stop bit. May be due to noise or wrong BAUD rate
Input port 9. Serial input status:
bit 0-15: Number of bytes currently in input buffer
bit 16: Buffer overflow error. Data has been lost due to input buffer overflow
bit 17: Frame error. Error detected in start bit or stop bit. May be due to noise or wrong BAUD rate
Output port 9. Serial input control:
bit 0: Clear buffer. Delete all data currently in the input buffer, and clear error flags
bit 1: Clear error flags but keep data.
The error bits remain high after an error condition until reset by this or by system reset
Output port 10. Serial output:
Write one byte to RS232 serial output.
bit 0-7: Data to write
Other bits are reserved.
Input port 11. Serial output status:
bit 0-15: Number of bytes currently in output buffer
bit 16: Buffer overflow error. Data has been lost due to output buffer overflow
bit 18: Ready. The output buffer has enough space to receive at least one more byte
Output port 11. Serial output control:
bit 0: Clear buffer. Delete all data currently in the output buffer, and clear error flags
bit 1: Clear error flags but keep data.
The error bits remain high after an error condition until reset by this or by system reset
The following special registers are currently defined:
-----------------------------------------------------------
Capabilities registers 0, 1, 4, 5
Performance counter registers 1 - 5, and 16
*/
`include "defines.vh"
module in_out_ports (
input clock, // system clock (100 MHz)
input clock_enable, // clock enable. Used when single-stepping
input reset, // system reset
input valid_in, // data from previous stage ready
input stall_in, // pipeline is stalled
input [31:0] instruction_in, // current instruction, up to 3 words long. Only first word used here
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
input mask_alternative_in, // mask register used for alternative purposes
input vector_in, // this is a vector instruction
input [6:0] opx_in, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
input [5:0] opj_in, // operation ID for conditional jump instructions
input [2:0] ot_in, // operand type
input regmask_used_in, // mask register is used
input uart_bit_in, // serial input
input uart_rts_in, // ready to send input (not used)
// monitor result buses:
input write_en1, // a result is written to writeport1
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
input [`RB1:0] writeport1_in, // result bus 1
input write_en2, // a result is written to writeport2
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
input [`RB1:0] writeport2_in, // result bus 2
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
// Register values sampled from result bus in previous stages
input [`RB:0] operand1_in, // first register operand RD or RU
input [`RB:0] operand2_in, // second register operand RS
input [`RB:0] operand3_in, // last register operand RT
input [`MASKSZ:0] regmask_val_in, // mask register
input opr1_used_in, // operand1_in is needed
// signals used for performance monitoring and error detection
input instruction_valid_in, // instruction is valid but possibly going to a different exe unit
input fast_jump_in, // a jump is bypassing the pipeline
input [`N_ERROR_TYPES-1:0] errors_detect_in, // one bit for each type of error detected
// instruction pointer at position of error
input [`CODE_ADDR_WIDTH-1:0] fetch_instruction_pointer,
input [`CODE_ADDR_WIDTH-1:0] dataread_instruction_pointer,
input dataread_valid, // used when reconstructing alu_instruction_pointer
input call_stack_overflow, // used for differentiating errors_detect_in[1]
input clear_error_in, // debugger clear error
// outputs
output reg valid_out, // for debug display: in_out is active
output reg register_write_out,
output reg [5:0] register_a_out, // register to write
output reg [`RB1:0] result_out, // value to write to register
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
output reg nojump_out, // serializing instruction finished
output reg stall_out, // alu is waiting for an operand or not ready to receive a new instruction
output reg stall_next_out, // alu will be waiting in next clock cycle
output reg error_out, // unknown instruction
output reg error_parm_out, // wrong parameter for instruction
output reg uart_bit_out, // serial output
output reg uart_cts_out, // serial clear to send
output reg [`N_ERROR_TYPES-1:0] capab_disable_errors, // capab2 register: disable errors
output reg [3:0] first_error, // error type for first error
output reg [`CODE_ADDR_WIDTH-1:0] first_error_address, // code address of first error
output reg [31:0] debug_out // debug information
);
logic [`RB1:0] operand1; // first register operand RD or RU. bit `RB is 1 if invalid
logic [`RB1:0] operand2; // second register operand RS. bit `RB is 1 if invalid
logic [`RB1:0] operand3; // last register operand RT. bit `RB is 1 if invalid
logic [`MASKSZ:0] regmask_val; // mask register
logic [1:0] otout; // operand type for output
logic [`RB1:0] result; // result for output
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
logic [4:0] rs; // RS field in instruction
logic [4:0] rd; // RD field in instruction
logic stall; // waiting for operands
logic stall_next; // will be waiting for operands in next clock cycle
logic error; // unknown instruction
logic error_parm; // wrong parameter for instruction
logic [`RB1:0] port_address; // address of input or output port
// submodules signals
reg UART_RX_receive_complete;
reg UART_RX_error;
reg [7:0] UART_RX_byte_out;
reg UART_TX_active;
reg UART_TX_tx_out;
reg UART_TX_done;
reg [7:0] fifo_buffer_input_byte; // serial byte output prefetched
reg fifo_buffer_input_ready; // the buffer contains at least one byte
reg fifo_buffer_input_overflow; // attempt to write to full buffer
reg fifo_buffer_input_underflow; // attempt to read from empty buffer
reg [`IN_BUFFER_SIZE_LOG2-1:0] fifo_buffer_input_num; // number of bytes currently in input buffer
reg [7:0] serial_output_byte_in; // serial byte output
reg [7:0] fifo_buffer_output_byte; // serial byte output prefetched from buffer
reg fifo_buffer_output_ready; // the buffer contains at least one byte
reg fifo_buffer_output_overflow; // attempt to write to full buffer
reg fifo_buffer_output_underflow; // attempt to read from empty buffer
reg [`OUT_BUFFER_SIZE_LOG2-1:0] fifo_buffer_output_num; // number of bytes currently in output buffer
logic fifo_buffer_input_read_next;
logic fifo_buffer_input_reset;
logic fifo_buffer_input_reset_error;
logic fifo_buffer_output_write;
logic fifo_buffer_output_reset;
logic fifo_buffer_output_reset_error;
logic mask_off;
// temporary debug info
logic [31:0] debug_bits;
// performance counters
reg [`RB1:0] cpu_clock_cycles; // count CPU clock cycles
reg [`RB1:0] num_instructions; // count instructions
reg [`RB1:0] num_instructions_2size; // count double size instructions
reg [`RB1:0] num_instructions_3size; // count triple size instructions
reg [`RB1:0] num_instructions_gp; // count instructions with g.p. registers
reg [`RB1:0] num_instructions_gp_mask0; // count instructions with g.p. registers and mask = 0
reg [`RB1:0] num_instructions_vector; // count instructions with vector registers
reg [`RB1:0] num_jump_call_return; // count control transfer instructions
reg [`RB1:0] num_jump_call_direct; // count direct unconditional jumps and calls
reg [`RB1:0] num_jump_call_indirect; // count indirect jumps and calls
reg [`RB1:0] num_jump_conditional; // count conditional jumps
reg [`RB1:0] num_unknown_instruction; // count unknown instruction
reg [`RB1:0] num_wrong_operands; // count wrong operands for instructions
reg [`RB1:0] num_array_overflow; // count array index out of range
reg [`RB1:0] num_read_violation; // count memory read access violation
reg [`RB1:0] num_write_violation; // count memory write access violation
reg [`RB1:0] num_misaligned_memory; // count misaligned memory access
reg error_last; // error input was present in last clock cycle
reg clock_enabled_last; // clock was enabled in last clock cycle
reg first_error_saved; // an error has been detected and saved
reg [`CODE_ADDR_WIDTH-1:0] alu_instruction_pointer; // alu_instruction pointer is not input, but reconstructed here
// signals for resetting counters
logic reset_cpu_clock_cycles;
logic reset_num_instructions;
logic reset_num_instructions_vector;
logic reset_num_instructions_jump;
logic reset_num_errors;
always_comb begin
// get all inputs
stall = 0;
stall_next = 0;
debug_bits = 0;
mask_off = 0;
rs = instruction_in[`RS];
rd = instruction_in[`RD];
regmask_val = 0;
if (regmask_val_in[`MASKSZ]) begin // value missing
if (write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
regmask_val = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
regmask_val = writeport2_in[(`MASKSZ-1):0]; // obtained from result bus 2
end else begin
if (regmask_used_in & valid_in) begin
stall = 1; // operand not ready
if (regmask_val_in[`TAG_WIDTH-1:0] != predict_tag1_in && regmask_val_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
end
end
end
end else begin // value available
regmask_val = regmask_val_in[(`MASKSZ-1):0];
end
operand1 = 0;
if (operand1_in[`RB]) begin // value missing
if (operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
operand1 = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
operand1 = writeport2_in; // obtained from result bus 2
end else begin
if (opr1_used_in & valid_in) begin
stall = 1; // operand not ready
debug_bits[0] = 1;
if (operand1_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand1_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
debug_bits[1] = 1;
end
end
end
end else begin
operand1 = operand1_in[`RB1:0];
end
operand2 = 0;
if (operand2_in[`RB]) begin // value missing
if (operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
operand2 = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
operand2 = writeport2_in; // obtained from result bus 2
end else begin
stall = 1; // operand not ready
debug_bits[2] = 1;
if (operand2_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand2_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
debug_bits[3] = 1;
end
end
end else begin // value available
operand2 = operand2_in[`RB1:0];
end
// operand 3 is never missing if all instructions in this module have a constant as last operand:
operand3 = operand3_in[`RB1:0];
/*
operand3 = 0;
if (operand3_in[`RB]) begin // value missing
if (operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
operand3 = writeport1_in; // obtained from result bus 1 (which may be my own output)
end else if (write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
operand3 = writeport2_in; // obtained from result bus 2
end else begin
stall = 1; // operand not ready
debug_bits[2] = 1;
if (operand3_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand3_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
stall_next = 1; // operand not ready in next clock cycle
debug_bits[3] = 1;
end
end
end else begin // value available
operand3 = operand3_in[`RB1:0];
end*/
mask_off = regmask_used_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in;
opx = opx_in; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
otout = ot_in[1:0]; // operand type for output
error = 0;
error_parm = 0;
// get port address
if (operand3 < 255) begin
port_address = operand3; // immediate address
end else begin
port_address = operand2; // port address from register RS
end
////////////////////////////////////////////////
// Select I/O operation
////////////////////////////////////////////////
result = 0;
fifo_buffer_input_read_next = 0;
fifo_buffer_input_reset = 0;
fifo_buffer_input_reset_error = 0;
serial_output_byte_in = 0;
fifo_buffer_output_write = 0;
fifo_buffer_output_reset = 0;
fifo_buffer_output_reset_error = 0;
reset_cpu_clock_cycles = 0;
reset_num_instructions = 0;
reset_num_instructions_vector = 0;
reset_num_instructions_jump = 0;
reset_num_errors = 0;
if (valid_in && !stall && !stall_in) begin
if (opx == `IX_INPUT) begin
// input port operation
debug_bits[4] = 1;
case (port_address)
`INPORT_RS232: begin
result[7:0] = fifo_buffer_input_byte;
result[8] = fifo_buffer_input_ready;
result[9] = fifo_buffer_input_num > 1;
fifo_buffer_input_read_next = 1;
end
`INPORT_RS232_STATUS: begin
if (`IN_BUFFER_SIZE_LOG2 > 16 && fifo_buffer_input_num >= 2**`IN_BUFFER_SIZE_LOG2) begin
result[15:0] = 16'HFFFF;
end else begin
result[`IN_BUFFER_SIZE_LOG2-1:0] = fifo_buffer_input_num[`IN_BUFFER_SIZE_LOG2-1:0];
end
result[16] = fifo_buffer_input_overflow;
result[17] = UART_RX_error;
end
`OUTPORT_RS232_STATUS: begin
if (`OUT_BUFFER_SIZE_LOG2 > 16 && fifo_buffer_output_num >= 2**`OUT_BUFFER_SIZE_LOG2) begin
result[15:0] = 16'HFFFF;
end else begin
result[`OUT_BUFFER_SIZE_LOG2-1:0] = fifo_buffer_output_num[`OUT_BUFFER_SIZE_LOG2-1:0];
end
result[16] = fifo_buffer_output_overflow;
result[18] = ! (&fifo_buffer_output_num);
end
default: begin
// unknown port address
error_parm = 1;
end
endcase
end else if (opx == `IX_OUTPUT) begin
// output port operation
debug_bits[5] = 1;
case (port_address)
`OUTPORT_RS232: begin
serial_output_byte_in = operand1[7:0];
fifo_buffer_output_write = 1;
end
`OUTPORT_RS232_STATUS: begin
fifo_buffer_output_reset = operand1[0];
fifo_buffer_output_reset_error = operand1[1];
end
`INPORT_RS232_STATUS: begin
fifo_buffer_input_reset = operand1[0];
fifo_buffer_input_reset_error = operand1[1];
end
default: begin
// unknown port address
error_parm = 1;
end
endcase
end else if (opx == `IX_READ_CAPABILITIES) begin
// read capabilities registers, etc.
case (rs)
0: result = "A"; // Microprocessor brand ID
1: result = 20'h10000; // Microprocessor version
2: result = capab_disable_errors; // Capab2: disable error traps
4: result = {1'b1,{(`CODE_ADDR_WIDTH+2){1'b0}}}; // Code memory size, (bytes)
5: result = {1'b1,{(`DATA_ADDR_WIDTH){1'b0}}}; // Data memory size, (bytes)
8:
`ifdef SUPPORT_64BIT
result = 4'b1111; // support for operand sizes
`else
result = 4'b0111;
`endif
9: result = `NUM_VECTOR_UNITS > 0 ? 4'b1111 : 0; // support for operand sizes in vectors
12: result = `NUM_VECTOR_UNITS * 8; // maximum vector length
13, 14, 15: result = `NUM_VECTOR_UNITS * 8; // maximum vector length for permute, compress, expand, etc.
default: result = 0;
endcase
end else if (opx == `IX_WRITE_CAPABILITIES) begin
// write capabilities registers, etc.
result = operand2; // any capabilities register written below
end else if ((opx & -2) == `IX_READ_PERF) begin
// read_perf and read_perfs
case (rs)
0: begin // reset all performance counters
reset_cpu_clock_cycles = operand3_in[0];
reset_num_instructions = operand3_in[1];
reset_num_instructions_vector = operand3_in[2];
reset_num_instructions_jump = operand3_in[3];
reset_num_errors = operand3_in[4];
end
1: begin
result = cpu_clock_cycles; // count CPU clock cycles
if (operand3_in[7:0] == 0) reset_cpu_clock_cycles = 1;
end
2: begin // count instructions
case (operand3_in[7:0])
0: begin
result = num_instructions; // count instructions
reset_num_instructions = 1;
end
1: result = num_instructions; // count instructions
2: result = num_instructions_2size; // count double size instructions
3: result = num_instructions_2size; // count double size instructions
4: result = num_instructions_gp; // count instructions with g.p. registers
5: result = num_instructions_gp_mask0; // count instructions with g.p. registers and mask = 0
endcase
end
3: begin
result = num_instructions_vector; // count instructions with vector registers
if (operand3_in[7:0] == 0) reset_num_instructions_vector = 1;
end
4: result = 0; // vector registers in use
5: begin // jump instructions
case (operand3_in[7:0])
0: begin
result = num_jump_call_return; // count instructions
reset_num_instructions_jump = 1;
end
1: result = num_jump_call_return; // count control transfer instructions
2: result = num_jump_call_direct; // count direct unconditional jumps and calls
3: result = num_jump_call_indirect; // count indirect jumps and calls
4: result = num_jump_conditional; // count conditional jumps
endcase
end
16: begin // count errors
case (operand3_in[7:0])
0: begin
reset_num_errors = 1;
end
1: result = num_unknown_instruction;
2: result = num_wrong_operands;
3: result = num_array_overflow;
4: result = num_read_violation;
5: result = num_write_violation;
6: result = num_misaligned_memory;
62: result = first_error; // error type for first error
63: result = first_error_address; // code address of first error
endcase
end
endcase
end else begin
error = 1; // unknown instruction
end
end
// output for debugger
debug_bits[14:8] = opx;
debug_bits[16] = stall; // waiting for operands
debug_bits[17] = stall_next; // will be waiting for operands in next clock cycle
debug_bits[19] = error; // unknown or illegal operation
debug_bits[20] = valid_in; // inout is enabled
debug_bits[21] = fifo_buffer_input_read_next;
debug_bits[22] = fifo_buffer_output_write;
debug_bits[31:24] = port_address[7:0];
/*
debug_bits[23:20] = error_number_in;
debug_bits[31:24] = num_unknown_instruction[7:0];
*/
end
// output
always_ff @(posedge clock) if (clock_enable) begin
if (!valid_in) begin
register_write_out <= 0;
// note: the FPGA has no internal tri-state buffers. We need to simulate result bus by or'ing outputs
result_out <= 0;
register_a_out <= 0;
tag_val_out <= 0;
// stall_in must disable the output to avoid executing the same instruction twice)
end else if (stall || stall_in || result_type_in != `RESULT_REG) begin
register_write_out <= 0;
result_out <= 0;
register_a_out <= 0;
tag_val_out <= 0;
end else begin
// register result from input instruction or read_capabilities, etc.
case (otout)
0: result_out <= result[7:0];
1: result_out <= result[15:0];
2: result_out <= result[31:0];
3: result_out <= result[`RB1:0];
endcase
register_write_out <= ~reset;
register_a_out <= {1'b0,rd};
tag_val_out <= tag_val_in;
end
if (result_type_in == `RESULT_SYS) begin
// write system register
if (opx == `IX_WRITE_CAPABILITIES && rd == 2) capab_disable_errors <= result;
end
if (reset) begin // reset capabilities registers
capab_disable_errors <= 0;
end
valid_out <= !stall & valid_in & !reset;
stall_out <= stall & valid_in & !reset;
stall_next_out <= stall_next & valid_in & !reset;
nojump_out <= (opx == `IX_READ_PERFS) & valid_in; // resume after serializing
error_out <= error & valid_in & !reset; // unknown instruction
error_parm_out <= error_parm & valid_in & !reset; // wrong parameter
uart_cts_out <= 1; // UART clear to send
debug_out <= debug_bits; // output for debugger
end
// update performance counters
always_ff @(posedge clock) if (clock_enable) begin
cpu_clock_cycles <= cpu_clock_cycles + 1;
if (instruction_valid_in) begin
num_instructions <= num_instructions + 1 + fast_jump_in;
if (instruction_in[`IL] == 2) num_instructions_2size <= num_instructions_2size + 1;
if (instruction_in[`IL] == 3) num_instructions_3size <= num_instructions_3size + 1;
if (vector_in) begin
num_instructions_vector <= num_instructions_vector + 1;
end else begin
num_instructions_gp <= num_instructions_gp + 1;
if (mask_off) num_instructions_gp_mask0 <= num_instructions_gp_mask0 + 1;
end
if (category_in == `CAT_JUMP) begin // jump instructions
num_jump_call_return <= num_jump_call_return + 1 + fast_jump_in;
if (opj_in <= `IJ_LAST_CONDITIONAL) num_jump_conditional <= num_jump_conditional + 1;
else num_jump_call_indirect <= num_jump_call_indirect + 1;
end
end
if (fast_jump_in) begin // fast jump/call/return bypassing pipeline
num_jump_call_direct <= num_jump_call_direct + 1;
if (!(instruction_valid_in && category_in == `CAT_JUMP)) begin
num_jump_call_return <= num_jump_call_return + 1; // count also total jumps, except if counted above
end
end
// reset counters
if (reset_cpu_clock_cycles | reset) begin
cpu_clock_cycles <= 0;
end
if (reset_num_instructions | reset) begin
num_instructions <= 0;
num_instructions_2size <= 0;
num_instructions_3size <= 0;
num_instructions_gp <= 0;
num_instructions_gp_mask0 <= 0;
end
if (reset_num_instructions_vector | reset) begin
num_instructions_vector <= 0;
end
if (reset_num_instructions_jump | reset) begin
num_jump_call_return <= 0; // count control transfer instructions
num_jump_call_direct <= 0; // count direct unconditional jumps and calls
num_jump_call_indirect <= 0; // count indirect jumps and calls
num_jump_conditional <= 0; // count conditional jumps
end
end
// Error detection. This is not controlled by clock enable because clock enable may stop when error is detected
always_ff @(posedge clock) begin
error_last <= |errors_detect_in; // error detected in last clock cycle
clock_enabled_last <= clock_enable; // clock was enabled in last clock cycle. new instruction encountered
// A new error is detected if there was no error signal in the last clock cycle
// of if clock_enable has allowed the execution of a new instruction
if (|errors_detect_in && (clock_enabled_last || !error_last)) begin
// a new error is detected. count it only once
if (errors_detect_in[0]) num_unknown_instruction <= num_unknown_instruction + 1;
else if (errors_detect_in[1]) num_wrong_operands <= num_wrong_operands + 1;
else if (errors_detect_in[2]) num_array_overflow <= num_array_overflow + 1;
else if (errors_detect_in[3]) num_read_violation <= num_read_violation + 1;
else if (errors_detect_in[4]) num_write_violation <= num_write_violation + 1;
else if (errors_detect_in[5]) num_misaligned_memory <= num_misaligned_memory + 1;
end
// remember first error
if (|errors_detect_in) begin
if (!first_error_saved) begin
if (errors_detect_in[0]) begin
first_error <= 1;
first_error_address <= alu_instruction_pointer;
end else if (errors_detect_in[1]) begin
first_error <= 2;
if (call_stack_overflow) first_error_address <= fetch_instruction_pointer;
else first_error_address <= alu_instruction_pointer;
end else if (errors_detect_in[2]) begin
first_error <= 3;
first_error_address <= dataread_instruction_pointer;
end else if (errors_detect_in[3]) begin
first_error <= 4;
first_error_address <= dataread_instruction_pointer;
end else if (errors_detect_in[4]) begin
first_error <= 5;
first_error_address <= dataread_instruction_pointer;
end else if (errors_detect_in[5]) begin
first_error <= 6;
first_error_address <= dataread_instruction_pointer;
end
end
first_error_saved <= 1;
end
if (reset_num_errors | reset) begin
// reset error counters
num_unknown_instruction <= 0; // count unknown instruction
num_wrong_operands <= 0; // count wrong operands for instructions
num_array_overflow <= 0; // count array index out of range
num_read_violation <= 0; // count memory read access violation
num_write_violation <= 0; // count memory write access violation
num_misaligned_memory <= 0; // count misaligned memory access
first_error <= 0;
first_error_address <= 0;
first_error_saved <= 0;
end
if (clear_error_in) begin
first_error_saved <= 0; // debugger clear error
end
// reconstruct alu_instruction_pointer:
if (clock_enable & dataread_valid) begin
alu_instruction_pointer <= dataread_instruction_pointer;
end
end
// implement uart receiver
UART_RX UART_RX_inst (
.reset(reset | fifo_buffer_input_reset | fifo_buffer_input_reset_error), // reset
.clock(clock), // clock at `CLOCK_RATE
.rx_in(uart_bit_in), // RX input
.receive_complete_out(UART_RX_receive_complete), // byte received. Will be high for 1 clock cycle after the middle of the stop bit
.error_out(UART_RX_error), // transmission error. Remains high until reset in case of error
.byte_out(UART_RX_byte_out) // byte output
);
// implement uart transmitter
UART_TX UART_TX_inst (
.reset(reset | fifo_buffer_output_reset | fifo_buffer_output_reset_error), // reset
.clock(clock), // clock at `CLOCK_RATE
.start_in(fifo_buffer_output_ready), // command to send one byte
.byte_in(fifo_buffer_output_byte), // byte input
.active_out(UART_TX_active), // is busy
.tx_out(uart_bit_out), // TX output
.done_out(UART_TX_done) // will be high for one clock cycle shortly before the end of the stop bit
);
// implement fifo buffer for receiver
fifo_buffer #(.size_log2(`IN_BUFFER_SIZE_LOG2))
fifo_buffer_input (
.reset(reset | fifo_buffer_input_reset), // reset everything
.reset_error(reset | fifo_buffer_input_reset_error), // clear error flags
.clock(clock), // clock at `CLOCK_RATE
.read_next(fifo_buffer_input_read_next & clock_enable),// read next byte from buffer
.write(UART_RX_receive_complete), // write one byte to buffer
.byte_in(UART_RX_byte_out), // serial byte input
.byte_out(fifo_buffer_input_byte), // serial byte output prefetched
.data_ready_out(fifo_buffer_input_ready), // the buffer contains at least one byte
.overflow(fifo_buffer_input_overflow), // attempt to write to full buffer
.underflow(fifo_buffer_output_underflow), // attempt to read from empty buffer
.num(fifo_buffer_input_num) // number of bytes currently in buffer
);
// implement fifo buffer for transmitter
fifo_buffer #(.size_log2(`OUT_BUFFER_SIZE_LOG2))
fifo_buffer_output (
.reset(reset | fifo_buffer_output_reset), // reset everything
.reset_error(reset | fifo_buffer_output_reset_error), // clear error flags
.clock(clock), // clock at `CLOCK_RATE
.read_next(UART_TX_done), // read next byte from buffer
.write(fifo_buffer_output_write & clock_enable), // write one byte to buffer
.byte_in(serial_output_byte_in), // serial byte input
.byte_out(fifo_buffer_output_byte), // serial byte output prefetched
.data_ready_out(fifo_buffer_output_ready), // the buffer contains at least one byte
.overflow(fifo_buffer_output_overflow), // attempt to write to full buffer
.underflow(fifo_buffer_output_underflow), // attempt to read from empty buffer
.num(fifo_buffer_output_num) // number of bytes currently in buffer
);
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log